
User Guide

60East TechnologiesTM

Advanced Message Processing SystemTM

3.3

Advanced Message Processing SystemTM

60East TechnologiesTM

Copyright © 2013 60East Technologies

All rights reserved. 60East, AMPS, and Advanced Message Processing System
are trademarks of 60East Technologies, Inc. All other trademarks are the
property of their respective owners.

PUBLICATION DATE: MARCH 4, 2013 [LATEX 2ε]

Toll-free: (888) 206-1365
International: (702) 979-1323

FAX: (888) 216-8502
Web: http://www.crankuptheamps.com

E-Mail: sales@crankuptheamps.com

http://www.crankuptheamps.com
mailto:sales@crankuptheamps.com

Contents

1 Introduction to 60East Technologies AMPS 1
1.1 Welcome . 1
1.2 Product Overview . 1
1.3 Software Requirements . 2
1.4 Organization of this Manual . 2
1.5 Document Conventions . 3
1.6 Technical Support . 4

2 Getting Started 6
2.1 Installing AMPS . 6
2.2 Starting AMPS . 7
2.3 Running the Demonstration Applications 7
2.4 Admin View of the AMPS Server 8
2.5 Interacting with AMPS Using Spark 9
2.6 FIX Messages - A Quick FIX Primer 9
2.7 Next Steps . 10

3 Publish and Subscribe 11
3.1 Topics . 12
3.2 Content . 13

4 State of the World (SOW) 15
4.1 How Does the State of the World Work? 15
4.2 Queries . 16
4.3 Configuration . 16

5 SOW Queries 20
5.1 Simple SOW Queries . 20
5.2 SOW Query-and-Subscribe . 21
5.3 SOW Query Response Batching 22

6 Content Filtering 25
6.1 Syntax . 25

7 Regular Expressions 30

iv CONTENTS

7.1 Examples . 30

8 Transports 34
8.1 Configuration . 34
8.2 TCP/IP Transport . 35

9 Message Types 38
9.1 Configuration . 38
9.2 FIX . 39
9.3 SOAP . 40

10 Logging 42
10.1 Configuration . 42
10.2 Log Messages . 43
10.3 Log Levels . 43
10.4 Logging to a File . 45
10.5 Logging to a Compressed File 47
10.6 Logging to the Console . 48
10.7 Logging to Syslog . 49
10.8 Error Categories . 50
10.9 Error discovery with ampserr . 52

11 Event Topics 53
11.1 Client Status . 53
11.2 SOW Statistics . 54
11.3 Persisting Event Topic Data . 56

12 Message Acknowledgment 57
12.1 Subscription Acknowledgment Messages 57

13 Topic Replicas 60
13.1 Configuration . 61

14 View Topics 63
14.1 Example . 63

15 Message Expiration 67
15.1 Usage . 67
15.2 Example Message Lifecycle . 68

16 Out of Focus Message Processing (OOF) 70
16.1 Usage . 70
16.2 Example . 71
16.3 Another Example . 75

17 Utilities 79
17.1 amps sow dump . 79
17.2 amps journal dump . 81
17.3 ampserr . 82
17.4 spark . 84

CONTENTS v

18 Operation and Deployment 86
18.1 Capacity Planning . 86
18.2 Linux Operating System Configuration 90
18.3 Best Practices . 92

19 Monitoring Interface 96
19.1 Configuration . 96
19.2 Time Range Selection . 97
19.3 Output Formatting . 98

20 High Availability 101
20.1 Transaction Log . 101
20.2 Replication . 102
20.3 Bookmarks . 104
20.4 Publishing for High Availability 104
20.5 Subscribing for High Availability 106
20.6 Deployment Examples . 108
20.7 Potential Points of Failure . 114
20.8 Configuration . 115

21 Sample Use Cases 119
21.1 View Server Use Case . 119

A Header Field Reference 125
A.1 FIX Message Header - Sorted by Value 125
A.2 FIX Message Header - Sorted by Name 126
A.3 XML Message Header - Sorted by Name 127
A.4 Header Fields - Sorted by Name 128

B Command Reference 132
B.1 delta publish . 132
B.2 delta subscribe . 135
B.3 logon . 137
B.4 publish . 139
B.5 sow and delta subscribe . 141
B.6 sow and subscribe . 144
B.7 sow delete . 146
B.8 sow . 149
B.9 start timer . 151
B.10 stop timer . 152
B.11 subscribe . 153
B.12 unsubscribe . 156

C Configuration Reference 158
C.1 AMPS Configuration Basics . 158
C.2 Generating a Configuration File 163
C.3 Features . 164

D Monitoring Interface Reference 178
D.1 Host Interface . 178
D.2 Instance Interface . 181

vi CONTENTS

E Authentication and Entitlements 191
E.1 Configuration . 191
E.2 AMPS Administration . 192
E.3 AMPS Guarantees . 193
E.4 Authentication Interface . 194
E.5 Entitlements Module interface . 196
E.6 Additional Notes . 199

F Glossary 200

Chapter 1
Introduction to 60East
Technologies AMPS

1.1 Welcome

Thank you for choosing the Advanced Message Processing System (AMPS)
from 60East Technologies. AMPS is a feature-rich publish and subscribe
message processing system that delivers previously unattainable low-latency
and high-throughput performance to users.

1.2 Product Overview

AMPS is a modern publish and subscribe engine designed specifically for next
generation computing environments. It is intended to allow the realization of scal-
able high-throughput, low-latency messaging required in real-time deployments
such as in financial services. The architecture, design and implementation of
AMPS allows the exploitation of parallelism inherent in emerging multi-socket,
multi-core commodity systems and the low-latency, high-bandwidth of 10Gb
Ethernet.

AMPS was designed to lower the latency in real-world messaging deployments
by focusing on the entire lifetime of a message from the message’s origin to its
consumption by end-user clients.

AMPS offers both topic and content based subscription semantics which makes
it different than most other publish/subscribe messaging platforms. Some of the
highlights of AMPS include:

• Topic and content based publish and subscribe

• Native FIX and XML message support

2 Introduction to 60East Technologies AMPS

• State-of-the-World queries

• Easy to use command interface

• Full PERL compatible regular expression matching

• Content filters with SQL92 WHERE clause semantics

• Built-in latency statistics and client status monitoring

• Delta publish and subscriptions

• Basic CEP capabilities for real-time computation and analysis

• Replication for High-Availability

• Message replay functionality

1.3 Software Requirements

AMPS is supported under the following platforms:

• Linux 64-bit (2.6 kernel or later) on x86 compatible processors 1

1.4 Organization of this Manual

This manual is divided into the following chapters:

• Chapter 1 --- Introduction to AMPS; (this chapter) describes the product,
provides information on using this manual efficiently, and explains how to
obtain technical support.

• Chapter 2 --- AMPS Basics; covers installation, basic configuration, opera-
tion and usage. Start here if you want to start using AMPS immediately.

• Chapter 3 through Chapter 21 contain feature-specific information:

� Chapter 3 --- Publishing and Subscribing

� Chapter 4 --- State of the World (SOW)

� Chapter 5 --- SOW Queries

� Chapter 6 --- Content Filtering

� Chapter 7 --- Regular Expressions

� Chapter 8 --- Transports

� Chapter 9 --- Message Types

� Chapter 10 --- Logging

� Chapter 11 --- AMPS Event Topics
1While 2.6 is the minimum kernel version supported, AMPS will select the most efficient mecha-

nisms available to it and thus reaps greater benefit from more recent kernel and CPU versions.

1.5 Document Conventions 3

� Chapter 12 --- Message Acknowledgment

� Chapter 13 --- Topic Replicas

� Chapter 14 --- View Topics

� Chapter 15 --- Message Expiration

� Chapter 16 --- OOF - Out of Focus Messages

� Chapter 17 --- Utilities

� Chapter 18 --- Operation and Deployment

� Chapter 19 --- Monitoring Interface

� Chapter 20 --- High Availability

� Chapter 21 --- Sample Use Cases

• Appendix A --- Header Field Reference

• Appendix B --- AMPS Command Reference

• Appendix C --- AMPS Configuration Reference

• Appendix D --- Monitoring Interface Reference

1.5 Document Conventions

This manual is an introduction to the 60East Technologies AMPS product. It
assumes that you have a working knowledge of Linux and uses the following
conventions.

Table 1.1: Documentation Conventions

Construct Usage
text standard document text
code inline code fragments
variable variables within commands or configuration

usage tip or extra information

usage warning
required required parameters in parameter tables
optional optional parameters in parameter tables

Additionally, here are the constructs used for displaying content filters, XML,
code, command line, and script fragments. A content filter that is long will show
arrows to indicate word wrapping as in this example:

(expr1 = 1) OR (expr2 = 2) OR (expr3 = 3) OR (expr4 = ←↩
4) OR (expr5 = 5) OR (expr6 = 6) OR (expr7 = 7) OR ←↩

4 Introduction to 60East Technologies AMPS

(expr8 = 8)

Command lines will be formatted as in the following example:

find . -name *.java

XML fragments will be formatted with line numbers as in the following example:

1 <XML>
2 <AMPS>fast</AMPS>
3 </XML>

1.6 Technical Support

For an outline of your specific support policies, please see your 60East Tech-
nologies License Agreement. Support contracts can be purchased through your
60East Technologies account representative.

1.6.1 Obtaining Support

You can save time if you complete the following steps before you contact 60East
Technologies Support:

1. Check the documentation. The problem may already be solved and
documented in the user’s guide or reference guide for the product.

2. Isolate the problem.

If you require Support Services, please isolate the problem to the smallest
test case possible. Capture erroneous output into a text file along with the
commands used to generate the errors.

3. Collect your information.

• Your product version number.

• Your operating system and its kernel version number.

• The expected behavior, observed behavior and all input used to
reproduce the problem.

• Submit your request.

• If you have a minidump file, be sure to include that in your email to
support@crankuptheamps.com.

The AMPS version number used when reporting your product version number
follows a format listed below. The version number is composed of the following:

MAJOR.MINOR.MAINTENANCE.TIMESTAMP.TAG

Each AMPS version number component has the following breakdown

1.6 Technical Support 5

Table 1.2: Version Number Components

Component Description
MAJOR Ticks when there are changes in functionality, file

formats, configs, or deprecated functionality.
MINOR Ticks when new functionality is added.
MAINTENANCE Ticks with standard bug fixing, maintenance, small

features and enhancements.
TIMESTAMP Proprietary build timestamp.
TAG Identifier that corresponds to precise code used in

the release.

The packaging of a release will also take into account the source control branch,
so that if anything other than master is used the branch name will show up in
the cpack distribution.

1.6.2 Contacting 60East Technologies Support

Please contact 60East Technologies Support Services according to the terms
of your 60East Technologies License Agreement.
Support is offered through the United States:

Toll-free: (888) 206-1365
International: (702) 979-1323

FAX: (888) 216-8502
Web: http://www.crankuptheamps.com

E-Mail: sales@crankuptheamps.com

Support: support@crankuptheamps.com

Support Phone: (646) 392-8267

Chapter 2
Getting Started

Chapter 2 is for users who are new to AMPS and want to get up and running
on a simple instance of AMPS. This chapter will walk new users through the
file structure of an AMPS installation, configuring a simple AMPS instance and
running the demonstration tools provided as part of the distribution to show how
a simple publisher can send messages to AMPS.

2.1 Installing AMPS

To install AMPS, unpack the distribution for your platform where you want
the binaries and libraries to be stored. For the remainder of this guide, the
installation directory will be referred to as $AMPSDIR as if an environment
variable with that name was set to the correct path.

Within $AMPSDIR the following sub-directories listed in Table 2.1.

Table 2.1: AMPS Distribution Directories

Directory Description
api Client APIs, spark sample client and examples
bin AMPS engine binaries and utilities
demos Demo applications
docs Documentation
lib Library dependencies

2.2 Starting AMPS 7

2.2 Starting AMPS

The AMPS Engine binary is named ampServer and is found in $AMPSDIR/bin.
Start the AMPS engine with a single command line argument that includes a
valid path to an AMPS configuration file. For example, you can start AMPS with
the demo configuration as follows:

$AMPSDIR/bin/ampServer $AMPSDIR/demos/amps_config.xml

AMPS uses the current working directory for storing files (logs
and persistence) for any relative paths specified in the configu-
ration. While this is important for real deployments, the demo
configuration used in this chapter does not persist anything, so
you can safely start AMPS from any working directory using this
configuration.

If your first start up is successful, you should see AMPS display a simple
message similar to the following to let you know that your instance has started
correctly.

AMPS 3.0.0 - Copyright (c) 2006 - 2011 60East ←↩
Technologies, Inc.

(Built: Oct 16 2011 13:53:41)

For all support questions: support@crankuptheamps.com

If you see this, congratulations! You have successfully cranked up the AMPS!

2.3 Running the Demonstration Applications

After starting the AMPS instance, AMPS is now ready to accept published
data and accept subscriptions. In the $AMPSDIR/demos directory there are a
couple of demonstration programs that publish and subscribe to AMPS. Both
the XML and FIX demo programs establish a subscriber and a publisher. The
$AMPSDIR/demos directory includes the following files:

File Description
amps fix demo A FIX publisher / subscriber application
amps xml demo An XML publisher / subscriber application
client monitor An application that listens for and prints client events and activity

The amps fix demo and amps xml demo applications contain a publisher and a
subscriber. The publisher sends a start timer command, then it publishes
100,000 messages and finishes by sending a stop timer command. When

8 Getting Started

the stop timer response is received from AMPS, the publisher will repeat
publishing the data until you stop the program. On each of the publisher’s
iterations, the amps engine will print out a status message with the performance
statistics.

The subscriber will subscribe with a topic and content filter that looks like:

(/FIXML/Order/Instrmt/@Sym = 'IBM') AND
(/FIXML/Order/OrdQty/@Qty > 9999)

The FIX equivalent is:

(/20 = 'IBM') AND (/21 > 9999)

The examples contain fictional data only to illustrate how filtering
works.

In the demo configuration, there are two ports opened and listening for client
connections: FIX clients on port 9004 and XML clients on 9005. Therefore, to
start the FIX demo application run:

$AMPSDIR/demos/amps_fix_demo -s host:9004

Or, for XML run:

$AMPSDIR/demos/amps_xml_demo -s host:9005

Where host is the IP address of the host running AMPS. If the AMPS engine
instance is running on the same host, use ”localhost” for the host.

After starting the demo applications, the console in which AMPS was started
will have performance metrics and statistics printed to the screen. Additionally,
the metrics from the administration and statistics interface can be observed on
port 9090 of the host running the AMPS engine instance.

To shut down the AMPS engine instance: If the engine is running in the fore-
ground of the console, the issuing a Ctrl+C will cause AMPS to shutdown
safely. If the AMPS engine instance is running in the background, using the
kill -SIGTERM followed by the pid of the AMPS engine instance will safely
shut it down.

2.4 Admin View of the AMPS Server

When AMPS has been started correctly, you can get an indication if it is up
or not by connecting to its admin port with a browser at: http://host:port
where, host is the host the AMPS instance is running on and port is the adminis-
tration port configured in the configuration file. When successful, a hierarchy of
information regarding the instance will be displayed. (For more information on

2.5 Interacting with AMPS Using Spark 9

the monitoring capabilities, please see Chapter 19.) For the demo configuration,
try connecting to http://localhost:9090.

2.5 Interacting with AMPS Using Spark

AMPS provides the ’spark’ utility as a command line interface to interacting with
an AMPS server. This lets you execute commands like ’subscribe’, ’publish’,
’sow’, ’sow and subscribe’ and ’sow delete’.

The spark utility is implemented for Java, C++, C# and Python, which are the
languages supported by the AMPS Client. There is a reference spark client and
source code for Java, C++, C# and Python.

The command-line syntax is identical between all versions of spark. For these
examples, we will be using the Java implementation of spark. We will also be
using FIX for the message type in our examples.

Go to the $AMPS INSTALL/api/client/java directory and run the following
command:

./spark publish -server localhost:9004 -type fix -topic←↩
sampleTopic

The spark program starts and waits for input from the command line. Type the
message body you’d like to test. For example:

1=aˆA2=bˆA3=cˆA

If no errors are returned, we’ll assume the FIX message will be published to the
’sampleTopic’ topic on the server.

The spark utility also supports subscribing, which allows you to listen to mes-
sages on a specified topic. If you would like to only receive messages from the
’sampleTopic’ topic we used in the publish example, you can do that with the
following spark command:

./spark subscribe -server localhost:9004 -type fix -←↩
topic sampleTopic

This subscribe command will write all messages sent to this topic to stdout from
the spark command.

For more information about the spark utility, see Chapter 17.

2.6 FIX Messages - A Quick FIX Primer

AMPS includes support for XML, FIX and NVFIX messages. This section is
going to focus on FIX as the primary message type. The FIX message type
is a simple message format that uses key-value pairs to construct message

10 Getting Started

content and uses special characters to separate message content. In a FIX
message, all keys are numeric and values are alpha-numeric. Separators are
usually obscure or infrequently used characters, such as the ASCII 01 character
to denote the header separator. In this section, the following characters will be
used to denote special separators:

ASCII Char Control Key FIX Use
01 ˆA Field Separator
02 ˆB Header Separator
03 ˆC Message Separator

Using what we have described so far, a simple FIX message could look like:

20000=publishˆA20005=sampleTopicˆAˆB1=aˆA2=dˆA4=eˆA

This creates a message that has a ’command’ (FIX field 20000) of ’publish’ to
’topic’ (FIX field 20005) with the value of ’sampleTopic’ as the message header.
This message has three fields as part of its body: field 1 is set to ’a’, field 2 is
set to ’d’ and field 4 is set to ’e’.

For more information about the message types used in AMPS, see Chapter 9.

2.7 Next Steps

The next step is to configure your own instance of AMPS to meet your messaging
needs. The AMPS configuration is covered in more detail in Appendix C.

After you have successfully configured your own instance, there are two paths
where you can go next.

One path is to continue using this guide and learn how to configure, administer
and customize AMPS in depth so that it may meet the needs of your deploy-
ment. If you are a system administrator who is responsible for the deployment,
availability and management of data to other users, then you may want to focus
on this User Guide.

The other path introduces the AMPS Client API for Java or Python. This path
is targeted at software developers looking to integrate AMPS into their own
solutions. The Java or Python AMPS Developer Guides are also available within
the AMPS distribution in the docs directory.

Chapter 3
Publish and Subscribe

AMPS is a publish and subscribe message delivery system, which routes
messages from publishers to subscribers. ”Pub/Sub” systems, as they are often
called, are a key part of most enterprise message buses, where publishers
broadcast messages without necessarily knowing all of the subscribers that will
receive them. This decoupling of the publishers from the subscribers allows
maximum flexibility when adding new data sources or consumers.

Figure 3.1: Publish and Subscribe

AMPS can route messages from publishers to subscribers using a topic identifier
and/or content within the message’s payload. For example, in Chapter 3, there
is a Publisher sending AMPS a message pertaining to the LN ORDERS topic.
The message being sent contains information on Ticker ”IBM” with a Price of
125, both of these properties are contained within the message payload itself
(i.e., the message content). AMPS routes the message to Subscriber 1 because
it is subscribing to all messages on the LN ORDERS topic. Similarly, AMPS
routes the message to Subscriber 2 because it is subscribed to any messages

12 Publish and Subscribe

having the Ticker equal to ”IBM”. Subscriber 3 is looking for a different Ticker
value and is not sent the message.

3.1 Topics

A topic is a string that is used to declare a subject of interest for purposes of
routing messages between publishers and subscribers. Topic-based Publish-
and-Subscribe (e.g., Pub/Sub) is the simplest form of Pub/Sub filtering. All
messages are published with a topic designation to the AMPS engine and
subscribers will receive messages for topics they are subscribed to.

Figure 3.2: Topic Based Pub/Sub

For example, in Section 3.1, there are two publishers: Publisher 1 and Publisher
2 which publish to topics LN ORDERS and NY ORDERS, respectively. Messages
published to AMPS are filtered and routed to the subscribers of a respective
topic. For example, Subscriber 1, which is subscribed to all messages for the
LN ORDERS topic will receive everything published by Publisher 1. Subscriber 2,
which is subscribed to the regular expression topic ".* ORDERS" will receive
all orders published by Publisher 1 and 2.

3.1.1 Regular Expressions

With AMPS, a subscriber can use a regular expression to simultaneously sub-
scribe to multiple topics that match the given pattern. This feature can be used
to effectively subscribe to topics without knowing the topic names in advance.
Note that the messages themselves have no notion of a topic pattern. The topic
for a given message is unambiguously specified using a literal string. From

3.2 Content 13

the publisher’s point of view, it is publishing a message to a topic; it is never
publishing to a topic pattern.

Subscription topics are interpreted as regular expressions if they include special
regular expression characters. Otherwise, they must be an exact match. Some
examples of regular expressions within topics are included in Table 3.1.

Table 3.1: Topic Regular Expression Examples

Topic Behavior
trade matches only ”trade”.
client.* matches ”client”, ”clients”, ”client001”, etc.
.*trade.* matches ”NYSEtrades”, ”ICEtrade”, etc.

For more information regarding the regular expression syntax supported within
AMPS, please see Chapter 7.

3.2 Content

One thing that differentiates AMPS from classic publish and subscribe systems
is its ability to route messages based on message content. Instead of a publisher
declaring metadata describing the message for downstream consumers, it can
publish the message content to AMPS and let it examine the native message
content to determine how best to deliver the message.

The ability to use content filters greatly reduces the problem of over subscription
when topics are the only facility for subscribing to message content. The topic
space can be kept simple and content filters used to deliver only the desired
messages. The topic space can reflect broad categories of messages and does
not have to be polluted with metadata that is usually found in the content of the
message.

Content-based Pub/Sub is somewhat analogous to database queries with a
WHERE clause specified. Topics can be considered tables into which rows are
inserted. A subscription is similar to issuing a SELECT from the topic table with
a WHERE clause to limit the rows which are returned. Topic-based Pub/Sub is
analogous to a SELECT on a table with no limiting WHERE clause.

Example XML Filter:

(/FIXML/Order/Instrmt/@Sym = ’IBM’) AND (/FIXML/Order/←↩
@Px >= 90.00 AND /FIXML/Order/@Px < 91.0)

Example FIX Filter:

/35 < 10 AND /34 = /9

For more on how content is handled within AMPS, check out the chapter on
specific message types in Chapter 6.

14 Publish and Subscribe

It is recommended that a relatively small set of topics be used
to categorize messages at a high level and content filters used
to retrieve specific data published to those topics. Examples of
good, broad topic choices:
trades, positions, MarketData, Europe, alerts

Chapter 4
State of the World (SOW)

One of the core features of AMPS is the ability to persist the most recent
update for each message matching a topic. The State of the World can be
thought of as a database where messages published to AMPS are filtered into
topics, and where the topics store the latest update to a message. Since AMPS
subscriptions are based on the combination of topics and filters, the State of
the World (SOW) gives subscribers the ability to quickly resolve any differences
between their data and updated data in the SOW by querying the current state
of a topic, or a set of messages inside a topic.

4.1 How Does the State of the World Work?

Much like a relational database, AMPS SOW topics contain the ability to persist
the most recent update for each message, this is accomplished through the
definition of key fields specified in the AMPS configuration which uniquely
identify messages within the SOW.

Key definitions are similar to primary keys in a relational database. In AMPS,
these unique keys are defined as one or more XPaths. The values of these
XPaths for a given message uniquely identify the message. Subsequent mes-
sages with the same values for the key XPaths will be considered the same
and will overwrite the previously stored message. Providing a key to define
message uniqueness enables a SOW queries for a topic.

16 State of the World (SOW)

Figure 4.1: A SOW topic named ORDERS with a key definition of /Key

In Figure 4.1, two messages are published where neither of the messages have
matching keys existing in the ORDERS topic, the messages are both inserted
as new messages. Some time after these messages are processed, an update
comes in for the MSFT order changing the price from 30 to 35. Since the MSFT
order update has a key field of 1, this matches an existing record and overwrites
the existing message containing the same key, as seen in Figure 4.2.

Figure 4.2: Updating the MSFT record by matching incoming message keys

4.2 Queries

At any point in time, applications can issue SOW queries to retrieve all of the
messages that match a given topic and content filter. When a query is executed,
AMPS will test each message in the SOW against the content filter specified
and all messages matching the filter will be returned to the client. The topic
can be a straight topic or a regular expression pattern. For more information on
issuing queries, please see Chapter 5.

4.3 Configuration

Topics where SOW persistence is desired can be individually configured within
the TopicMetaData section of the configuration file. Each topic will be defined
with a TopicDefinition section enclosed within TopicMetaData. Table 4.1
contains a description of the attributes that can be configured per topic.

4.3 Configuration 17

Table 4.1: Topic Definition Configuration Description

Attribute Description
FileName The path name prefix of where to store the SOW

topic files. The FileName attribute supports several
name specifiers which can be read about in AMPS
Configuration File Special Characters.
Example: %n.sow will write sow messages for topic
”orders” to orders.sow

Key An XPath String that is used to define the uniqueness
of a message published to the topic. A single topic
must have at least one Key defined. When more than
one Key attribute is defined, then all Key attributes
are used to determine a record’s uniqueness.

MessageType The message type for this topic. Valid message
types: xml, fix).

Topic Specifies the topic to store into the SOW.
Duration Possible values are persistent or transient.

Duration defines how a SOW topic store behaves
when and AMPS instance is restarted. If Dura-
tion is persistent then existing SOW records will
be recreated each time AMPS is restarted, while
transient specifies that existing SOW records will
be deleted. Default is persistent

Expiration The interval during which a message persists in a
SOW cache before it is deleted. The minimum inter-
val is 1 second, and by default topics do not have
expiration enabled. See Table C.1 for details.

IncrementSize The number of records to add when the SOW cache
needs to grow. The valid range is between 128 and
10,000,000 with a default of 10,000.

InitialSize The initial number of records in the SOW cache
for this topic. The valid range is between 128 and
10,000,000 with a default is 10,000.

KeyDomain The seed value for SowKeys used within the topic.
The default is the topic name, but it can be changed
to a string value to unify SowKey values between
different topics.

RecordSize The record size of the SOW cache for this topic. The
minimum is 128B while the maximum is 16KB, with
a default of 512. See Table C.2 for configuration
details.

18 State of the World (SOW)

Even though the RecordSize defined may be smaller than the
incoming message, the record will still be stored. Messages larger
than the RecordSize will span multiple records. For example
if the RecordSize is defined to be 128 bytes, and a message
comes in that is 266 bytes in size, that record will be stored over
3 records.

The listing in Table 4.3 is an example of using TopicDefinition to add a
SOW topic to the AMPS configuration. One topic named ORDERS is defined as
having key /55, /109 and MessageType of fix. The persistence file for this
topic be saved in the sow/ORDERS.sow file. For every message published to
the ORDERS topic, a unique key will be assigned to each record with a unique
combination of tags 55 and 109. A second topic named ALERTS is also defined
with a MessageType of xml keyed off of /client/id. The SOW persistence
file for ALERTS is saved in the sow/ALERTS.sow file.

1 <TopicMetaData>
2 <TopicDefinition>
3 <FileName>sow/%n.sow</FileName>
4 <Topic>ORDERS</Topic>
5 <Key>/55</Key>
6 <Key>/109</Key>
7 <MessageType>fix</MessageType>
8 <RecordSize>512</RecordSize>
9 </TopicDefinition>

10

11 <TopicDefinition>
12 <FileName>sow/%n.sow</FileName>
13 <Topic>ALERTS</Topic>
14 <Key>/alert/id</Key>
15 <MessageType>xml</MessageType>
16 </TopicDefinition>
17 </TopicMetaData>

Topics are scoped by their respective message types and trans-
ports.
For example, two topics named Orders can be created one
which supports MessageType of fix and another which supports
MessageType of xml.
Each of the MessageType entries that are defined for the
litOrders topic will require a unique Transport entry in the con-
figuration file.
This means that messages published to the Orders topic must
know the type of message they are sending (fix or xml) and the
port defined by the transport.

4.3 Configuration 19

Chapter 5
SOW Queries

When SOW topics are configured inside an AMPS instance, clients can issue
SOW queries to AMPS to retrieve all of the messages matching a given topic
and content filter. When a query is executed, AMPS will test each message
in the SOW against the content filter specified and all messages matching the
filter will be returned to the client. The topic can be a straight topic or a regular
expression pattern.

5.1 Simple SOW Queries

A client can issue a query by sending AMPS a sow command and specifying
an AMPS topic. Optionally a filter can be used to further refine the query
results. When AMPS receives the sow command request, it will validate the
filter and start executing the query. When returning a query result back to
the client, AMPS will package the sow results into a sow record group by first
sending a group begin message followed by the matching SOW records, if
any, and finally indicating that all records have been sent by terminating with a
group end message. The message flow is provided as a sequence diagram in
Figure 5.1

For purposes of correlating a query request to its result, each query command
can specify a QueryId . The QueryId specified will be returned as part
of the response that is delivered back to the client. The group begin and
group end messages will have the QueryId attribute set to the value provided
by the client. The client specified QueryId is what the client can use to correlate
query commands and responses coming from the AMPS engine.

The ordering of records returned by a SOW query is undefined.

5.2 SOW Query-and-Subscribe 21

Figure 5.1: SOW Query Sequence Diagram

5.2 SOW Query-and-Subscribe

AMPS has a special command that will execute a query and place a subscription
at the same time to prevent a gap between the query and subscription where
messages can be lost. Without a command like this, it is difficult to reproduce
the SOW state locally on a client.

For an example, this command is useful for recreating part of the SOW in a
local cache and keeping it up to date. Without a special command to place the
query and subscription at the same moment, a client is left with two options:

1. issue the query request, process the query results, and then place the
subscription, which misses any records published between the time when
the query and subscription were placed; or

2. place the subscription and then issue the query request, which could send
messages placed between the subscription and query twice. Instead of
coping with those drawbacks, the AMPS sow and subscribe command
allows clients to place a query and get the streaming updates to matching
messages in a single command.

In a sow and subscribe command, AMPS behaves as if the SOW com-
mand and subscription are placed at the exact same moment. The SOW

22 SOW Queries

query will be sent *before* any messages from the subscription are sent to the
client. Additionally, any new publishes that come into AMPS that match the
sow and subscribe filtering criteria and come in after the query started will
be sent after the query finishes (and the query will not include those messages.)

The message flow as a sequence diagram for sow and subscribe commands
is contained in Figure 5.2

Figure 5.2: SOW-And-Subscribe Query Sequence Diagram

5.3 SOW Query Response Batching

The number of messages returned between the group begin and group end
messages depends on the number of matching messages and the value of
the BatchSize parameter that can be specified in the query command. The
default BatchSize value is 1, meaning 1 record is returned per containing
sow message in the response. While the SOW is scanned for matches it
will attempt to send them to the client in batches according to the value of
the BatchSize value. The BatchSize is the maximum number that will be
returned within a single message payload. Each message returned for a given
query command will contain a BatchSize value in its header to indicate the
number of messages in the batch. This number will be anywhere from 1 to
BatchSize .

5.3 SOW Query Response Batching 23

When issuing a sow and subscribe command AMPS will re-
turn a group begin and group end segment of messages be-
fore beginning the live subscription sequence of the query. This
is also true when an sow and subscribe command is issued
against a non-SOW topic. In this later case, the group begin
and group end will contain no messages.

Using a BatchSize greater than 1 can yield greater performance when query-
ing a large number of small records. For example, over an Ethernet connection
where the packet size may only be 1500 bytes, consuming 1 million 120 byte
messages could take 1 million packets and the efficiency of the network would
only be around 10%. In this same scenario, we could use a BatchSize of 10
to pack 10 messages into a single message of approximately 1230 (30 extra
bytes for the sow message header) bytes and boost the network efficiency to
82%.

Using an appropriate BatchSize parameter is critical to achieve
the maximum query performance with a large number of small
messages.

Each message within the batch will contain id and key values to help identify
each message that is returned as part of the overall response.

For XML, the format of the response is:

1 <?xml version="1.0" encoding="iso-8859-1"?>
2 <SOAP-ENV:Envelope>
3 <SOAP-ENV:Header>
4 <Cmd>sow</Cmd>
5 <TxmTm>20080210-17:16:46.066-0500</TxmTm>
6 <QId>100</QId>
7 <GrpSqNum>1</GrpSqNum>
8 <BtchSz>5</BtchSz>
9 <Tpc>order</Tpc>

10 </SOAP-ENV:Header>
11 <SOAP-ENV:Body>
12 <Msg key="143101935596417" len="120"> ... </Msg>
13 <Msg key="86456484160208" len="125"> ... </Msg>
14 <Msg key="18307726844082" len="128"> ... </Msg>
15 <Msg key="15874572074104" len="118"> ... </Msg>
16 <Msg key="61711462299630" len="166"> ... </Msg>
17 </SOAP-ENV:Body>
18 < /SOAP-ENV:Envelope>

For FIX, the format has the following form:

24 SOW Queries

{sow header}¶{message header}¶{message data}·{←↩
message header}¶{message data}· ...

where:

¶ header separator

· message separator

Each message header will contain the SowKey and the MessageLength at-
tributes. The MessageLength is intended to help clients parse the response
with minimal effort. It indicates the length of the message data contained in the
message.

The following is an example FIX message SOW query response message:

20000=sow¶20004=20080210-17:16:46.066-0500¶20007=fix←↩
¶20019=100¶\newline20060=1¶20023=5¶20005=order←↩
¶·20059=1¶20058=128¶·fix message data¸

where:

¶ header separator

· field separator

¸ message separator

Care should be taken when issuing queries that return large re-
sults. When contemplating the usage of large queries and how
that impacts system reliability and performance, please look to
the Slow Clients section for more information.

For more information on executing queries, please look at the sow and
sow and subscribe commands in the Command Reference chapter.

Chapter 6
Content Filtering

AMPS allows a subscriber to specify a content filter using syntax similar to that
of SQL-92’s WHERE clause. Content filters are used to provide a greater level
of selectivity in messages sent over a subscription than provided by topic alone.
When using a content filter, only the messages matching the requested topic
and the content filter are delivered to the subscribing client.

6.1 Syntax

AMPS implements content filtering using expressions that combine SQL-92
and XPath. Instead of table columns, XPaths are used to identify content fields
within a message. The syntax of the filter expression is based on a subset of
the SQL-92 search condition syntax.

A content filter is made up of one or more Boolean predicates, joined together
by logical operators and grouped using parentheses. For example:

(expression1 OR expression2 AND expression3) OR (←↩
expression4 AND NOT expression5) ...

A content filter is evaluated left to right in precedence order. So in this example,
expression2 will be evaluated followed by expression3 (since AND has higher
precedence than OR), and if they evaluate to false, then expression1 will be
evaluated and so on.

Expressions are made up of literal values, identifiers (XPath that refer to mes-
sage content values), conditional operators, and arithmetic operators.

Literals

String literals are indicated with single or double quotes. For example:

26 Content Filtering

/FIXML/Order/Instrmt/@Sym = 'IBM'

AMPS supports the following escape sequences within string literals:

Table 6.1: Escape Sequences

Escape Sequence Definition
\a alert.
\b Backspace.
\t Horizontal tab.
\n Newline.
\f Form Feed.
\r Carriage Return.
\xHH Hexadecimal digit where H is (0..9,a..f,A..F).
\OOO Octal Digit (0..7)

Additionally, any character which follows a backslash will be treated as a literal
character.

Numeric literals are either integer values or floating-point values. Integer values
are all numerals, with no decimal point, and can have a value in the same range
as a 64-bit integer. For example:

42
149
-273

Floating-point literals are all numerals with a decimal point:

3.1415926535
98.6
-273.0

or, in scientific notation:

31.4e-1
6.022E23
2.998e8

Literals can also be the Boolean values true or false.

Logical Operators

The logical operators are NOT, AND, and OR, in order of precedence. These
operators have the usual Boolean logic semantics.

6.1 Syntax 27

/FIXML/Order/Instrmt/@Sym = 'IBM' OR /FIXML/Order/←↩
Instrmt/@Sym = 'MSFT'

Arithmetic Operators

AMPS supports the arithmetic operators +, -, *, /, %, and MOD in expressions.
The result of arithmetic operators where one of the operands is NULL is unde-
fined and evaluates to NULL. Examples of filter expressions using arithmetic
operators:

/6 * /14 < 1000

/Order/@Qty * /Order/@Prc >= 1000000

When using division, be careful about the placement of the /
operator. Since this operator is used in the XPath expression as
well as for division, it is important to separate the division operator
with whitespace to prevent interpretation as a XPath expression.

Comparison Operators

The comparison operators can be loosely grouped into equality comparisons and
range comparisons. The basic equality comparison operators, in precedence
order, are ==, =, >, >=, <, <=, !=, and <>. If these binary operators are applied
to two operands of different types, then AMPS will try to perform a conversion
that permits comparison.

There are also set and range comparison operators. The BETWEEN operator
can be used to check the range values.

The range used in the BETWEEN operator is inclusive of both
operands meaning the expression /A BETWEEN 0 AND 100 is
equivalent to /A >= 0 AND /A <= 100

For example:

/FIXML/Order/OrdQty/@Qty BETWEEN 0 AND 10000
/FIXML/Order/@Px NOT BETWEEN 90.0 AND 90.5

28 Content Filtering

The IN operator can be used to perform membership operations on sets of
values:

/Trade/OwnerID NOT IN ('JMB', 'BLH', 'CJB')
/21964 IN (/14*5, /6*/14, 1000, 2000)

There is also a string comparison operator, LIKE, that allows for regular expres-
sion matching on string values. A pattern is used for the right side of the LIKE
operator. For more on regular expressions and the LIKE comparison operator,
please see the Regular Expressions chapter.

Conditional Operators

AMPS contains support for a ternary conditional IF operator which allows for a
Boolean condition to be evaluated to true or false, and will return one of the
two parameters. The general format of the IF statement is

IF (BOOLEAN_CONDITIONAL, VALUE_TRUE, VALUE_FALSE)

In this example, the BOOLEAN CONDITIONAL will be evaluated, and if the result
is true, the VALUE TRUE value will be returned otherwise the VALUE FALSE will
be returned.

For example:

SUM(IF(((/FIXML/Order/OrdQty/@Qty > 500) AND
(/FIXML/Order/Instrmt/@Sym ='MSFT')), 1, 0))

In the above example, we are looking for the total number of orders that have
been placed where the symbol is MSFT and the order contains a quantity more
than 500.

The IF can also be used to evaluate results to determine if results are NULL or
NaN.

For example:

SUM(/FIXML/Order/Instrmt/@Qty * IF(/FIXML/Order/←↩
Instmt/@Price IS NOT NULL, 1, 0))

NULL, NaN and IS NULL

XPath expressions that evaluate to a field references that is are empty or non-
existent are considered to be NULL. In numeric expressions where the operands
or results are not a valid number evaluate to NaN (not a number). The rules for
applying the AND and OR operators against NULL and NaN values are outlined
in Table 6.2 and Table 6.3.

6.1 Syntax 29

Operand 1 Operand 2 Result
TRUE NULL NULL
FALSE NULL FALSE
NULL NULL NULL

Table 6.2: Logical AND with NULL/NaN Values

Operand 1 Operand 2 Result
TRUE NULL TRUE
FALSE NULL NULL
NULL NULL NULL

Table 6.3: Logical OR with NULL/NaN Values.

The NOT operator applied to a NULL value is NULL, or ”Unknown” as well. The
only way to check for the existence of a NULL value reliably is to use the IS
NULL predicate. There exists a IS NAN predicate as well for checking that a
value is NaN (not a number.)

To reliably check for existence of a NULL value, you must use
the IS NULL predicate such as the filter: /Order/Comment IS
NULL

Chapter 7
Regular Expressions

AMPS supports regular expression matching on topics and within content fil-
ters. Regular expressions are implemented in AMPS using the Perl-Compatible
Regular Expressions (PCRE) library. For a complete definition of the supported
regular expression syntax, please refer to:

http://perldoc.perl.org/perlre.html.

7.1 Examples

Here’s an example of a content filter for messages that will match any message
meeting the following criteria:

• Symbols of 2 or 3 characters starting with ‘‘IB’’

• Prices starting with ‘‘90’’

• Prices less than 91.

and, the corresponding content filter:

1 (/FIXML/Order/Instrmt/@Sym LIKE "ˆIB.?$") AND (/FIXML/←↩
Order/@Px LIKE "ˆ90\..*"

2 AND /FIXML/Order/@Px < 91.0)

Listing 7.1: Filter Regular Expression Example

The following tables (Table 7.1, Table 7.2, and Table 7.3) contain a brief sum-
mary of special characters and constructs available within regular expressions.

Here are more examples of using regular expressions within AMPS.

Use (?i) to enable case-insensitive searching. For example, the following filter
will be true regardless if /client/country contains "US" or "us".

http://perldoc.perl.org/perlre.html

7.1 Examples 31

1 (/client/country LIKE "(?i)ˆus$")

Listing 7.2: Case Insensitive Regular Expression

To match messages where tag 55 has a TRADE suffix, use the following filter:

1 (/55 LIKE "TRADE$")

Listing 7.3: Suffix Matching Regular Expression

To match messages where tag 109 has a US prefix, but a TRADE suffix with
case insensitive comparisons, use the following filter:

1 (/109 LIKE "(?i)ˆUS.*TRADE$")

Listing 7.4: Case Insensitive Prefix Regular Expression

Table 7.1: Regular Expression Meta-characters

Characters Meaning
ˆ Beginning of string
$ End of string
. Any character except a newline

* Match previous 0 or more times
+ Match previous 1 or more times
? Match previous 0 or 1 times
| The previous is an alternative to the following
() Grouping of expression
[] Set of characters
{ } Repetition modifier
\ Escape for special characters

Table 7.2: Regular Expression Repetition Constructs

Construct Meaning
a∗ Zero or more a’s
a+ One or more a’s
a? Zero or one a’s
a{m} Exactly m a’s
a{m, } At least m a’s
a{m,n} At least m, but no more than n a’s

32 Regular Expressions

Table 7.3: Regular Expression Behavior Modifiers

Modifier Meaning
i Case insensitive search
m Multi-line search
s Any character (including newlines) can be matched

by a . character
x Unescaped white space is ignored in the pattern.
A Constrain the pattern to only match the beginning of

a string.
U Make the quantifiers non-greedy by default (the quan-

tifiers are greedy and try to match as much as possi-
ble by default.)

7.1.1 Raw Strings

AMPS additionally provides support for raw strings which are strings prefixed
by an 'r'or'’R’'character. Raw strings use different rules for how a backslash
escape sequence is interpreted by the parser.

In the example below, the raw string - noted by the r character in the second
operand of the LIKE predicate (Listing 7.5) - will cause the results to parse
the same as example which does not implement the raw string in the LIKE
predicate (Listing 7.6). In this example we are querying for string that contains
the programming language named C++. In the regular string, we are required
to escape the '+'character since it is also use by AMPS as the ”match previous
1 or more times” regular expression character. In the raw string we can use
r'C++'to search for the string and not have to escape the special '+'character.

1 /FIXML/Language LIKE r'C++'

Listing 7.5: Raw String Example

1 /FIXML/Language LIKE 'C\+\+'

Listing 7.6: Regular String Example

7.1.2 Topic Queries

As mentioned previously, AMPS supports regular expression filtering for SOW
topics, in addition to content filters. Topic filtering follows similarly to the regular
expressions demonstrated in content filtering with a LIKE clause.

Topic filtering will search for all matching records stored in an AMPS SOW where
the name of the SOW matches the regular expression used in the Topic name
of the query. For example, if your AMPS configuration has three SOW topics,
Topic A, Topic B and Topic C and you wish to search for all messages in all

7.1 Examples 33

of your SOW topics for records where the Name field is equal to ”Bob”, then you
could use the following FIX sow command to perform this:

1 /20000=sowˆA/20005="Topic_.*"ˆAˆB/20006="/FIXML/@Name=←↩
'Bob'"ˆA

Listing 7.7: Topic Regular Expression

Results returned when performing a topic regular expression
query will follow ”configuration order” - meaning that the topics will
be searched in the order that they appear in your AMPS configura-
tion file. Using the above query example Listing 7.7 with Topic A,
Topic B and Topic C, if the configuration file has these topics
in that exact order, the results will be returned first from Topic A,
then from Topic B and finally the results from Topic C. As with
other queries, AMPS does not make any guarantees about the
ordering of results within any given topic query.

Chapter 8
Transports

AMPS is transport agnostic by design, which allows the support of any message
delivery protocol. The current release AMPS contains support for TCP/IP
transports.

Transports are independent of the message type. For example, AMPS could
consume messages published via one TCP transport and deliver messages
to downstream subscribers via another TCP/IP transport, as long as they are
using the same message type.

8.1 Configuration

AMPS Transports are configured through the Transport section of the configura-
tion file. For example, Listing 8.1 is an example Transport section for using the
TCP/IP transport with the fix message type.

1 <Transports>
2 <Transport>
3 <Name>fix-tcp</Name>
4 <Type>tcp</Type>
5 <MessageType>fix</MessageType>
6 <InetAddr>9004</InetAddr>
7 <ReuseAddr>true</ReuseAddr>
8 </Transport>
9 </Transports>

Listing 8.1: TCP with FIX transport example.

The following sections describe the transports shipped with AMPS.

8.2 TCP/IP Transport 35

8.2 TCP/IP Transport

The tcp transport is configured by adding a Transport section to the configu-
ration and specifying tcp as the Type. Listing Listing 8.2 contains an example
of a tcp transport.

1 <Transports>
2 <Transport>
3 <Name>fix-tcp</Name>
4 <Type>tcp</Type>
5 <MessageType>fix</MessageType>
6 <InetAddr>9004</InetAddr>
7 <ReuseAddr>true</ReuseAddr>
8 </Transport>
9 </Transports>

Listing 8.2: TCP/IP configuration transport example

The parameters allowed by the tcp transport are in Table 8.1.

Table 8.1: TCP/IP Transport configuration parameters

Parameter Description
Name Name of transport, can be anything, but useful for er-

ror log messages and admin information, especially
when there are multiple transports of the same type.

Type Specifies the transport type (’tcp’ in this case).
MessageType Message type used by the transport.
InetAddr Address to bind to or if an integer, the port to bind to.
ReuseAddr true or false, defaults to false and determines if

AMPS should be allowed to bind to an address that
is in the TIME WAIT state.

ClientOffline enabled or disabled, defaults to disabled.
When enabled ”slow” clients that breach the
ClientBufferThreshold in data awaiting con-
sumption will be offlined to a file. Please see Sec-
tion 8.2.1 for more details.

ClientOfflineDirectory The directory to store the offlining data to. Ideally,
this should be on a fast storage device. The default
directory is /var/tmp.

ClientBufferThreshold The threshold in number of bytes to start offlining a
”slow” client.

ClientOfflineThreshold The number of messages to offline before AMPS will
consider disconnecting a ”slow” client.

Continued on next page

36 Transports

Table8.1 -- continued from previous page
Parameter Description
SlowClientDisconnect true or false, defaults to false and determines

if slow clients can be disconnected when they fall
behind by the number of messages specified in
ClientOfflineThreshold.

8.2.1 Slow Client Offlining

AMPS sends data as quickly as possible to downstream subscribing clients, in
such scenarios it can become overwhelming for a client to keep up when it has
oversubscribed or is unable to consume messages at the rate AMPS sends
them. This mismatch is best seen when a client executes a SOW query that
returns a large result set. During a SOW query, AMPS is capable of collecting
and queueing the result set faster than the network can send. When AMPS
is not immediately able to send data to a client, AMPS will store the data in
memory until the client is able to consume it.

If a client is oversubscribed, then it can be difficult for it to ever catch up and the
memory consumed within AMPS for the client’s queued messages can grow to
undesirable levels. AMPS has configuration options that allow it to ”offline” client
messages to disk after a certain threshold of memory consumption. In some
instances AMPS can even disconnect the client after the number of queued
messages grows to a specified size.

To turn on the client offlining feature, set the ClientOffline to enabled
and set the ClientBufferThreshold to the number of bytes to start offlining
the client. The ClientBufferThreshold value specifies the buffer size for
all client connected to AMPS at all times. This threshold should be set large
enough that normal queries and usage will not cause a client’s data to be offlined
yet small enough that the number of clients multiplied by this value does not
threaten the memory capacity of the host. For capacity planning, assume that
every connected client will consume this ClientBufferThreshold value in
the worst case.

For more information on how to size a deployment considering slow clients,
please see the section on Slow Clients.

8.2.2 Slow Client Disconnect

There are times when a client may get so far behind that it may be a better
decision to disconnect it. AMPS has a feature that can disconnect slow clients
that can be turned on by setting the transports SlowClientDisconnect
property to true and setting ClientOfflineThreshold to the number of
messages that need to be queued before AMPS can consider disconnecting a
client. AMPS will not necessarily disconnect a client when it first crosses this
threshold, but it is the point at which AMPS will start monitoring the client to see
if it is making progress. If the client is not making progress towards catching

8.2 TCP/IP Transport 37

up after crossing the threshold, then AMPS will disconnect the client and free
resources used by the client.

To prevent potential unbounded memory growth, by default
SlowClientDiconnect and ClientOffline are enabled
with ClientBufferThreshold set to 52MB and an offline file
size limit of 1GB.

8.2.3 Protocol Details

The TCP/IP protocol requires a sender to transmit a 4-byte, unsigned, network
byte-order integer that declares the size of the message payload that follows on
the TCP/IP stream. This is shown in diagram Figure 8.1.

Size Header

Payload
hhhhhhhhhhhhhhh

hhhhhhhhhhhhhhh

Number of bytes
determined by
the Size Header

Figure 8.1: TCP/IP packet

Chapter 9
Message Types

Message communication between the client and server in AMPS is managed
through the use of several different message types. This chapter will cover
how AMPS uses FIX, NVFIX and XML to exchange data over the transports
described in Chapter 8.

9.1 Configuration

AMPS message types are configured via the MessageTypes section of the
configuration file. Within the MessageTypes node of the configuration file there
must be one or more MessageType nodes defined. Each MessageType
requires a Name, Type and Module. Additionally, if fix or nvfix are
specified as the Module then a FieldSeparator, HeaderSeparator and
MessageSeparator must also be specified. These separators are discussed
in more detail in Section 9.2. Listing 9.1 contains an example of an AMPS
instance using fix as the message type provided.

1 <MessageTypes>
2 <MessageType>
3 <Name>fix</Name>
4 <Type>fix</Type>
5 <Module>fix</Module>
6 <FieldSeparator>1</FieldSeparator>
7 <HeaderSeparator>2</HeaderSeparator>
8 <MessageSeparator>3</MessageSeparator>
9 </MessageType>

10 </MessageTypes>

Listing 9.1: FIX message type configuration example.

9.2 FIX 39

The values used for the FieldSeparator, HeaderSeparator
and MessageSeparator are converted to the byte values for
the ASCII characters. For example, if the FieldSeparator is 1,
then the FieldSeparator is 0x01.

By default AMPS uses byte 0x01 as the default
FieldSeparator, byte 0x02 as the HeaderSeparator,
and byte 0x03 as the MessageSeparator.

9.2 FIX

AMPS supports the use of the FIX (Financial Information eXchange) protocol
as one of the message type formats. FIX is based on the protocol established
and maintained by FIX Protocol, Ltd. For comprehensive discussions on the
FIX protocol, visit their website at http://fixprotocol.org .

9.2.1 FIX Message Structure in AMPS

An AMPS FIX message consists of two parts to compose a complete message
-- a message header and a message body. The message header and body are
separated by a HeaderSeparator character which is specified in the AMPS
configuration file.

The contents of the message header consists of key-value pairs used to declare
message attributes such as the command type and other options available to
the command. In FIX keys can only be integer values and are not permitted to
contain non-numeric characters.

The key-values in the header and in the message body are delimited by the
FieldSeparator value specified in the AMPS configuration file.

An example publish message is listed below:

20005=testTopicˆA20000=publishˆAˆB1=AˆA2=25ˆA

In this example the ˆA is the ASCII 1 character which is used as the field
separator for this message. The ˆB character (the ASCII 2 character) is used
as the header separator between the header and the message body.

The key 20005 defines the topic to which the message will be published, which
in this example is testTopic. The key 20000 defines the command that
AMPS will issue, in this case a publish command. The ˆB is used to denote

40 Message Types

the end of the message header and the beginning of the message body. In this
message there are two fields being published to the AMPS topic testTopic, 1
= A and 2 = 25.

For more information on the header fields used by AMPS, please see Ap-
pendix A. For more information on the commands available in an AMPS
message refer to Appendix B.

NVFIX is a FIX variant supported by AMPS. The difference be-
tween FIX and NVFIX is that the keys used in NVFIX can use
alpha-numeric characters as opposed to the strictly integer-based
keys in FIX.

9.3 SOAP

In addition to FIX and NVFIX, AMPS supports a FIX variant called FIXML. FIXML
uses a SOAP envelope to deliver messages.

9.3.1 SOAP Message Structure in AMPS

A SOAP message has a similar structure to the FIX message format described
in Section 9.2 where the message contains a header and a message body.
Instead of a key-value pairing as with FIX and NVFIX, the XML Header tag
uses the tag-value pairing. These tag-value pairings contain attributes such as
the command type and other options available to the command.

The Body of the SOAP message also uses the tag-value parings to assemble
the data within the SOAP message. In the example listed in Listing 9.2, a client
is publishing a message to the /ett/order topic containing the data 1=a and
2=b.

1 <?xml version="1.0" encoding="iso-8859-1"?>
2 <SOAP-ENV:Envelope>
3 <SOAP-ENV:Header>
4 <Cmd>publish</Cmd>
5 <Tpc>/ett/order</Tpc>
6 </SOAP-ENV:Header> <SOAP-ENV:Body>
7 <ett>
8 <order>
9 <1>a</1>

10 <2>b</2>
11 </order>
12 </ett>
13 </SOAP-ENV:Body>

9.3 SOAP 41

14 </SOAP-ENV:Envelope>

Listing 9.2: Simple publish message in XML format.

Chapter 10
Logging

AMPS supports logging to many different targets including the console, syslog,
and files. Every error message within AMPS is uniquely identified and can
be filtered out or explicitly included in the logger output. This chapter of the
Operations Guide describes the AMPS logger configuration and the unique
settings for each logging target.

10.1 Configuration

Logging within AMPS is enabled by adding a Logging section to the configuration.
For example, the following would log all messages with an ’info’ level or higher
to the console:

1 <AMPSConfig>
2 ...
3 <Logging>
4 <Target>
5 <Protocol>stdout</Protocol>
6 <Level>info</Level>
7 </Target>
8 </Logging>
9 ...

10 </AMPSConfig>

In the example above, the Logging section defines a single Target on line 3,
which is used to log all messages to the stdout output. Line 5 states that only
messages with a log level of info or greater will be output to the screen.

10.2 Log Messages 43

10.2 Log Messages

An AMPS log message is composed of the following:

• Timestamp (eg: 2010-04-28T21:52:03.4766640-07:00)
• AMPS thread identifier
• Log Level (eg: info)
• Error identifier (eg: 15-0008)
• Log message

An example of a log line (it will appear on a single line within the log):

2011-11-23T14:49:38.3442510-08:00 [1] info: 00-0015 ←↩
AMPS initialization completed (0 seconds).

Each log message has a unique identifier of the form TT-NNNN where TT is the
component within AMPS which is reporting the message and NNNN the number
that uniquely identifies that message within the module. Each logging target
allows the direct exclusion and/or inclusion of error messages by identifier. For
example, a log file which would include all messages from module 00 except
for 00-0001 and 00-0004 would use the following configuration:

1 <Logging>
2 <Target>
3 <Protocol>stdout</Protocol>
4 <IncludeErrors>00-0002</IncludeErrors>
5 <ExcludeErrors>00-0001,00-0004,12-1*</ExcludeErrors>
6 </Target>
7 </Logging>

The above Logging configuration example, all log messages which are at
or above the default log level of info will be emitted to the logging target
of stdout. The configuration explicitly wants to see configuration messages
where the error identifier matches 00-0002. Additionally, the messages which
match 00-0001, 00-0004 will be excluded, along with any message which
match the regular expression of 12-1*.

10.3 Log Levels

AMPS has nine log levels of escalating severity. When configuring a logging
target to capture messages for a specific log level, all log levels at or above that
level are sent to the logging target. For example, if a logging target is configured
to capture at the ”error” level, then all messages at the ”error”, ”critical”, and
”emergency” levels will be captured because ”critical” and ”emergency” are of a
higher level. The following table (Table 10.1) contains a list of all the log levels
within AMPS.

44 Logging

Table 10.1: Log Levels

Level Description
none no logging.
trace all inbound/outbound data.
debug debugging statements.
stats statistics messages.
info general information messages.
warning problems that AMPS tries to correct that are often

harmless.
error events in which processing had to be aborted.
critical events impacting major components of AMPS that if

left uncorrected may cause a fatal event or message
loss.

emergency a fatal event.

Each logging target allows the specification of a Level attribute that will log
all messages at the specified log level or with higher severity. The default
Level is none which would log nothing. Optionally, each target also allows
the selection of specific log levels with the Levels attribute. Within Levels, a
comma separated list of levels will be additionally included.

For example, having a log of only trace messages may be useful for later
playback, but since trace is at the lowest level in the severity hierarchy it would
normally include all log messages. To only enable trace level, specify trace
in the Levels setting as below:

1 <AMPSConfig>
2 ...
3 <Logging>
4 <Target>
5 <Protocol>gzip</Protocol>
6 <FileName>traces.log.gz</FileName>
7 <Levels>trace</Levels>
8 </Target>
9 </Logging>

10 ...
11 </AMPSConfig>

Logging only trace and info messages to a file is demonstrated below:

1 <AMPSConfig>
2 ...
3 <Logging>
4 <Target>
5 <Protocol>file</Protocol>
6 <FileName>traces-info.log</FileName>
7 <Levels>trace,info</Levels>

10.4 Logging to a File 45

8 </Target>
9 </Logging>

10 ...
11 </AMPSConfig>

10.4 Logging to a File

To log to a file, declare a logging target with a protocol value of file. Be-
yond the standard Level, Levels, IncludeErrors, and ExcludeErrors
settings available on every logging target, file targets also permit the selection
of a FileName mask and RotationThreshold.

10.4.1 Selecting a FileName

The FileName attribute is a mask which is used to construct a directory and
file name location for the log file. AMPS will resolve the file name mask using
the symbols in Table 10.2. For example, if a file name is masked as:

%Y-%m-%dT%H:%M:%S.log

Then AMPS would create a log file in the current working directory with a
timestamp of the form: 2012-02-23T12:59:59.log.

If a RotationThreshold is specified in the configuration of the same log file,
the the next log file created will be named based on the current system time,
not on the time that the previous log file was generated. Using the previous log
file as an example, if the first rotation was to occur 10 minutes after the creation
of the log file, then that file would be named 2012-02-23T13:09:59.log.

Log files which need a monotonically increasing counter when log rotation is
enabled can use the %n mask to provide this functionality. If a file is masked
as:

localhost-amps-%n.log

Then the first instance of that file would be created in the current work-
ing directory with a name of localhost-amps-00000.log. After the
first log rotation, a log file would be created in the same directory named
localhost-amps-00001.log.

Log file rotation is discussed in greater detail in Section 10.4.2.

Mask Definition
%Y Year
%m Month
%d Day
%H Hour

46 Logging

Mask Definition
%M Minute
%S Second
%n Iterator which starts at 00000 when AMPS

is first started and increments each time a
RotationThreshold size is reached on the log
file.

Table 10.2: Log filename masks

10.4.2 Log File Rotation

Log files can be ’rotated’ by specifying a valid threshold in the
RotationThreshold attribute. Values for this attribute have units of bytes
unless another unit is specified as a suffix to the number. The valid unit suffixes
are:

Unit Suffix Base Unit Examples
no suffix bytes ”1000000” is 1 million bytes
k or K thousands of bytes ”50k” is 50 thousand bytes
m or M millions of bytes ”10M” is 10 million bytes
g or G billions of bytes ”2G” is 2 billion bytes
t or T trillions of bytes ”0.5T” is 500 billion bytes

Table 10.3: Log file rotation units

When using log rotation, if the next filename is the same as an
existing file, the file will be truncated before logging continues.
For example, if ”amps.log” is used as the FileName mask and
a RotationThreshold is specified, then the second rotation of
the file will overwrite the first rotation. If it is desirable to keep all
logging history, then it is recommended that either a timestamp or
the %n rotation count be used within the FileName mask when
enabling log rotation.

10.5 Logging to a Compressed File 47

10.4.3 Examples

The following logging target definition would place a log file with a name con-
structed from the timestamp and current log rotation number in the ’./logs’ sub-
directory. The first log would have a name similar to ”./logs/20121223125959-
00000.log” and would store up to 2GB before creating the next log file named
”./logs/201212240232-00001.log”.

1 <AMPSConfig>
2 ...
3 <Logging>
4 <Target>
5 <Protocol>file</Protocol>
6 <Level>info</Level>
7 <FileName>./logs/%Y%m%d%H%M%S-%n.log</FileName>
8 <RotationThreshold>2G</RotationThreshold>
9 </Target>

10 </Logging>
11 ...
12 </AMPSConfig>

This next example will create a single log named ”amps.log” which will be
appended to during each logging event. If amps.log contains data when AMPS
starts, that data will be preserved and new log messages will be appended to
the file.

1 <AMPSConfig>
2 ...
3 <Logging>
4 <Target>
5 <Protocol>file</Protocol>
6 <Level>info</Level>
7 <FileName>amps.log</FileName>
8 </Target>
9 </Logging>

10 ...
11 </AMPSConfig>

10.5 Logging to a Compressed File

AMPS supports logging to compressed files as well. This is useful when trying
to maintain a smaller logging footprint. Compressed file logging targets are the
same as regular file targets except for the following:

• the Protocol value is ’gzip’ instead of ’file’;
• the log file is written with gzip compression;
• the RotationThreshold is metered off of the uncompressed log mes-

sages;

48 Logging

• makes a trade off between a small increase in CPU utilization for a poten-
tially large savings in logging footprint.

10.5.1 Example

The following logging target definition would place a log file with a name con-
structed from the timestamp and current log rotation number in the ’./logs’ sub-
directory. The first log would have a name similar to ”./logs/20121223125959-
0.log.gz” and would store up to 2GB of uncompressed log messages before
creating the next log file named ”./logs/201212240232-1.log.gz”.

1 <AMPSConfig>
2 ...
3 <Logging>
4 <Target>
5 <Protocol>gzip</Protocol>
6 <Level>info</Level>
7 <FileName>./logs/%Y%m%d%H%M%S-%n.log.gz</FileName>
8 <RotationThreshold>2G</RotationThreshold>
9 </Target>

10 </Logging>
11 ...
12 </AMPSConfig>

10.6 Logging to the Console

The console logging target instructs AMPS to log certain messages to the
console. Both the standard output and standard error streams are supported.
To select standard out use a Protocol setting of stdout. Likewise, for
standard error use a Protocol of stderr.

10.6.1 Example

Below is an example of a console logger that logs all messages at the ’info’ or
’warning’ level to standard out and all messages at the ’error’ level or higher to
standard error (which includes ’error’, ’critical’ and ’emergency’ levels).

1 <AMPSConfig>
2 ...
3 <Logging>
4 <Target>
5 <Protocol>stdout</Protocol>
6 <Levels>info,warning</Levels>
7 </Target>
8 <Target>

10.7 Logging to Syslog 49

9 <Protocol>stderr</Protocol>
10 <Level>error</Level>
11 </Target>
12 </Logging>
13 ...
14 </AMPSConfig>

10.7 Logging to Syslog

AMPS can also log messages to the host’s syslog mechanism. To use the syslog
logging target, use a Protocol of syslog in the logging target definition.

The host’s syslog mechanism allows a logger to specify an identifier on the
message. This identifier is set through the Ident property and defaults to the
AMPS instance name (see Appendix C for configuration of the AMPS instance
name.)

The syslog logging target can be further configured by setting the Options pa-
rameter to a comma-delimited list of syslog flags. Those syslog flags recognized
are:

Table 10.4: Logging options available for SYSLOG configuration.

Level Description
LOG CONS Write directly to system console if there is an error

while sending to system logger.
LOG NDELAY Open the connection immediately (normally, the con-

nection is opened when the first message is logged).
LOG NOWAIT No effect on Linux platforms.
LOG ODELAY The converse of LOG NDELAY; opening of the con-

nection is delayed until syslog() is called. (This is the
default, and need not be specified.)

LOG PERROR Print to standard error as well.
LOG PID Include PID with each message.

AMPS already includes the process identifier (PID) with every
message it logs, however, it is a good practice to set the LOG PID
flag so that downstream syslog analysis tools will find the PID
where they expect it.

The Facility parameter can be used to set the syslog ’facility’. Valid op-
tions are: LOG USER (the default), LOG LOCAL0, LOG LOCAL1, LOG LOCAL2,
LOG LOCAL3, LOG LOCAL4, LOG LOCAL5, LOG LOCAL6, or LOG LOCAL7.

50 Logging

Finally, AMPS and the syslog do not have a perfect mapping between their
respective log severity levels. AMPS uses the following table to convert the
AMPS log level into one appropriate for the syslog:

Table 10.5: Comparison of AMPS log severity to Syslog severity.

AMPS Severity Syslog Severity
none LOG DEBUG
trace LOG DEBUG
debug LOG DEBUG
stats LOG INFO
info LOG INFO
warning LOG WARNING
error LOG ERR
critical LOG CRIT
emergency LOG EMERG

10.7.1 Example

Below is an example of a syslog logging target that logs all messages at the
’critical’ severity level or higher and additionally the log messages matching
30-0001 to the syslog.

1 <AMPSConfig>
2 ...
3 <Logging>
4 <Target>
5 <Protocol>syslog</Protocol>
6 <Level>critical</Level>
7 <IncludeErrors>30-0000</IncludeErrors>
8 <Ident>\amps dma</Ident>
9 <Options>LOG_CONS,LOG_NDELAY,LOG_PID</Options>

10 <Facility>LOG_USER</Facility>
11 </Target>
12 </Logging>
13 ...
14 </AMPSConfig

10.8 Error Categories

In the AMPS log messages, the error identifier consists of an error category,
followed by a hyphen, followed by an error identifier. The error categories cover
the different modules and features of AMPS, and can be helpful in diagnostics

10.8 Error Categories 51

and troubleshooting by providing some context about where a message is being
logged from. A list of the error categories found in AMPS are listed in Table 10.6

Table 10.6: AMPS Error Categories.

AMPS Severity Syslog Severity
00 AMPS Startup
01 General
02 Message Processing
03 Expiration
04 Publish Engine
05 Statistics
06 Metadata
07 Client
08 Regex
09 ID Generator
0A Diff Merge
0C View
0D Message Data Cache
0E Topic Replicas
0F Message Processor Manager
11 Connectivity
12 Trace In - for inbound messages
13 Datasource
14 Subscription Manager
15 SOW
16 Query
17 Trace Out - for outbound messages
18 Parser
19 Administrative Console
1A Evaluation Engine
1B SQLite
1C Meta Data Manager
1D Transaction Log Manager
1E Replication
1F Client Session
20 Global Heartbeat
21 Transaction Replay
22 TX Completion
23 Bookmark Subscription
24 Thread Monitor
FF Shutdown

52 Logging

10.9 Error discovery with ampserr

In the $AMPSDIR/bin directory is the ampserr utility. Running this utility is
useful for getting detailed information and messages about specific AMPS errors
observed in the log files.

AMPS errors follow the format of XX-YYYY where XX is a grouping
associated with the message and YYYY is a specific error within
that grouping. For example if XX is 12, this is the group for the
logging of inbound messages.

The ampserr utility can be used to lookup the detailed description and - where
known - an action to assist in recovery or mitigation of the error. For example, if
the error 05-0021 was found in the log, more information can be found about
this error by typing

./ampserr 05-0021

in the command line. To which ampserr will return the following information
with a DESCRIPTION and a recommended ACTION as seen below:

./ampserr 05-0021 AMPS Message 05-0021 [level
= critical]

DESCRIPTION : AMPS was unable to service the statistics
query over the HTTP administration port.

ACTION : This problem could be temporary, but if
it does not go away after 30 seconds, then it may be
indicative of a more serious issue with a hung AMPS
message processor. If you are also seeing "stuck"
messages in the log, please restart AMPS to clear the
issue and report the problem to AMPS support.

Found 1 error matching '05-0021'.

Chapter 11
Event Topics

AMPS publishes specific events to internal topics that begin with the /AMPS/
prefix, which is reserved for AMPS only. For example, all client connectivity
events are published to the internal /AMPS/ClientStatus topic. This allows
all clients to monitor for events that may be of interest.

Event topic messages can be subscribed with content filters like
any other topic within AMPS.

11.1 Client Status

The AMPS engine will publish client status events to the internal
/AMPS/ClientStatus topic whenever a client issues a logon command, dis-
connects or issues a subscribe or unsubscribe command. In addition, upon a
disconnect, a client status message will be published for each subscription that
the client had registered at the time of the disconnect. This mechanism allows
any client to monitor what other clients are doing and is especially useful for
publishers.

To help identify clients, it is recommended that clients send a logon command
to the AMPS engine and specify a client name. This client name is used to
identify a client and does not have to be unique as the AMPS engine only
includes it for identification within client status event messages, logging output,
and information on clients within the monitoring console.

Each message published to the client status topic will contain an Event and a
ClientName. For subscribe and unsubscribe events, the message will contain
Topic, Filter and SubId. The Filter will only be sent if it is not null.

54 Event Topics

When the AMPS engine is configured as xml, the client status message
published to the /AMPS/ClientStatus will contain a SOAP body with a
ClientStatus section as follows:

1 <?xml version="1.0" encoding="iso-8859-1"?>
2 <SOAP-ENV:Envelope>
3 <SOAP-ENV:Header>
4 <Cmd>publish</Cmd>
5 <TxmTm>20090106-23:24:40-0500</TxmTm>
6 <Tpc>/AMPS/ClientStatus</Tpc>
7 <MsgId>MAMPS-55</MsgId>
8 <SubId>SAMPS-1233578540_1</SubId>
9 </SOAP-ENV:Header>

10 <SOAP-ENV:Body>
11 <ClientStatus>
12 <Event>subscribe</Event>
13 <ClientName>test_client</ClientName>
14 <Topic>order</Topic>
15 <Filter>(/FIXML/Order/Instrmt/@Sym = 'IBM')</Filter>
16 <SubId>SAMPS-1233578540_10</SubId>
17 </ClientStatus>
18 </SOAP-ENV:Body>
19 </SOAP-ENV:Envelope>

Table 11.1 defines the header fields which may be returned as part of the
subscription messages to the /AMPS/ClientStatus topic.

FIX XML Definition
20065 Timestamp Timestamp in which AMPS sent the message.
20066 Event Command executed by the client.
20067 ClientName Client Name.
20068 Tpc SOW Topic.
20069 Filter Filter (if applicable).
20070 SubId Subscription ID (if applicable).
20071 ConnName Internal AMPS connection name.

Table 11.1: /AMPS/ClientStatus Format Fields

11.2 SOW Statistics

AMPS can publish SOW statistics for each SOW topic which has been con-
figured. To enable this functionality, specify the SOWStatsInterval in the
configuration file. The value provided in SOWStatsInterval is the time be-
tween updates to the /AMPS/SOWStats topic.

11.2 SOW Statistics 55

For example, the following would be a configuration that would publish internal
/AMPS/SOWStats event messages every 5 seconds.

1 <AMPSConfig>
2 ...
3 <SOWStatsInterval>5s</SOWStatsInterval>
4 ...
5 </AMPSConfig>

When the AMPS engine is configured as xml, the SOW status message
published to the /AMPS/SOWStats topic will contain a SOAP body with a
SOWStats section as follows:

1 <?xml version="1.0" encoding="iso-8859-1"?>
2 <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.←↩

xmlsoap.org/soap/envelope/">
3 <SOAP-ENV:Header>
4 <Cmd>publish</Cmd>
5 <TxmTm>2010-09-08T17:49:06.9439120Z</TxmTm>
6 <Tpc>/AMPS/SOWStats</Tpc>
7 <SowKey>18446744073709551615</SowKey>
8 <MsgId>AMPS-10548998</MsgId>
9 <SubIds>SAMPS-1283968028_2</SubIds>

10 </SOAP-ENV:Header>
11 <SOAP-ENV:Body>
12 <SOWStats>
13 <Timestamp>2010-09-08T17:49:06.9439120Z</Timestamp>
14 <Topic>MyTopic</Topic>
15 <Records>10485760</Records>
16 </SOWStats>
17 </SOAP-ENV:Body>
18 </SOAP-ENV:Envelope>

In the SOWStats message, the Timestamp field includes the time the event
was generated, Topic includes the topic, and Records includes the number
of records.

Table 11.2 defines the header fields which may be returned as part of the
subscription messages to the /AMPS/SOWStats topic.

FIX XML Definition
20065 Timestamp Timestamp in which AMPS sent the message.
20066 Topic Topic that statistics are being reported on.
20067 Records Number of records in the SOW topic.

Table 11.2: Client Status FIX Format Fields

56 Event Topics

11.3 Persisting Event Topic Data

By default, AMPS event topics are not persisted to the SOW. However, because
AMPS event topic messages are treated the same as all other messages, the
event topics can be persisted to the SOW. Providing a topic definition with the
appropriate Key definition can resolve that issue by instructing AMPS to persist
the messages. For example, to persist the last /AMPS/SOWStats message
for each topic in both fix and xml format, the following TopicDefinition
sections could be added to the AMPS configuration file:

1 <TopicMetaData>
2 <TopicDefinition>
3 <FileName>./sow/sowstats.fix.sow</FileName>
4 <Topic>/AMPS/SOWStats</Topic>
5 <Key>/20066</Key>
6 <MessageType>fix</MessageType>
7 </TopicDefinition>
8 <TopicDefinition>
9 <FileName>./sow/sowstats.xml.sow

10 <Topic>/AMPS/SOWStats</Topic>
11 <Key>/Topic</Key>
12 <MessageType>xml</MessageType>
13 </TopicDefinition>
14 </TopicMetaData>

Every time an update occurs, AMPS will persist the /AMPS/SOWStatsmessage
and it will be stored twice, once to the fix SOW topic, and once to the xml
SOW topic. Each update to the respective SOW topic will overwrite the record
with the same Topic or 20066 tag value. Doing this allows clients to now query
the SOWStats topic instead of actively listening to live updates.

Chapter 12
Message Acknowledgment

AMPS enables a client which sends commands to AMPS to request the status
of those commands at various check points throughout the message processing
sequence. These status updates are handled in the form of ack messages.
Each command supports a different set of acknowledgment messages, and
each of those messages will be discussed in this chapter.

12.1 Subscription Acknowledgment Messages

AMPS supports a variety of acknowledgment messages which are set in the
AckTyp header field of the message. The supported AckTyp are listed here:

Table 12.1: Acknowledgment messages supported by AMPS.

Ack Type Definition
none Do not to return an ack (default).
received Return an ack as soon as it receives the message.
persisted Return an ack after a publish message has been

successfully persisted to the SOW cache, transac-
tion log, and all synchronous downstream replication
destinations. This ack type only applies to publish
messages. (For more information please see Topic
Replicas.)

processed Return an ack after it has successfully started pro-
cessing the message.

completed Return an ack after a message has been success-
fully processed. The exact meaning is command
dependent.

Continued on next page

58 Message Acknowledgment

Table12.1 -- continued from previous page
Ack Type Definition
stats Return a statistics ack which summarizes statistics

of the executed command.

Subscribe and unsubscribe command messages only support received and
processed acknowledgment types. If a subscribe command succeeds, then
the acknowledgment message Status header field will indicate success. If the
Status is set to failure then the message will additionally contain a Reason
which will describe why the failure occurred. Example Reason returns would
be duplicate if a duplicate message is published to AMPS, or bad filter
if a query contains a filter that can not be parsed.

If the subscriber did not provide a subscription ID as part of the subscription
request, then the AMPS engine will generate a unique subscription ID that will
be returned in the SubId header field.

The following is an example ack message in response to a subscribe command:

1 <?xml version="1.0" encoding="iso-8859-1"?>
2 <SOAP-ENV:Envelope>
3 <SOAP-ENV:Header>
4 <Cmd>ack</Cmd>
5 <TxmTm>20080210-17:16:46.066-0500</TxmTm>
6 <CmdId>1</CmdId>
7 <AckTyp>processed</AckTyp>
8 <Status>success</Status>
9 <MsgId>MAMPS-330</MsgId>

10 <SubId>SAMPS-1202681806_1</SubId>
11 </SOAP-ENV:Header>
12 <SOAP-ENV:Body>
13 </SOAP-ENV:Body>
14 < /SOAP-ENV:Envelope>

12.1.1 AMPS Commands and Supported Acknowledgment
Types

Each of the Cmd messages sent to AMPS can have a different AckType re-
turned to the client. A summary of the acknowledgment messages available to
the specific commands is summarized in Table 12.2.

12.1 Subscription Acknowledgment Messages 59

Table 12.2: Commands and supported acknowledgment types.

Command no
ne

re
ce

iv
ed

pe
rs

is
te

d

pr
oc

es
se

d

co
m

pl
et

ed

st
at

s

delta publish • • • •
delta subscribe • • •
logon • • •
publish • • • •
sow and delta subscribe • • • • •
sow and subscribe • • • • •
sow delete • • • • • •
sow • • • •
subscribe • • • •
unsubscribe • • •

Chapter 13
Topic Replicas

To further reduce network bandwidth consumption, AMPS supports a feature
called ”topic replicas”. A topic replica is a copy of one topic into another with the
ability to control the replication interval.

To better see the value in a topic replica, imagine a SOW topic called
ORDER STATE exists in an AMPS instance. ORDER STATE messages are pub-
lished frequently to the topic. Meanwhile, there are several subscribing clients
that are watching updates to this topic and displaying the latest state in a GUI
front-end.

If this GUI front-end only needs updates in five second intervals from the
ORDER STATE topic, then more frequent updates would be wasteful of network
and client-side processing resources. To reduce network congestion, a topic
replica of the ORDER STATE topic can be created which will contain a copy of
ORDER STATE updated in five second intervals. Only the changed records from
ORDER STATE will be copied to the replica topic and then sent to the subscrib-
ing clients. Those records with multiple updates within the time interval will
have their latest updated values sent during replication, resulting in substantial
savings in bandwidth for single records with high update rates.

A topic replica is distinct from a high-availability replication desti-
nation in that the goal of the topic replica is to down-sample the
data to make the data flow to a client manageable. A high avail-
ability replica is implemented with the goal of data redundancy
and high uptime. The High Availability has more detail about high
availability replication.

13.1 Configuration 61

13.1 Configuration

Configuration of a replica topic involves creation of a ReplicaDefinition
section in the AMPS configuration file. Here is an example of a reg-
ular SOW topic named FastPublishTopic and its replica definition,
replica FastPublishTopic. In this example, the replication interval is
set at 5s (five seconds). For more information about how units work in AMPS
configuration see Using Units in the Configuration.

1 <TopicDefinition>
2 <Topic>FastPublishTopic</Topic>
3 <FileName>./sow/%n.sow</FileName>
4 <MessageType>fix</MessageType>
5 <Key>/1</Key>
6 </TopicDefinition>
7

8 <ReplicaDefinition>
9 <Topic>replica_FastPublishTopic</Topic>

10 <FileName>./sow/%n.sow</FileName>
11 <MessageType>fix</MessageType>
12 <UnderlyingTopic>FastPublishTopic</UnderlyingTopic>
13 <Interval>5s</Interval>
14 </ReplicaDefinition>

Topic Replicas require underlying SOW topics. See State of the
World (SOW) for more information on creating and configuring
SOW topics.

The configuration parameters available when defining a topic replica are
included in the 13.1. Each parameter should be included within a
ReplicaDefinition section.

Parameter Description
Topic String used to define the replica topic name.
UnderlyingTopic String used to define the SOW topic which provides

updates to the replica.
FileName The file location to store the topic replica data.
MessageType The message format used to store the data from the

underlying topic.
Interval Default of 5 second interval between replication event.

See Section C.1.2 for more information on intervals.
Table 13.1: Topic Replica Configuration Parameters

62 Topic Replicas

A replica topic can only be created on a SOW topic that has been
defined in the AMPS configuration. Ad-hoc topics can not have
replicas.

It is a good idea to name your replica topic something similar to
the underlying topic. For example, if the underlying topic is named
ORDER STATE then a good name for the replica is something like
ORDER STATE-REPLICA or ORDER STATE-R.

Messages can not be published to a topic replica. Messages
published to the underlying topic will be published to subscribers
of the topic replica.

Chapter 14
View Topics

AMPS contains a high-performance aggregation engine, which can be used to
project one topic onto another, similar to the CREATE VIEW functionality found
in most RDBMS software.

14.1 Example

For a potential usage scenario, imagine the topic ORDERS which includes the
following FIX message schema:

Table 14.1: ORDERS table identifiers

FIX Tag Description
37 unique order identifier
55 symbol
109 unique client identifier
14 currently executed shares for the chain of orders
6 average price for the chain of orders

This topic includes information on the current state of executed orders, but may
not include all the information we want updated in real-time. For example, we
may want to monitor the total value of all orders executed by a client at any
moment. If ORDERS was a SQL Table within an RDBMS the ”view” we would
want to create would be similar to:

CREATE VIEW TOTAL_VALUE AS
SELECT 109, SUM(14*6) AS 71406
FROM ORDERS
GROUP BY 109

64 View Topics

As defined above, the TOTAL VALUE view would only have two fields:

1. 109 : the client identifier

2. 71406: the summation of current order values by client

Views in AMPS are specified in the AMPS configuration file in ViewDefinition
section, which itself must be defined in the TopicMetaData section. The ex-
ample above would be defined as:

1 <TopicMetaData>
2 <TopicDefinition>
3 <Topic>ORDERS</Topic>
4 <MessageType>fix</MessageType>
5 <Key>/37</Key>
6 </TopicDefinition>
7 <ViewDefinition>
8 <Topic>TOTAL_VALUE</Topic>
9 <UnderlyingTopic>ORDERS</UnderlyingTopic>

10 <FileName>./views/totalValue.view</FileName>
11 <MessageType>fix</MessageType>
12 <Projection>
13 <Field>/109</Field>
14 <Field>SUM(/14 * /6) AS /71406</Field>
15 </Projection>
16 <Grouping>
17 <Field>/109</Field>
18 </Grouping>
19 </ViewDefinition>
20 </TopicMetaData>

Views require an underlying SOW topic. See State of the World
(SOW) for more information on creating and configuring SOW
topics.

The Topic element is set to the new topic that is being defined. This Topic
value will be the topic that can be used by clients to subscribe for future updates
or perform SOW queries against.

The UnderlyingTopic is the topic that the view operates on. That is, the
UnderlyingTopic is where the view gets its data from. All XPath references
within the Projection fields are references to values within this underlying
topic (unless they appear on the right-hand side of the AS keyword.)

The Projection section is a list of 1 or more Field’s that define what the
view will contain. The expressions can contain either a raw XPath value, as in
”/109” above, which is a straight copy of the value found in the underlying topic
into the view topic using the same target XPath. If we had wanted to translate
the 109 tag into a different tag, such as 10109, then we could have used the AS

14.1 Example 65

keyword to do the translation as in /109 AS /10109. As is the case with SQL
VIEWS, any straight references must also be a part of the grouping constraint.

Any straight reference that is not used within an aggregate function
must also be a part of the grouping field list.

Usually an unexpected 0 (zero) in aggregate field within a view
means that either the value is zero or NaN. AMPS defaults to
using 0 instead of NaN. Any numeric aggregate function will result
in a NaN result when any of the fields that are involved in the
aggregation are not a number.

Finally, the Grouping section is a list of 1 or more Field’s that define how the
records in the underlying topic will be grouped. In this example, we grouped by
the tag holding the client identifier. However, we could have easily made this
the Symbol tag /55.

The following table lists the available aggregate functions:

Table 14.2: Aggregate functions.

Function Description
AVG Average over an expression
COUNT Count of values in an expression
SUM Summation over an expression

Null values are not included in aggregate expressions with AMPS nor ANSI
SQL. COUNT will only count non-null values, SUM will only add non-null values,
and AVG will only average non-null values.

Views are only currently supported for the fix and nvfix mes-
sage type.

In the below example, we want to count the number of orders by client that have
a value greater than 1,000,000:

1 <ViewDefinition>
2 <Topic>NUMBER_OF_ORDERS_OVER_ONEMILL</Topic>

66 View Topics

3 <UnderlyingTopic>ORDERS</UnderlyingTopic>
4 <Projection>
5 <Field>/109</Field>
6 <Field><![CDATA[SUM(IF(/14 * /6 > 1000000)) AS ←↩

/90010]]></Field>
7 <Field>SUM(IF(/14 * /6 > 1000000)) AS /90011</←↩

Field>
8 </Projection>
9 <Grouping>

10 <Field>/109</Field>
11 </Grouping>
12 <FileName>
13 ./views/numOfOrdersOverOneMil.view
14 </FileName>
15 <MessageType>fix</MessageType>
16 </ViewDefinition>

Notice that the /90010 and /90011 will contain the same value, however /90010
was defined using an XML CDATA block and /90011 was defined using the XML
> entity reference.

Since the AMPS configuration is XML, special characters in projec-
tion expressions have to be escaped with XML entity references
or wrapped in a CDATA section.

Updates to an underlying topic can cause twice as many updates to a down-
stream view, this can create stress on downstream clients subscribed to the
view. If the underlying topic has frequent updates to the same records and/or a
real-time view is not required, as in a GUI, then a replica of the topic may be a
good solution to reduce the frequency of the updates and conserve bandwidth.
For more on topic replicas please see Topic Replicas.

Chapter 15
Message Expiration

A default configuration of AMPS will store all messages which match a SOW
topic indefinitely. For scenarios where message persistence needs to be limited
in duration, AMPS provides the ability to set a time limit on the lifespan of SOW
topic messages. This limit on duration is known as message expiration and can
be thought of as a ‘‘Time to Live’’ feature for SOW topic messages.

15.1 Usage

There are two ways message expiration time can be set. The first, each topic
can specify a default lifespan for all messages stored for that SOW topic. The
second, each message can provide an expiration as part of the message header.

The expiration for a given SOW topic message is first determined based on
the message expiration specified in the message header. If a message has no
expiration specified in the header, then the message will inherit the expiration
setting for the topic expiration. If there is no message expiration and no topic
expiration, then it is implicit that a SOW topic message will not expire.

15.1.1 Topic Expiration

AMPS configuration supports the ability to specify a default message expiration
for all messages in a single SOW topic. Below is an example of a configuration
section for a SOW topic definition with an expiration. The State of the World
(SOW) chapter has more detail on how to configure the SOW topic.

1 <TopicMetaData>
2 <TopicDefinition>
3 <FileName>sow/%n.sow</FileName>
4 <Topic>ORDERS</Topic>

68 Message Expiration

5 <Expiration>30s</Expiration>
6 <Key>/55</Key>
7 <Key>/109</Key>
8 <MessageType>fix</MessageType>
9 <RecordSize>512</RecordSize>

10 </TopicDefinition>
11 </TopicMetaData>

15.1.2 Message Expiration

Individual messages have the ability to specify an expiration for a a published
message. Below is an example of an XML message which is publishing an
Order, and has an expiration set for 20 seconds.

1 <?xml version="1.0" encoding="iso-8859-1"?>
2 <SOAP-ENV:Envelope>
3 <SOAP-ENV:Header>
4 <Cmd>publish</Cmd>
5 <TxmTm>20061201-17:29:12.000-0500</TxmTm>
6 <Expn>20</Expn>
7 <Tpc>order</Tpc>
8 </SOAP-ENV:Header>
9 <SOAP-ENV:Body>

10 <FIXML>
11 <Order Side="2" Px="32.00"><Instrmt Sym="MSFT"/←↩

><OrdQty Qty="100"/></Order>
12 </FIXML>
13 </SOAP-ENV:Body>
14 </SOAP-ENV:Envelope>

15.2 Example Message Lifecycle

Assuming that a SOW topic message has either the message or topic expirations
set, then the message will be placed into the SOW with that expiration time. If
the message is not updated (or gets deleted) before it expires, then the message
will be deleted from the SOW.

SOW topic messages can receive updates before expiration. When a message
is updated, the message’s expiration lifespan is reset. For example, a message
is first published to a SOW topic, and it is set to expire in 45 seconds. The
message is updated 15 seconds after publication of the initial message, and
the original message will have the expiration reset to a new 45 second lifespan.
This process can continue for the entire lifespan of the message, causing a new
45 second lifespan renewal for the message with every update.

If the message expires, then that message is deleted from the SOW topic. This
event will trigger delete processing to be executed for the message, similar

15.2 Example Message Lifecycle 69

to the process of executing a sow delete command on a message stored in
a SOW topic. See sow delete for more information on how SOW message
deletion works.

15.2.1 Recovery and Expiration

One scenario in the message expiration lifecycle is where a message has an
expiration set, but the AMPS instance gets shut down during the lifetime of the
message.

To handle such a scenario, AMPS ensures that message expiration time is
requested relative to the update time of the original message; however, the time
of expiration is calculated as an absolute time. Therefore, if the AMPS instance
is shutdown, then upon recovery the engine will check to see which messages
have expired since the occurrence of the shutdown. Any expired messages will
be deleted as soon as possible.

Chapter 16
Out of Focus Message
Processing (OOF)

When part of a SOW query changes such that it no longer meets the criteria
that previously caused its delivery, AMPS can notify the subscriber via an out-
of-focus (OOF) message. OOF processing is the AMPS method of notifying a
client that a new message has caused a SOW record’s state to change, thus
informing the client that a message which previously matched their filter criteria
no longer matches or was deleted.

16.1 Usage

Consider the following scenario where AMPS is configured with the following
SOW key for the buyer topic:

1 <TopicDefinition>
2 <Topic>buyer</Topic>
3 <MessageType>xml</MessageType>
4 <Key>/buyer/id</Key>
5 </TopicDefinition>

Listing 16.1: Topic Configuration

When the following message is published, it is persisted in the SOW topic:

1 <buyer><id>100</id><loc>NY</loc></buyer>

If a client issues a sow or a sow and subscribe request with SendOOF en-
abled, topic buyer and filter /buyer/loc="NY" then the client will be sent
the messages as part of the SOW query result.

16.2 Example 71

Subsequently when the following message is published to update the loc tag
to LN from NY,

1 <buyer><id>100</id><loc>LN</loc></buyer>

the original message in the SOW cache will be updated and the client will be
holding a message that is no longer in the SOW cache. The AMPS engine
sends an OOF message to let these clients know that the message that they
hold is no longer in the SOW cache. The following is an example of what’s
returned:

1 <?xml version="1.0" encoding="iso-8859-1"?>
2 <SOAP-ENV:Envelope>
3 <SOAP-ENV:Header>
4 <Reason>match</Reason>
5 <Tpc>buyer</Tpc>
6 <Cmd>oof</Cmd>
7 <MsgTyp>xml</MsgTyp>
8 <SowKey>6387219447538349146</SowKey>
9 <SubIds>SAMPS-1214725701_1</SubIds>

10 </SOAP-ENV:Header>
11 <SOAP-ENV:Body>
12 <client><id>100</id><loc>LN</loc></client>
13 </SOAP-ENV:Body>
14 </SOAP-ENV:Envelope>

An easy way to think about the above is to consider what would happen if the
client re-issued the original sow request after the above message was published.
The /client/loc="NY" expression no longer matches the message in the
SOW cache and as a result, this message would not be returned.

When AMPS returns an OOF message, the data contained in the body of the
message represents the updated state of the OOF message. This will allow the
client to make a determination as to how to handle the data, be it to remove the
data from the client view or to change their query to broaden the filter thresholds.

In the case of a delta publish message, the merged record will be returned
in the body of the message.

For deletions and expirations the body of the message returned is the original
message since it would otherwise be empty. The Reason contained in the
message header will state whether the message was deleted or expired.

16.2 Example

To help reinforce the concept of OOF messages, and how OOF messaging can
be used in AMPS, consider a scenario where there is a GUI application whose
requirement is to display all open orders of a client. There are several possible
solutions of ensuring the GUI client data is constantly updated as information

72 Out of Focus Message Processing (OOF)

changes, some of which are examined below, however the goal of this section
is to build up a sow and subscribe message to demonstrate the power that
adding a SendOOF header adds to an AMPS query.

16.2.1 sow and subscribe With Client Filtering

The first approach is to send and sow and subscribe message using the
following filter:

Topic:orders;Filter:/Client = "Adam"

Once AMPS has completed the sow portion of this call by sending all matching
messages from the orders SOW topic, AMPS will then place a subscription
where by all future messages which match the filter will be sent to the subscribing
GUI client.

Figure 16.1: sow and subscribe example.

As the messages come in, the GUI client will be responsible for determining the
state of the order by examining the State field and determining if the state is
equal to ”Open” or not and then deciding how to update the GUI based on the
information returned.

This approach puts the burden of work on the GUI and in a high volume
environment has the potential to make the client GUI unresponsive due to the
potential load that this filtering can place on a CPU. If a client GUI becomes
unresponsive, AMPS will queue the messages to ensure that the client is given
the opportunity to catch up. The specifics of how AMPS handles slow clients is
covered in Slow Clients.

16.2 Example 73

16.2.2 sow and subscribe With Topic Filter

The next step is to add an additional ’AND’ clause to the filter. In this scenario
we can let AMPS do the filtering work that was previously handled on the client

This is accomplished by modifying our original sow and subscribe using the
following filter:

Topic:orders;Filter:/Client = "Adam" and /State = "Open"

Similar to the above case, this sow and subscribe will first send all messages
from the orders SOW topic which have a Client field matching ”Adam” and a
State field matching ”Open.” Once all of the SOW topic messages have been
sent to the client, the subscription will make sure all future messages which
match the filter are sent to the client.

Figure 16.2: sow and subscribe with State filter.

There is a less obvious issue with this approach to maintaining the client state.
The problem with this solution is that initially it will yield all of the open orders
for client ”Adam”, however this scenario is unable to stay in sync with the
server. For example, when the order for Adam is filled the State changes
to State=Filled. This means a inside AMPS the order on the client will
no longer match the initial filter criteria, resulting in out-of-sync records being
maintained by the client. Since the client is not subscribed to messages with a
State of ”Filled” the GUI client would never be updated to reflect this change.

16.2.3 sow and subscribe With OOF Processing

The final solution is to implement the same sow and subscribe query which
was used in the first scenario, but include SendOOF so the client will receive

74 Out of Focus Message Processing (OOF)

OOF messages

Topic:orders;Filter:/Client = "Adam" and /State = ←↩
"Open"; SndOOF=true

AMPS will respond immediately with the query results, in a similar manner to a
sow and subscribe (Figure 16.3) command.

Figure 16.3: sow and subscribe with oof enabled

The advantage to this approach is that for all future messages, if the same Open
order is updated such that it’s status is no longer Open, AMPS will send the client
an OOF message specifying that the record which previously matched the filter
criteria has fallen out of focus. AMPS will not send any further information about
the message unless another incoming AMPS message causes that message to
come back into focus.

In Figure 16.4 the Publisher publishes a message stating that Adam’s order for
MSFT has been fulfilled. When AMPS processes this message, it will notify
the GUI client with an OOF message that the original record no longer matches
the filter criteria. The OOF command will include a Reason field with it in the
message header defining the reason for the message to lose out of focus. In
this case the Reason field will state match since the record no longer matches
the filter.

16.3 Another Example 75

Figure 16.4: OOF message

AMPS will also send OOF messages when a message is deleted or has expired
from the SOW topic.

The power of the OOF message is when a client application wants to have a local
cache that is a subset of the SOW. This is best managed by first issuing a query
filter sow and subscribe which populates the GUI, and enabling SendOOF to
know when those records which originally matched no longer do, and can be
removed from the client.

16.3 Another Example

Below is an example describing how AMPS works with an OOF enabled
sow and delta subscribe command, however this example will examine a
scenario where AMPS is used to filter messages to a client maintaining statistics
regarding the roster of an NFL football team.

In this scenario, there is a data source which publishes statistics and player
transactions for all professional sports to an AMPS instance. Within this AMPS
instance there is a topic for each individual sports league (i.e., an NFL topic for
football, an MLB topic for baseball and an NHL topic for hockey).

A client who is interested in the viewing the statistics and transaction for all
of the running backs for the New York Giants football team would be able to
send a sow and delta subscribe command to the AMPS NFL topic. AMPS
would then return the full records of all players who matched the query as seen
in Figure 16.5

76 Out of Focus Message Processing (OOF)

Figure 16.5: Initial sow and delta subscribe

From this point forward, every Sunday (and occasionally on Monday) the client
will receive updates about the players’ stats which are subscribed to by the
sow and delta subscribe . As an example assume Ahmad Bradshaw car-
ries the ball 13 times and scores 2 touchdowns, and Brandon Jacobs carries
the ball 8 times. The delta publish message would look something like the
message passed to the client in Figure 16.6.

Figure 16.6: delta publish message after a game

As demonstrated, AMPS will only send the statistics which were affected by the
previous week’s game. This minimizes the amount of data which must be sent
over the network versus re-sending the entire publish record for both players
with statistics to be updated. From the delta subscribe message data we
can infer D.J Ware and Victor Cruz saw no playing time, or they did play and did
not get any carries. Likewise, notice that Brandon Jacob’s touchdown statistic
didn’t change and therefore wasn’t resent to the client.

The following week, the New York Giants broker a deal with the Cleveland
Browns to trade Brandon Jacobs for Peyton Hillis - both running backs. This

16.3 Another Example 77

trade would signal two events to AMPS:

1. Peyton Hillis now matches the previous filter (he has become a running
back for the New York Giants) and needs to be added to the client’s results
via a publish message.

2. Brandon Jacobs is no longer with the New York Giants, thus no longer
matches the filter criteria and needs to have an oof message sent to the
client so the client knows to remove the data from its table.

Both of these events are visualized in Figure 16.7

Figure 16.7: publish and oof after a trade

In a sow and delta subscribe , when a new record comes into scope from
a SOW query filter, the entire record must be sent. AMPS can not send a
delta publish message to update the record because there is no previous
record to update on the client. Since Peyton Hillis was not a member of the New
York Giants previously, the entire record, not the delta, had to be sent to the
GUI client.

The oof message serves to notify a client that a record which previously met
their SOW query filter criteria is no longer in the domain of the original query. In
the previous example, at the time the sow and delta subscribe command
was issued, Brandon Jacobs was a running back for the New York Giants and
was included as part of the original SOW query filter result set. When the trade
was executed and Brandon Jacobs was traded to the Cleveland Browns, he no
longer met the SOW query filter criteria (he was no longer on the roster for the
New York Giants), thus signaling to AMPS that an oof message needed to be
sent to update the client.

After all of the statistics have been updated and player deals have been ac-
counted for in the above examples, the final client table looks like the diagram
shown in Figure 16.8

In review, the key points for this example are to demonstrate the following points
using a concrete example:

78 Out of Focus Message Processing (OOF)

Figure 16.8: The final client table

1. OOF messages can be used as a powerful tool for ensuring that client
data is updated in a consistent and timely manner.

2. The sow and delta subscribe command works in a similar manner to
the sow and subscribe command, but can offer substantial savings in
network bandwidth by eliminating redundant data; and

3. Messages which didn’t previously meet a SOW query filter criteria must
be sent in full to the client.

Chapter 17
Utilities

AMPS provides several utilities that are not essential to message processing,
but can be helpful in troubleshooting or tuning an AMPS instance:

• amps sow dump is used to inspect the contents of a SOW topic store.

• amps journal dump is used to examine the contents of an AMPS journal
file during debugging and program tuning.

• ampserr is used to expand and examine error messages that may be
observed in the logs. This utility allows a user to input a specific error
code, or a class of error codes, examine the error message in more detail,
and where applicable, view known solutions to similar issues.

• AMPS contains a command-line client, spark, which can be used to run
queries, place subscriptions and publish data. While it can be used for
each of these purposes, spark is provided as a useful tool for checking
the status of the AMPS engine.

17.1 amps sow dump

amps sow dump is a utility used to inspect the contents of a SOW topic store.

Options and Parameters

Table 17.1: Parameters for amps sow dump.

Option Description
filename Filename of the SOW topic store.
--version Show the version number of the program and exit.

Continued on next page

80 Utilities

Table17.1 -- continued from previous page
Option Description
-h, --help Show the help message and exit.
-n LIMIT Maximum number of records to print per file.
-v, --verbose Print record metadata for records and file summary.
-e, --escape Escape special characters in record data and

header.
-d DELIMITER Prints only the record data using the provided ASCII

character value as the record delimiter [default: 10
for newline].

--sizing-chart Print memory sizing chart for efficiency comparison
(experimental).

Usage

amps sow dump expects a filename at a minimum in order to
complete the SOW topic store dump process.

The example below shows a simple sow dump with the -e flag set to make the
header, message and field separators readable. Each key which exists in the
order.sow file is dumped out to stdout. This output can easily be redirected to
a new file, or piped into another program for further analysis.

%> ./amps_sow_dump -e ./order.sow

49=ABROKER\x0156=AFUNDMGR\x0152=2011-09-10T00:37:12\x01←↩
20=IBM\x0121=1000\x0122=93.17\x01

49=ABROKER\x0156=AFUNDMGR\x0152=2011-09-10T00:37:12\x01←↩
20=QCOM\x0121=100000\x0122=34.82\x01

49=ABROKER\x0156=AFUNDMGR\x0152=2011-09-10T00:37:12\x01←↩
20=AAPL\x0121=1000\x0122=97.73\x01

49=ABROKER\x0156=AFUNDMGR\x0152=2011-09-10T00:37:12\x01←↩
20=BRCM\x0121=100000\x0122=17.33\x01

49=ABROKER\x0156=AFUNDMGR\x0152=2011-09-10T00:37:12\x01←↩
20=HP\x0121=1000\x0122=22.32\x01

49=ABROKER\x0156=AFUNDMGR\x0152=2011-09-10T00:37:12\x01←↩
20=CSCO\x0121=1000\x0122=15.95\x01

49=ABROKER\x0156=AFUNDMGR\x0152=2011-09-10T00:37:12\x01←↩
20=DELL\x0121=100\x0122=9.26\x01

49=ABROKER\x0156=AFUNDMGR\x0152=2011-09-10T00:37:12\x01←↩
20=INTC\x0121=1000\x0122=13.98\x01

17.2 amps journal dump 81

The next example shows the output from the --sizing-chart flag. This is
feature can be useful in tuning AMPS memory usage and performance. The
Record Size with the asterisk shows the current Record Size setting and
allows an AMPS administrator to compare memory usage efficiency along with
the potential for a multi-record penalty.

This feature is currently listed as experimental, so changing AMPS
record size configuration based on the results may not necessarily
help performance, and could hurt performance in some cases.

%> ./amps_sow_dump --sizing-chart ./order.sow

==
Record Size Store Efficiency Multirecord

==
128 1024 B 100.00% 0
256 2.00 KB 50.00% 0
384 3.00 KB 33.33% 0
512* 4.00 KB 25.00% 0
640 5.00 KB 20.00% 0
768 6.00 KB 16.67% 0
896 7.00 KB 14.29% 0
1024 8.00 KB 12.50% 0
1152 9.00 KB 11.11% 0
1280 10.00 KB 10.00% 0
1408 11.00 KB 9.09% 0
1536 12.00 KB 8.33% 0
1664 13.00 KB 7.69% 0
1792 14.00 KB 7.14% 0
1920 15.00 KB 6.67% 0

17.2 amps journal dump

The AMPS journal dump utility is used in examining the contents of an AMPS
journal file for debugging and program tuning.

Options and Parameters

82 Utilities

Table 17.2: Parameters for amps journal dump.

Option Description
filename Filename of the AMPS journal file.
--version Show the program version number and exit.
-h, --help Show the program help message and quit.
-l LIMIT limit range of output to entries N:M where N is the

first entry and M is the last entry. Passing in a single
value, M, will return the first M results.

17.3 ampserr

AMPS contains a utility to expand and examine error messages which may be
observed in the logs. ampserr allows a user to input a specific error code, or
a class of error codes, examine the error message in more detail, and where
applicable view known solutions to similar issues.

Options and Parameters

Table 17.3: Parameters for amps err.

Option Description
error the error code to look up. This can also be a regular

expression.

Usage

The following example shows the output of the ”00-0001” error message.

%> ./ampserr 01-0001
AMPS Message 00-0001 [level = info]

DESCRIPTION : AMPS Copyright message.

ACTION : No recommended action available.

Found 1 error matching '00-0001'.

The following example will return all message which begin with ”00-”.

For the sake of brevity, not all messages which match this query
are printed in this manual.

17.3 ampserr 83

%> ./ampserr 00-

AMPS Message 00-0000 [level = trace]

DESCRIPTION : Internal log message used by AMPS
development team. If you see this message
logged, please notify AMPS support.

ACTION : No recommended action available.

AMPS Message 30-0000 [level = warning]

DESCRIPTION : AMPS internal thread monitoring has
detected a thread that hasn’t made progress
and appears 'stuck'. This can happen with long
operations or a bug within AMPS.

ACTION : Monitor AMPS and if these 'stuck'
messages continue, then a restart of the engine
could be the only way to resolve it. If it
appears busy (high CPU utilization) then it
could be a long operation (large query filter.)

The following example will return all error messages.

For the sake of brevity, not all messages which match this query
are printed in this manual.

%> ./ampserr .

AMPS Message 00-0000 [level = trace]

DESCRIPTION : Internal log message used by AMPS
development team. If you see this message
logged, please notify AMPS support.

ACTION : No recommended action available.

AMPS Message 30-0000 [level = warning]

DESCRIPTION : AMPS internal thread monitoring
has detected a thread that hasn’t made
progress and appears 'stuck'. This can
happen with long operations or a bug

84 Utilities

within AMPS.

ACTION : Monitor AMPS and if these 'stuck'
messages continue, then a restart of the
engine could be the only way to resolve it.
If it appears busy (high CPU utilization)
then it could be a long operation (large
query filter.)

17.4 spark

AMPS contains a command-line client, spark, which can be used to run queries,
place subscriptions and publish data. While it can be used for each of these
purposes, spark is provided as a useful tool for checking the status of the
AMPS engine.

The spark utility and its accompanying source code is available in the
api/client/ directory of the AMPS install location. spark is currently written
for java, python and c#. The source is provided as a best practices guide for
implementing a simple AMPS client using the api provided.

To run spark, typing spark at the command line will display the help screen
and given an idea of the features provided by sparks.

%> ./spark
===============================
- Spark - AMPS client utility -
===============================
Usage:

spark help [command]

Supported Commands:

help
publish
sow
sow_and_subscribe
subscribe

Example:

%> ./spark help sow

Returns the help and usage information for the
'sow' command.

17.4 spark 85

spark requires that a supported command is passed as an argument. Within
each supported command, there are additional unique requirements and options
available to change the behavior of spark and how it interacts with the AMPS
engine.

For example, if more information was needed to run a publish command in
spark, the following would display the help screen for the publish feature in
spark.

%>./spark help publish
===============================
- Spark - AMPS client utility -
===============================
Usage:

spark publish [options]

Required Parameters:

server -- AMPS server to connect to
topic -- topic to query
type -- message type to use (fix, xml)

Options:
delimiter -- decimal value of separator character

for messages. Default is 10 (LF)
delta -- use delta publish
file -- file to publish records from,

standard in when omitted

Example:

%> ./spark publish -type fix -server localhost:9003
-topic Trades -file data.fix

Connects to the AMPS instance listening on port 9003 ←↩
and publishes records

found in the 'data.fix' file to topic
'Trades'.

Chapter 18
Operation and Deployment

This chapter of the Operations Guide contains guidelines and best-practices to
help plan and prepare ani environment which will meet the demands that AMPS
is expected to manage.

18.1 Capacity Planning

Sizing an AMPS deployment can be a complicated process that includes many
factors including configuration parameters used for AMPS, the data used within
the deployment, and how the deployment will be used. This section presents
guidelines that you can use in sizing your host environment for an AMPS
deployment given what needs to be considered along every dimension: Memory,
Storage, CPU, and Network.

18.1.1 Memory

Beyond storing its own binary images in system memory, AMPS also tries to
store its SOW and indexing state in memory to maximize the performance of
record updates and SOW queries.

AMPS needs less than 1GB for its own binary image and initial start up state
for most configurations. In the worst-case, because of indexing for queries,
AMPS may need up to twice the size of messages stored in the SOW. And,
finally AMPS needs some amount of memory reserved for the clients connected
to it. While the per connection overhead is a tunable parameter based on the
Slow Client Disconnect settings (see the best practices later in this chapter) it is
advised to use 50MB per connected client.

This puts the worst-case memory consumption estimate at:

Example:

18.1 Capacity Planning 87

Table 18.1: Memory estimation equation.
S = Average SOW Message Size 1GB + (2S ∗M) + (C ∗ 50MB)

M = Number of SOW Messages
C = Number of Clients

Table 18.2: Example memory estimation.
S = 1024 1GB + (2 ∗ 1024 ∗ 20, 000, 000) + (200 ∗ 50MB)

M = 20, 000, 000 ≈ 52GB

C = 200

An AMPS deployment expected to hold 20 million messages with an average
message size of 1KB and 200 connected clients would consume 52GB. There-
fore, this AMPS deployment would fit within a host containing 64GB with enough
headroom for the OS under most configurations.

18.1.2 Storage

AMPS needs enough space to store its own binary images, configuration files,
SOW persistence files, log files, transaction log journals, and slow client offline
storage, if any. Not every deployment configures a SOW or transaction log, so
the storage requirements are largely driven by the configuration.

Log files

Log file sizes vary depending on the log level and how the engine is used. For
example, in the worst-case, trace logging, AMPS will need at least enough
storage for every message published into AMPS and every message sent out
of AMPS plus 20%.

For info level logging, a good estimate of AMPS log file sizes would be 2MB
per 10 million messages published.

Logging space overhead can be capped by implementing a log rotation strategy
which uses the same file name for each rotation. This strategy effectively
truncates the file when it reaches the log rotation threshold to prevent it from
growing larger.

SOW

When calculating the SOW storage, there are a couple of factors to keep in mind.
The first is the average size of messages stored in the SOW, the number of
messages stored in the SOW and the RecordSize defined in the configuration
file. Using these values, it is possible to estimate the minimum and maximum
storage requirements for the SOW:

88 Operation and Deployment

Table 18.3: Minimum SOW size.
Min = Minimum SOW size Min = S ∗M
S = Average SOW Message Size
M = Number of SOW Messages

Table 18.4: Maximum SOW size.
Max = Maximum SOW Size Max = (S + R) ∗M
S = Average Sow Message Size
R = Record Size
M = Number of Sow Messages

The storage requirements should be between the two values above, however it
is still possible for the SOW to consume additional storage based on the unused
capacity configured for each SOW topic.

For example, in an AMPS configuration file which has the InitialSize is set
to 1000 messages and the RecordSize is set to 1024, the SOW for this topic
will consume 1MB with no messages stored in the SOW. Pre-allocating SOW
capacity in chunks is more efficient for the operating system, storage devices,
and helps amortize the SOW extension costs over more messages.

It is also important to be aware of the maximum message size that AMPS can
hold in the SOW. The maximum message size is calculated in the following
manner:

Table 18.5: Maximum Message Size allowed in SOW.
Max = Maximum Message Size Max = (R ∗ I)− 40bytes

R = SOW Topic RecordSize
I = SOW Topic IncrementSize

This calculation says that the maximum message size that can be stored in
the sow in a single message storage is the RecordSize multiplied by the
IncrementSize minus 40 bytes for the record header information.

Other Storage Considerations

The previous sections discuss the scope of sizing the storage, however scenar-
ios exist where the performance of the storage devices must also be taken into
consideration.

One such scenario is the following use case in which the AMPS transaction log
is expected to be heavily used. If performance greater than 1000 messages/sec-
ond is required out of the AMPS transaction log, experience has demonstrated
that flash storage (or better) would be recommended. Magnetic hard disks lack
the performance to produce results greater than this.

18.1 Capacity Planning 89

18.1.3 CPU

SOW queries with content filtering make heavy use of CPU based operations,
and as such, CPU performance directly impacts the content filtering performance
and rates at which AMPS processes messages. The number of cores within a
CPU largely determines how quickly SOW queries execute.

AMPS contains optimizations which are only enabled on recent 64-bit x86 CPU’s.
To achieve the highest level performance, consider deploying on a CPU which
includes support for the SSE 4.2 instruction set.

To give an idea of AMPS performance, repeated testing has demonstrated
that a moderate query filter with 5 predicates can be executed against 1KB
messages at more than 1,000,000 messages per second, per core on an Intel i7
3GHz CPU. This applies to both subscription based content filtering and SOW
queries. Actual messaging rates will vary based on matching ratios and network
utilization.

18.1.4 Network

When capacity planning a network for AMPS, the requirements are largely
dependent on the following factors:

• average message size

• the rate at which publishers will publish messages to AMPS

• the number of publishers and the number of subscribers.

AMPS requires sufficient network capacity to service inbound publishing as
well as outbound messaging requirements. In most deployments, outbound
messaging to subscribers and query clients has the highest bandwidth require-
ments due to the increased likeliness for a ”one to many” relationship of a single
published message matching subscriptions/queries for many clients.

Estimating network capacity requires knowledge about several factors, including
but not limited to: the average message size published to the AMPS instance,
the number of messages published per second, the average expected match
ratio per subscription, the number of subscriptions, and the background query
load. Once these key metrics are known, then the necessary network capacity
can be calculated:

Table 18.6: Network capacity formula
R = Rate R ∗ S(1 +M ∗ S) + Q

S = Average Message Size
M = Match Ratio
S = Number of Subscriptions
Q = Query Load

Where QueryLoad is:

90 Operation and Deployment

Table 18.7: Network capacity formula
Mq = Messages Per Query Mq ∗ S ∗Qs

S = Average Message Size
Qs = Queries Per Second

Example:

In a deployment which is required to process published messages at a rate of
5000 messages per second, with each message having an average message
size of 600 bytes. The expected match rate per subscription is 2% (or 0.02) with
100 subscriptions. The deployment is also expected to process 5 queries per
minute (or 1

12 queries per second), with each query expected to return 1000
messages.

5000 ∗ 600B ∗ (1 + 0.02 ∗ 100) + (1000 ∗ 600B ∗ 1
12) ≈ 9MB/s ≈ 72Mb/s

Based on these requirements, this deployment would need at least 72Mb/s
of network capacity to achieve the desired goals. This analysis demonstrates
AMPS by it self would fall into a 100Mb/s class network. It is important to note,
this analysis does not examine any other network based activity which may
exist on the host, and as such a larger capacity networking infrastructure than
100Mb/s would likely be required.

18.2 Linux Operating System Configuration

This section covers some settings which are specific to running AMPS on a
Linux Operating System.

18.2.1 ulimit

The ulimit command is used by a Linux administrator to get and set user
limits on various system resources.

ulimit -c It is common for an AMPS instance to be configured to consume
gigabytes of memory for large SOW caches. If a failure were to occur in a
large deployment it could take seconds (maybe even hours, depending
on storage performance and process size!) to dump the core file. AMPS
has a minidump reporting mechanism built in that collects information
important to debugging an instance before exiting. This minidump is much
faster than dumping a core file to disk. For this reason, it is recommended
that the per user core file size limit is set to 0 to prevent a large process
image from being dumped to storage.

ulimit -n The number of file descriptors allowed for a user running AMPS needs
to be at least double the sum of counts for the following: connected clients,
SOW topics and pre-allocated journal files.

18.2 Linux Operating System Configuration 91

Minimum: 1024

Recommended: 16834

18.2.2 /proc/sys/fs/aio-max-nr

Each AMPS instance requires AIO in the kernel to support at least 16384 plus
8192 for each SOW topic in simultaneous I/O operations. aio-max-nr setting
is global to the host and impacts all applications, and as such this value needs
to be set high enough to service all applications using AIO on the host.

Minimum: 65536

Recommended: 1048576

To view the value of this setting, as root you can enter the following command:

cat /proc/sys/fs/aio-max-nr

To edit this value, as root you can enter the following command:

sysctl -w fs.aio-max-nr=1048576

This command will update the value for /proc/sys/fs/aio-max-nr and
allow 1,048,576 simultaneous I/O operations, but will only do so until the next
time the machine is rebooted. To make a permanent change to this setting,
as a root user, edit the /etc/sysctl.conf file and either edit or append the
following setting:

fs.aio-max-nr = 1048576

18.2.3 /proc/sys/fs/file-max

Each AMPS instance needs file descriptors to service connections and maintain
file handles for open files. This number needs to be at least double the sum of
counts for the following: connected clients, SOW topics and pre-allocated journal
files. This file-max setting is global to the host and impacts all applications, so
this needs to be set high enough to service all applications on the host.

Minimum: 262144

Recommended: 6815744

To view the value of this setting, as root you can enter the following command:

cat /proc/sys/fs/file-max

To edit this value, as root you can enter the following command:

sysctl -w fs.file-max=6815744

92 Operation and Deployment

This command will update the value for /proc/sys/fs/file-max and allow
6,815,744 concurrent files to be opened, but will only do so until the next time
the machine is rebooted. To make a permanent change to this setting, as a root
user, edit the /etc/sysctl.conf file and either edit or append the following
setting:

fs.file-max = 6815744

18.3 Best Practices

This section covers a selection of best practices for deploying AMPS.

18.3.1 Monitoring

AMPS exposes the statistics available for monitoring via a RESTful interface,
known as the Monitoring Interface, which is configured as the administration
port. This interface allows developers and administrators to easily inspect vari-
ous aspects of AMPS performance and resource consumption using standard
monitoring tools.

At times AMPS will emit log messages notifying that a thread has encountered
a deadlock or stressful operation. These messages will repeat with the word
”stuck” in them. AMPS will attempt to resolve these issues, however after 60
seconds of a single thread being stuck, AMPS will automatically emit a minidump
to the previously configured minidump directory. This minidump can be used by
60East support to assist in troubleshooting the location of the stuck thread or
the stressful process.

Another area to examine when monitoring AMPS is the
last active monitor for the processors. This can be found in the
/amps/instance/processors/all/last active url in the monitoring
interface. If the last active value continually increases for more than one
minute and there is a noticeable decline in the quality of service, then it may be
best to fail-over and restart the AMPS instance.

18.3.2 SOW Parameters

Choosing the ideal InitialSize, IncrementSize, and RecordSize for
your SOW topic is a balance between the frequency of SOW expansion and
storage space efficiency. A large InitialSize will preallocate space for
records on start up, however this value may end up being too large, which would
result in wasted space.

An IncrementSize that is too small results in frequent extensions of your
SOW topic to occur. These frequent extensions can have a negative impact on
the rate at which AMPS is able to process messages.

18.3 Best Practices 93

If the IncrementSize is large, then the risk of the SOW resize impacting
performance is reduced, however this has a trade-off of reduced space utilization
efficiency.

A good starting point for the InitialSize setting is 20% of the total messages
a topic is expected to have, with IncrementSize being set to 10% of the
total messages. This will minimize the number SOW size extensions while
converging to a storage efficiency greater than 90%.

The RecordSize trade-offs are unique to the InitialSize and
IncrementSize configuration discussed previously. A RecordSize that is
too large results in space which will be wasted in each record. A RecordSize
value which is too small and will result in AMPS using more CPU cycles manag-
ing space within the SOW.

If performance is critical and space utilization is a lesser concern, then consider
using a RecordSize which is 2 standard deviations above your average mes-
sage size. If storage space is a greater limiting factor, then look at the sizing
histogram feature of the amps sow dump utility for guidance when sizing (see
Section 17.1 for more information).

18.3.3 Slow Clients

Clients which are unable to consume messages faster or equal to the rate
messages are being sent to them are ”slow clients”. By default, AMPS queues
messages for a slow client in memory to grant the slow client the opportunity
to catch up. However, scenarios commonly arise where a client can be ”over-
subscribed” to the point it can not consume messages as fast as messages are
being sent to it.

Within AMPS configuration there are several options to address and tune the
performance of slow clients. The first tunable parameter for slow clients is the
ClientBufferThreshold, which determines the number of bytes that can
queue up for a client before AMPS will start queueing or ”off-lining” the additional
messages to disk. This setting should be sufficiently large to hold any query
that a client could issue. Typically when AMPS prepares the messages for a
client, it is common for query results to be queued in memory but immediately
dequeued when the messages are sent to the client.

To prevent potential unbounded memory growth, by default
SlowClientDiconnect and ClientOffline are enabled
with ClientBufferThreshold set to 50MB and an offline file
size limit of 1G.

For example, if a client is expected to have a maximum query size of
30,000 messages and the average message size is 1KB, then having
ClientBufferThreshold set to 40MB would be a good initial configura-
tion. This would cap the memory consumption per client at approximately 50MB

94 Operation and Deployment

(assuming a standard 10MB of additional client-specific overhead such as filters
and subscription information.)

Once AMPS exceeds the ClientBufferThreshold of queued messages
for a client, AMPS will start enqueueing the messages to disk. AMPS writing
the messages to disk has now changed a potential unbounded memory-growth
problem into a potentially unbounded storage-growth problem. To deal with the
potential problem of a client not responding while AMPS has started enqueueing
its messages to disk, AMPS provides the ClientOfflineThreshold config-
uration parameter. This allows an AMPS administrator to tune the message
threshold which AMPS will store on disk before disconnecting a slow client. For
example, if we want to store at most 200MB of offlined data for a slow client,
then we would set the ClientOfflineThreshold to 200MB.

When using AMPS within a development environment where a
client consumer could be paused during debugging, it is often help-
ful to set the Offlining and SlowClientDisconnect thresh-
olds larger than would normally exist in a production environment,
or even turning the slow client disconnect feature off. This will
reduce or prevent AMPS from disconnecting a client while it is in
the process of testing or debugging a feature.

Listing 18.1 shows and example configuration of a Transport with
SlowClientDisconnect enabled (true). In this example, a slow client
will first start to offline messages when it falls behind by 10,000 messages
as determined by the ClientOfflineThreshold setting. The client may
continue to fall further behind, however, when the offline message queue
reaches 4MB in size the client will be disconnected. This is determined by the
ClientBufferThreshold limit which is set to 4194304.

1 <Transports>
2 <Transport>
3 <Name>fix-tcp</Name>
4 <Type>tcp</Type>
5 <InetAddr>10200</InetAddr>
6 <ReuseAddr>true</ReuseAddr>
7 <MessageType>nvfix</MessageType>
8 <ClientBufferThreshold>4194304</ClientBufferThreshold>
9 <ClientOffline>enabled</ClientOffline>

10 <ClientOfflineThreshold>10000</ClientOfflineThreshold>
11 <SlowClientDisconnect>true</SlowClientDisconnect>
12 </Transport>
13 </Transports>

Listing 18.1: Example of FIX Transport with Slow Client Configuration

When monitoring for slow clients, a good place to look is in the
queue depth out or in the queue bytes out parameters which are

18.3 Best Practices 95

tracked for each client in the monitoring interface. These parame-
ters are located in /amps/instance/clients/*/queue depth out or in
/amps/instance/clients/*/queued bytes out where the * is the client
being monitored. If the queued bytes out or queue depth out values con-
tinually increase and a client notices that they have fallen behind, then that
client should be disconnected. Additionally, if this happens repeatedly, then
investigate proper usage of the SlowClientDisconnect functionality within
AMPS using the guidelines listed previously, or examine the selectivity of the
filters to improve consumption and performance of the client.

18.3.4 Minidump

AMPS includes the ability to generate a minidump file which can be used
in support scenarios to attempt to troubleshoot a problematic instance. The
minidump captures information prior to AMPS exiting and can be obtained much
faster than a standard core dump (see Section 18.2.1 for more configuration
options). By default the minidump is configured to write to /tmp, but this can be
changed in the AMPS configuration by modifying the MiniDumpDirectory.

Generation of a minidump file occurs in the following ways:

1. When AMPS detects a crash internally, a minidump file will automatically
be generated.

2. When a user clicks on the minidump link in the
amps/instance/administrator link from the administrator console
(see Section D.2 for more information).

3. By sending the running AMPS process the SIGQUIT signal.

4. If AMPS observes a single stuck thread for 60 seconds, a minidump will
automatically be generated. This should be sent to AMPS support for
evaluation along with a description of the operations taking place at the
time.

Chapter 19
Monitoring Interface

AMPS includes a monitoring interface which is useful for examining many
important aspects about an AMPS instance. This includes health and monitoring
information for the AMPS engine as well as the host AMPS is running on.
All of this information is designed to be easily accessible to make gathering
performance and availability information from AMPS easy.

For a reference regarding the fields and their data types available in the AMPS
monitoring interface, see Appendix D.

19.1 Configuration

The AMPS monitoring interface is defined in the configuration file used on AMPS
start up. Below is an example configuration of the Admin tag.

1 <!-- Configure the admin/stats HTTP server -->
2 <Admin>
3 <FileName>stats.db</FileName>
4 <InetAddr>localhost:8085</InetAddr>
5 <Interval>10s</Interval>
6 </Admin>

In this example localhost is the hostname and 8085 is the port assigned to
the monitoring interface. This chapter will assume that

http://localhost:8085/

is configured as the monitoring interface URL.

The Interval tag is used to set the update interval for the AMPS monitoring
interface. In this example, statistics will be updated every 10 seconds.

19.2 Time Range Selection 97

It is important to note that by default AMPS will store the moni-
toring interface database information in system memory. If the
AMPS instance is going to be up for a long time, or the monitoring
interface statistics interval will be updated frequently, it is strongly
recommended that the FileName setting be specified to allow
persistence of the data to a local file. See Section C.3.2 for more
information.

The administrative console is accessible through a web browser, but also
follows a Representational State Transfer (RESTful) URI style for programmatic
traversal of the directory structure of the monitoring interface.

The root of the AMPS monitoring interface URI contains two child resources -
the host URI and the instance URI - each of which is discussed in greater
detail below. The host URI exposes information about the current operating
system devices, while the instance URI contains statistics about a specific
AMPS deployment.

19.2 Time Range Selection

AMPS keeps a history of the monitoring interface statistics, and allows that data
to be queried. By selecting a leaf node of the monitoring interface resources, a
time based query can be constructed to view a historical report of the information.
For example, if an administrator wanted to see the number of messages per
second consumed by all processors from midnight UTC on October 12, 2011
until 23:25:00 UTC on October 10, 2011, then pointing a browser to

http://localhost:8085/amps/instance/processors/all/
messages received per sec?t0=20111129T0&t1=20111129T232500

will generate the report and output it in the following plain text format (note:
entire dataset is not presented, but is truncated).

20111130T033400,0
20111130T033410,0
20111130T033420,0
20111130T033430,94244
20111130T033440.000992,304661
20111130T033450.000992,301078
20111130T033500,302755
20111130T033510,308922
20111130T033520.000992,306177
20111130T033530.000992,302140
20111130T033540.000992,302390
20111130T033550,307637
20111130T033600.000992,310109
20111130T033610,309888

98 Monitoring Interface

20111130T033620,299993
20111130T033630,310002
20111130T033640.000992,300612
20111130T033650,299387

All times used for the report generation and presentation are ISO-
8601 formatted. ISO-8601 formatting is of the following form:
YYYYMMDDThhmmss, where YYYY is the year, MM is the month,
DD is the year, T is a separator between the date and time, hh is
the hours, mm is the minutes and ss is the seconds. Decimals are
permitted after the ss units.

The date-time range can be used with the plain text (html), comma-
separated (csv) and XML formats - which are discussed below.

19.3 Output Formatting

The AMPS monitoring interface offers several possible output formats to ease
the consumption of monitoring reporting data. The possible options are XML,
CSV and RNC output formats - each of which is discussed in more detail below.

19.3.1 XML Document Output

All monitoring interface resources can have the current node, along with all child
nodes list its output as an XML document by appending the .xml file extension
to the end of the resource name. For example if an administrator would like to
have an XML document of all of the currently running processors - including
all the relevant statistics about those processors - then the following URI will
generate that information:

http://localhost:8085/amps/instance/processors/all.xml.

The document that is returned will be similar to the following:

1 <amps>
2 <instance>
3 <processors>
4 <processor id="all">
5 <bytes_published>776198025</bytes_published>

19.3 Output Formatting 99

6 <bytes_published_per_sec>2561190</←↩
bytes_published_per_sec>

7 <client_publishes>4372952</client_publishes>
8 <client_publishes_per_sec>14430</←↩

client_publishes_per_sec>
9 <description>AMPS Aggregate Processor Stats</←↩

description>
10 <last_active>271542</last_active>
11 <matches_found>4372952</matches_found>
12 <matches_found_per_sec>14430</←↩

matches_found_per_sec>
13 <messages_received>69900009</messages_received>
14 <messages_received_per_sec>229998</←↩

messages_received_per_sec>
15 </processor>
16 </processors>
17 </instance>
18 </amps>

Appending the .xml file extension to any AMPS monitoring interface resource
will generate the corresponding XML document.

19.3.2 CSV Document Output

Similar to the XML document output discussed above, the .csv file extension
can be appended to any of the leaf node resources to have a CSV file generated
to examine those values. This can also be coupled with the time range selection
to generate reports. See Section 19.2 for more details on time range selection.

Below is a sample of the .csv output from the monitoring interface from the
following URL:

http://localhost:8085/amps/instance/processors/all/
messages received per sec.csv?t0=20111129T0

This resource will create a file with the following contents:

20111130T033400,0
20111130T033410,0
20111130T033420,0
20111130T033430,94244
20111130T033440.000992,304661
20111130T033450.000992,301078
20111130T033500,302755
20111130T033510,308922
20111130T033520.000992,306177
20111130T033530.000992,302140
20111130T033540.000992,302390
20111130T033550,307637
20111130T033600.000992,310109

100 Monitoring Interface

20111130T033610,309888
20111130T033620,299993
20111130T033630,310002
20111130T033640.000992,300612
20111130T033650,299387
20111130T033700.000992,304548

19.3.3 RNC Document Output

AMPS supports generation of an XML schema via the Relax NG Compact (RNC)
specification language. To generate an RNC file, enter the following URL in
a browser http://localhost:port/amps.rnc and AMPS will display the
RNC schema.

To convert the RNC schema into an XML schema, first save the RNC output to
a file:

%> wget http://localhost:9090/amps.rnc

The output can then be converted to an xml schema using trang (available at
http://code.google.com/p/jing-trang/) with

trang -I rnc -O xsd amps.rnc amps.xsd

Chapter 20
High Availability

High Availability in AMPS is provided through a primary site replication mech-
anism. The ”High Availability” chapter discusses how replication works within
AMPS, demonstrates how messages flow in a high availability configuration,
and then describes a few possible scenarios where AMPS replication can be
deployed to minimize downtime and increase the reliability of AMPS. AMPS
replication can also be used to push data to AMPS instances in other regions
to improve the response times of downstream clients in higher latency environ-
ments.

20.1 Transaction Log

AMPS has a transaction log that can be used to store messages for later replay
or for replication between AMPS instances. The transaction log configuration
can contain topics and content filters for messages that should be persisted
to the transaction log. Each message stored to the transaction log is given a
unique bookmark that specifies it’s position within the transaction log.

<TransactionLog>
<JournalDirectory>./journal</JournalDirectory>
<MinJournalSize>10MB</MinJournalSize>

</TransactionLog>

When the transaction log is enabled, clients can request a replay of messages
in the transaction log by issuing a subscribe command and providing a
Bookmark . The replay will start on the message after the bookmark, or at the
first stored transaction if the epoch bookmark ”0” is used.

102 High Availability

An epoch bookmark can be used as the bookmark during the
logon process which will replay the transaction log from the begin-
ning. Use of the epoch is accomplished by using the bookmark
number 0 (zero) when issuing the logon command.

While there are similarities between a bookmark subscription used
for replay and a SOW query, the transaction log and SOW are
independent features that can be used separately.

20.2 Replication

Messages stored to a transaction log can be replicated to downstream AMPS
instances. AMPS supports two forms of replication links: synchronous and
asynchronous which control when publishers of messages are sent persisted
acknowledgments.

AMPS won’t return a persisted acknowledgment to the publisher for a mes-
sage until the message has been stored to the transaction log, SOW, and
all downstream synchronous replication destinations. See Figure 20.1 and
Figure 20.2 for a comparison between synchronous and asynchronous
replication and what it means to the delivery of persisted acknowledgments
back to the publisher.

In synchronous replication, as in figure Figure 20.1, the persisted acknowl-
edgment isn’t returned to the publisher until after the downstream secondary
AMPS instance has acknowledged that it persisted the message.

20.2 Replication 103

Figure 20.1: Synchronous Persistence Acknowledgment

In asynchronous replication, the primary is free to send the persisted ac-
knowledgment back to the publisher as soon as the message is safely persisted
to the transaction log and SOW, when configured, as in figure Figure 20.2.

104 High Availability

Figure 20.2: Asynchronous Persistence Acknowledgment

20.3 Bookmarks

Bookmarks are unique identifiers that map to individual transactions in the
transaction log. Downstream subscribers will see a bookmark field attached as
part of the message header of returned messages matching their subscriptions.
The bookmark will only be included in messages that have been stored to the
transaction log. This allows a subscriber to disconnect from AMPS, reconnect
at a later time and then subscribe again passing in bookmark . This will inform
the AMPS engine that the client would like to resume from point of the last
message that matched its subscription.

20.4 Publishing for High Availability

Publishing in a high availability environment in AMPS has a few unique qual-
ities when compared to publishing in a non-replicated configuration. Initially
when a publisher issues a logon command to AMPS, the returned ack mes-
sage will contain a SeqNo . The SeqNo is used to inform the publisher of the
monotonically increasing sequence number AMPS last saw while messages
were published. The publisher then uses that SeqNo to increment and publish
additional messages into AMPS.

As the publisher is publishing messages, AMPS will return Ack messages back
to the publisher, however there is not a one-to-one relationship of messages
published to ack messages returned. AMPS will withhold acknowledging these

20.4 Publishing for High Availability 105

messages immediately, and will instead send a single ack message which
corresponds to the SeqNo of the most recent persist message. This single
ack serves to imply that AMPS has persisted and acknowledged all messages
with a SeqNo which is less than the SeqNo of the acknowledged message.
This network conserving process of minimizing ack messages is known as
conflation. This process is illustrated in Figure 20.3.

Figure 20.3: Persisted Ack strategy.

While a publisher is waiting for a conflated ack message to be
returned, the publisher is responsible for saving all messages
which have been sent to AMPS, but have not yet received an ack
message.

As described in the Replication section, when a publisher receives an ack with
a status of persisted, this means the message has been persisted to the local
sow, transaction log at a minimum (async replication) or it has been persisted
to all downstream replication destinations (sync replication). When a message
has been persisted to all replication clients, it is referred to as ”fully persisted.”

106 High Availability

In some cases, publishing messages with a SeqNo that AMPS has seen before
can result in an ack message confirming that the message was a duplicate.
This message implies that the message has already been fully persisted, and
AMPS has not taken any action on this message with regard to updating the
message being persisted.

20.5 Subscribing for High Availability

When subscribing in a High Availability environment where AMPS has a Trans-
action Log configured, it is the responsibility of the subscribing client to keep
track of the BkMrk of all incoming messages. A bookmark is used when a client
is forced to reconnect, logon and subscribe again. If the client has the bookmark
form the last message it received AMPS will replay the transaction log from
the message associated with the bookmark up to the most recent message
persisted in the transaction log. After the transaction log has been replayed, the
subscriber will be rejoined with the subscription message flow.

Once a client has subscribed and caught up with the messages which are being
replayed from the transaction log, AMPS provides two unique ways of rejoining
a client to the subscription message flow. The default behavior for a subscription
in a high availability environment - known as a ”tail”, since it acts like the UNIX
”tail” command on the transaction log - is for AMPS to send messages to a client
once those messages have been persisted to the transaction log.

The advantage of the ’tail’ approach is that a subscribing client
will never miss a message delivery, but there is an increased
latency in that the client will have to wait for matching subscribed
messages to commit to the transaction log.

An alternate subscription type is a live subscription where AMPS will send the
messages to the subscribing client before they are persisted in the transaction
log. To configure this, a subscription command is created with an Options
field set to live. A live subscription has the benefit of reducing the latency of
a message between the publisher sending the message and the client receiving
the message, however there is risk associated with this type of subscription.
This risk is discussed below.

20.5.1 Potential for Risk During a Live Subscription

As already noted, the transaction log stores the ordering of the messages,
so under normal, non-fail-over cases subscriptions will always see the same
messages in the same order.

The hazards of the live subscription come into play during a fail-over. They
can have re-ordering issues as well as duplicate and/or missing messages for

20.5 Subscribing for High Availability 107

any transaction that was sent over the live subscription to your client ahead
of it being durably persisted to the AMPS transaction log.

For this scenario we will assume there are two live bookmark subscriptions
on a single client: Sub1 and Sub2.

There are also two publishers: one that publishes messages A1. . .A1000, and
another which publishes messages B1. . .B1000. These publishers will be called
Publisher A and Publisher B, respectively. Once the two publishers have
completed, the result is that 2000 messages were published in total. While
unlikely in reality, we are going to assume the publishers are perfectly timed
so that AMPS processes the transactions and writes them to the topics in
alternating order: A1, B1, A2, B2,. . .,A1000, B1000.

AMPS sends all 2000 messages to Sub1 and Sub2. However, at some point
AMPS is brought down while attempting to write message A501 to the trans-
action log, it follows that AMPS fails to write all remaining messages to the
transaction log. AMPS is then restarted and has messages A1 through B500
safely in its transaction log. At this point any one of the three following scenarios
are possible.

Scenario 1 - Subscribers reconnect first

The subscribers Sub1 and Sub2 re-subscribe with the bookmark that came
in on B1000. AMPS does not know about this bookmark yet, so it places the
subscriptions at the last transaction in the transaction log - message B500 and
makes Sub1 and Sub2 a live subscription.

Next, the publishers re-connect and re-publish the records missing from AMPS
A501. . .B1000. This causes the subscribers to receive A501. . . B1000 again.
To further complicate things, the duplicated messages could be in a different
order given the timing between the publishers.

Scenario2 - Publisher A reconnects first

Publisher A connects, logs on and is sent a SeqNo of A500, which causes
Publisher A to re-publish the missing messages into AMPS A501. . .A1000.

The subscribers Sub1 and Sub2 re-subscribe with the bookmark that came
in on B1000. AMPS does not know about this bookmark yet, so it places the
subscriptions at the last transaction in the transaction log - A1000 - and makes
Sub1 and Sub2 a live subscription.

Publisher B re-connects, logs on and is sent a SeqNo of B500, which causes
Publisher B to re-publish the missing messages into AMPS B501. . .B1000.
The subscribers receive B501. . .B1000 again, however it is important to note
they do not receive A501. . .A1000 again.

108 High Availability

Scenario3 - Publisher B reconnects first

Publisher B connects, logs on and is sent a SeqNo of A500, which causes
Publisher B to re-publish the missing messages into amps B501. . .B1000.

The subscribers Sub1 and Sub2 re-subscribe with the bookmark that came in on
B1000. AMPS recognizes this bookmark, so it places the subscriptions at that
point in the transaction log. Publisher A re-connects, logs on and receives a
SeqNo of A500 which prompts it to re-publish messages A501. . .A1000. This
causes Sub1 and Sub2 to receive messages A501. . .A1000 again.

20.5.2 Alternate Scenario Demonstrating Live Subscription

For this scenario, we will assume a single publisher named Pub, which is
publishing alternating mess sages A1, B1, A2, B2,. . ., A1000, B1000.
Each of these messages are being published to different topics. In this scenario
it is important to point out that within AMPS, the ordering is guaranteed by the
store and forward mechanism on the publisher.

Next, a single client connects, logs on and creates two live bookmark subscrip-
tions, each on a separate topic - A and B. At some point during this subscription,
AMPS is shutdown and restarted.

Once AMPS restarts and the subscribing client attempts to reconnect, logon and
re-subscribe with the bookmark of the last message it received, it is possible
for the subscriber’s bookmark could be ahead of AMPS transaction log. In
this case, AMPS has not seen the bookmark requested by the subscriber, so
the subscriber will be immediately joined with the live stream of messages.
This operation is safe since the publisher is guaranteeing the same order of
messages.

If there is the possibility of the publisher(s) reconnecting and re-
publishing messages in an order that is different than what was
originally sent before AMPS was restarted, then it is recommended
that a subscribing client implements one of the BookmarkStore
interfaces. The BookmarkStore interface is covered in each of
the language Developer Guides, available with the AMPS installa-
tion documentation.

20.6 Deployment Examples

There are a varied number of use cases and deployment possibilities for AMPS,
so the three most common deployments will be covered here. Before discussing

20.6 Deployment Examples 109

some of the variations in deployments, it’s important to discuss what all of these
unique instances have in common.

In all deployments of AMPS, a message is considered persisted if and only
if it has been committed to the transaction log, SOW and all down stream
synchronous replication destinations.

Persisted acknowledgments have the ability to be conflated (also called ”mes-
sage conflation”). In this context conflation means that a single message can
be used to describe more than one message. For example, if a publisher has
published 1,000 messages, sequentially numbered 1 through 1,000, and the
publisher expects a persisted acknowledgment back from each message
published, AMPS may only send an acknowledgment for message 1,000. This
conflated acknowledgment serves to notify the publisher that AMPS has re-
ceived and persisted all messages up to and including message 1,000. AMPS
can conflate the persisted acknowledgments, because it knows that the mes-
sages coming from the publisher must be monotonically increasing.

20.6.1 Single AMPS Deployment

Much of this User Guide so far has focused on the single AMPS deployment
with one or more publishers and one or more clients subscribed to the instance
(Figure 20.4 is an illustration of this configuration). While AMPS attempts to
isolate clients and publishers from any sort of failure, in this configuration if the
AMPS instance should fail, the only possible recovery is to wait for the instance
to recover. No other alternative is provided for the publisher or the clients.

Figure 20.4: Single AMPS instance

110 High Availability

20.6.2 Simple High Availability Pair

In a simple high availability configuration of AMPS, the two instance will appear
as a single instance to any publishers publishing messages or clients subscribing
to messages. One distinction between the single AMPS instance described
previously is that when a persisted acknowledgment is returned from a
publish message, it means the message has been persisted in the AMPS
primary instance and in the AMPS secondary instance.

Figure 20.5: Simple High Availability Pair

Figure 20.5 shows an example of this configuration. In this scenario, when the
publisher publishes a message to the AMPS primary instance, the message is
synchronously sent to the AMPS secondary instance (as illustrated by the dotted
line). The AMPS secondary instance returns a persisted acknowledgment
back to the AMPS primary instance. The persisted acknowledgment is then

20.6 Deployment Examples 111

returned back to the publisher - thus ensuring that the original message has
been persisted in all downstream SOW topics and/or transaction logs. This
follows the message acknowledgment process described in Figure 20.1 for a
synchronous configuration or Figure 20.2 for an asynchronous configuration.

The clients subscribed in Figure 20.5 show a two way message connection
between themselves and the primary instance of AMPS. Should the primary
instance of AMPS fail, the clients will take the fail-over path to the AMPS
secondary instance. Since the AMPS secondary instance has been kept syn-
chronized with the AMPS primary instance, the clients are able to continue
processing messages with no data loss.

Now that the concept of a replicated AMPS installation has been introduced,
it is important to take a look back at some of the architectural requirements
needed to make all the various communications work. This section will start by
examining the requirements placed on an AMPS publisher to ensure the best
possible experience with AMPS.

20.6.3 Publisher Responsibilities and Guarantees

Publisher will issue a logon command upon successfully connecting to an
AMPS instance. The logon command will contain the ClientName, a name
unique to all connected AMPS replicas that can be used to identify this publisher.
The logon command will request a return of a processed acknowledgment
message. For example, a publisher would issue the following FIX command
during a logon:

Command=logon;ClientName=Publisher01;AckType=processed;

Once AMPS receives the logon request, a processed acknowledgment mes-
sage will be returned. This response message will contain the SeqNo of the
last record persisted. If no messages have been persisted for the unique client
identifier (ClientName), then the SeqNo will be 0 (zero).

A publisher with no messages persisted by the AMPS instance will need to start
publishing with the SeqNo set to 1. The sequence number transmitted with each
publish is to be incremented by 1 for each message published. If a publisher
is in an environment where it is unable recreate the published messages, then
a persisted acknowledgment should be requested with each publish. The
publisher should then retain messages until a persisted acknowledgment
message is returned from the AMPS instance which notifies the publisher of the
last persisted message. Messages will be persisted in order, so if a publisher
receives a persisted acknowledgment with SeqNo 1000, then this can be
interpreted as the AMPS instance notifying the publisher that all messages up
to the message with SeqNo 1000 have been persisted. This process using
a single message to imply the acknowledgment of all prior unacknowledged
messages is known as conflation.

A publisher which receives a non-zero SeqNo from an AMPS instance means
messages have been persisted. In this scenario, publishers are expected to
discard messages up to and including the SeqNo returned and begin publishing

112 High Availability

messages which occurred after the discarded messages. It is possible that
AMPS will return a persisted acknowledgment which is considerably lower
than the SeqNo observed in a previously connected logon session. This
would happen if the connection between the publisher and AMPS instance
was lost before AMPS could return a persisted acknowledgment, yet AMPS
could continue persisting the records even without the connection. Messages
published with a SeqNo lower than that reported by AMPS on the logon ack
will be discarded with an error logged to the AMPS logs. Other than a small
performance penalty for sending and discarding the messages, this scenario is
idempotent.

20.6.4 Complex High Availability with Regional Replication

An example of a complex high availability deployment is one the instances of
AMPS are geographically distant from each other. In this scenario, AMPS is
being used to replicate messages from multiple publishers into a single instance
of AMPS (AMPS-A). AMPS-A is then responsible for replication to two alternate
sites, one which is reasonably close (AMPS-B) and another AMPS instance
which is over a high latency network connection (AMPS-C). AMPS-C then
replicates messages to an instance which has a high latency network (AMPS-
D). AMPS-B is also assigned to replicate incoming messages to AMPS-C to
guarantee message delivery from the publishers to AMPS-C.

AMPS-A and AMPS-B have a synchronous replication defined between the two.
This means that any publishers publishing messages to AMPS-A will not re-
ceive persisted acknowledgments until AMPS-A has received a persisted
acknowledgment from AMPS-B. AMPS-A will not wait for AMPS-C to return
a persisted acknowledgment because the replication definition between
those two instances is asynchronous. This means that AMPS-A will expect a
persisted acknowledgment from AMPS-C, but AMPS-A does not wait for the
persisted acknowledgment from AMPS-C before returning the persisted
acknowledgment to the message publisher.

20.6 Deployment Examples 113

Figure 20.6: Complex High Availability with Regional Replication

114 High Availability

20.7 Potential Points of Failure

In the example shown in Figure 20.6, there are several points of failure which
will be listed here along with possible corrective actions and overall risks.

20.7.1 Publisher Loses Connection

Corrective Action(s) Reconnecting the publisher(s) which lost connection cor-
rects this problem. Publishers will re-transmit messages which were not
acknowledged by AMPS.

Risk Messages which are re-transmitted have an associated cost to them, but
once this process has been completed AMPS and the publisher should
be able to resume normal operation. The worst case scenario is one in
which the publisher has lost all record of which messages have been ac-
knowledged and which have not. If a publisher re-transmits all messages,
the downstream AMPS instances will not re-transmit messages which
were previously acknowledged. This behavior can protect limited network
resources from a high volume of redundant published messages.

20.7.2 Primary (AMPS-A) Instance Becomes Unavailable

Corrective Action(s) Restarting the primary instance resolves this problem
in many cases. The primary instance will read its transaction log to
determine which messages have been acknowledged and which have
not. The AMPS instance will then resume re-transmission of all messages
which have not been acknowledged.

If restarting the primary AMPS instance does not resolve the issue, the
publisher(s) should be reconnected to the secondary instance of AMPS
in the replica. Publishing can resume by re-publishing all messages
which have not been acknowledged as processed . Clients should also
be migrated off of the primary AMPS instance and reconnected to the
secondary AMPS instance.

Risks The recovery time for the restarted instance, while variable, depends on
the amount of time necessary for the primary AMPS instance to read its
transaction log to recover it state. The larger the number of messages
which have been processed by AMPS, the longer the potential recovery
time. This recovery time can also cause a backlog of messages from the
publishers to accumulate while they are waiting for the AMPS instance(s)
to resume processing message.

If the primary AMPS instance is down for an extended period and the
reconnection to the secondary instance of AMPS takes an extended
period of time, then any publishers could experience upstream queuing of
messages, causing a propagation of slow message processing.

20.8 Configuration 115

If during the recovery the AMPS transaction log is corrupted, moved or
missing, the AMPS instance will consider this a catastrophic failure and
will fail to start.

20.7.3 Secondary (AMPS-B) Instance becomes Unavailable

Corrective Action(s) Restarting the secondary AMPS instance should be per-
formed similar to the process described in the previous section. If the
secondary AMPS instance cannot be restarted, then clients should re-
connect to the primary AMPS instance and resume subscriptions. Within
the primary AMPS instance, the replication link to the secondary AMPS
instance should be downgraded to asynchronous in the monitoring con-
sole. This will allow the primary AMPS instance to to send persisted
acknowledgments back to the publisher. If the secondary AMPS instance
is restarted and is able to resume message processing, then replication
will restart between the primary and secondary instances, however the
secondary AMPS instance will no prevent persisted acknowledgments
from being sent to the publisher.

Risks The risks to this scenario are the same as the previous section where
the primary AMPS instance has become unavailable.

20.7.4 AMPS-C Instance becomes Unavailable

Corrective Action(s) Restart the AMPS-C instance - this will behave in a
similar manner as the primary AMPS (AMPS-A) instance restart in the
earlier section.

Risks While the AMPS-C instance is down, clients in the second region will not
have a local instance to connect to. Additionally the the AMPS-D instance
will not be receiving messages from the AMPS-C instance.

20.7.5 AMPS-D Instance becomes Unavailable

Corrective Action(s) Restart the AMPS-D instance - this will behave in a
similar manner as the primary AMPS (AMPS-A) instance restart in the
earlier section.

Risks Clients in the alternate region will not have a local instance to connect to
while the AMPS-D instance is down.

20.8 Configuration

Configuring AMPS for a replication environment requires defining some specific
replication configuration information on both ends of an AMPS replication. This

116 High Availability

section will cover how to configure both a replication source and a replication
destination, each of which has unique requirements.

20.8.1 Replication Source

The AMPS replication source instance is configured using a Replication
section with one or more Destination sections. Each replication destination
is defined with a unique Name, the type of replication SyncType, one or more
Topic sections which will be replicated from the source to the destination, and
the destination transport Transport.

All AMPS replication instances use a proprietary transport when defining the
Type in the configuration, the amps-transport transport type, to send mes-
sages between replication instances. The amps-transport type is required
to be defined in the Transport section.

1 <AMPSConfig>
2

3 ...
4

5 <TransactionLog>
6 <JournalDirectory>./amps-A/journal</JournalDirectory>
7 <PreallocatedJournalFiles>1</PreallocatedJournalFiles

>
8 <MinJournalSize>10MB</MinJournalSize>
9 <BatchSize>128</BatchSize>

10 <Topic>
11 <Name>orders</Name>
12 <MessageType>fix</MessageType>
13 </Topic>
14 <FlushInterval>100ms</FlushInterval>
15 </TransactionLog>
16

17 <Replication>
18 <Destination>
19 <Name>B</Name>
20 <Transport>
21 <InetAddr>localhost:10005</InetAddr>
22 <Type>amps-replication</Type>
23 </Transport>
24 <Topic>
25 <Name>orders</Name>
26 <MessageType>fix</MessageType>
27 </Topic>
28 <SyncType>sync</SyncType>
29 </Destination>
30 </Replication>
31

32 ...

20.8 Configuration 117

33

34 </AMPSConfig>

Listing 20.1: Replication Source Example

20.8.2 Replication Destination

An AMPS instance that receives replicated messages must define a Transport
with which to receive replicated messages.

On the replication destination instance, messages are delivered over a sync
replication, then a TransactionLog must be defined. An replication desti-
nation will maintain the last message it has received and upon recovery will
inform the replication source where to begin replication. It is possible that some
message might be duplicated because the recording of the last received mes-
sage may be delayed from what has actually been delivered from the replication
source and published to subscribers.

It is important to note that when implementing an async repli-
cation instance without a TransactionLog, re-sync with an up-
stream instance can potentially lead to delivery of duplicated
messages.

Configuring a TransactionLog with replication destinations requires that
topic filtering criteria be inclusive of all messages that might be replicated.
For example, if Topic A is replicated, then Topic A must be specified in the
TransactionLog section. It is perfectly fine to replicate a subset of messages
that are stored in the transaction log but this does not work in reverse, i.e.
replicated messages cannot be sent unless they are written to the transaction
log.

1 ...
2

3 <Transports>
4 <Transport>
5 <Name>amps-replication</Name>
6 <Type>amps-replication</Type>
7 <InetAddr>localhost:10005</InetAddr>
8 <ReuseAddr>true</ReuseAddr>
9 </Transport>

10 </Transports>
11

12 <TransactionLog>
13 <JournalDirectory>./amps-B/journal/B/</

JournalDirectory>
14 <MinJournalSize>100MB</MinJournalSize>

118 High Availability

15 <BatchSize>128</BatchSize>
16 <Topic>
17 <Name>topic</Name>
18 <MessageType>fix</MessageType>
19 </Topic>
20 </TransactionLog>
21

22 ...

Listing 20.2: Replication Destination Example

Chapter 21
Sample Use Cases

To further your understanding of AMPS, we provide some sample use cases
that highlight how multiple AMPS features can be leveraged in larger messaging
solutions. For example, AMPS is often used as a back-end persistent data store
for client desktop applications.

The provided use case shows how a client application can use the AMPS
command sow and suscribe to populate an order table that is continually
kept up-to-date. To limit redundant data from being sent to the GUI, we show
how you can use a delta subscription command. You will also see how to
improve performance and protect the GUI from over-subscription by using the
TopN query limiter along with a stats acknowledgement.

21.1 View Server Use Case

Many AMPS deployments are used as the back-end persistent store for desktop
GUI applications. Many of the features covered in previous chapters are unique
to AMPS and make it well suited for this task.

In this example AMPS will be act as a data store for an application with the
following requirements:

• allow users to query current order-state (SOW query)

• continually keep the returned data up to date by applying incremental
changes (subscribe)

For purposes of highlighting the functionality unique to AMPS, we’ll skip most of
the details and challenges of GUI development.

120 Sample Use Cases

21.1.1 Setup

For this example, let’s configure AMPS to persist FIX messages to the topic
ORDERS. We use a separate application to acquire the FIX messages from the
market (or other data source) and publish them into AMPS. AMPS accumulates
all of the orders in its SOW persistence, making the data available for the GUI
clients to consume.

Figure 21.1: AMPS View Server Deployment Configuration

21.1.2 SOW Query and Subscription

The GUI will enable a user to enter a query and submit it to AMPS. If the
query filter is valid, then the GUI displays the results in a table (aka ”grid”) and
continually applies changes as they are published from AMPS to the GUI. For
example, if the user wants to display active orders for Client-A, then they
may use a query similar to this:

/11 = 'Client-A' AND /39 IN (0, 'A')

This filter matches all orders for Client-A that have FIX tag 39 (the FIX order
status field) as 0 (’New’) or ’A’ (’Pending New’).

From a GUI client, we want to first issue a query to pull back all current orders
and, at the same time, place a subscription to get future updates and new orders.
AMPS provides the sow and subscribe command for this purpose.

A more realistic scenario may involve a GUI Client with multiple
tables, each subscribing with a different AMPS filter, and all of
these subscriptions being managed in a single GUI Client. A
single connection to AMPS can be used to service many active
subscriptions if the subscription identifiers are chosen such that
they can be demultiplexed during consumption.

21.1 View Server Use Case 121

The GUI issues the sow and subscribe command, specifying a topic of
ORDERS and possibly other filter criteria to further narrow down the query results.
Once the sow and subscribe command has been received by AMPS, the
query returns to the GUI all messages in the SOW that, at the moment, match
the topic and content filter. Simultaneously, a subscription is placed to
guarantee that any messages not included in the initial query result will be sent
after the query result.

The GUI client then receives a group begin message from AMPS, signaling
the beginning of a set of records returned as a result of the query. Upon
receiving the initial SOW query result, this GUI inserts the returned records into
the table, as shown in Figure 21.2. Every record in the query will have assigned
to it a unique SowKey that can be used for future updates.

The receipt of the group end message serves as a notification to the GUI that
AMPS has reached the end of the initial query results and going forward all
messages from the subscription will be live updates.

Figure 21.2: AMPS GUI Instance With sow and subscribe

Once the initial SOW query has completed, each publish message received
by the GUI will be either a new record or an update to an existing record. The
SowKey sent as part of each publish message is used to determine if the
newly published record is an update or a new record. If the SowKey matches
an existing record in the GUI’s order table, then it is considered an update and
should replace the existing value. Otherwise, the record is considered to be a
new record and can be inserted directly into the order table.

For example, assume there is an update to order C that changes the order
status (tag 39) of the client’s ORCL order from ’A’ to 0. This is shown below in
Figure 21.3.

122 Sample Use Cases

Figure 21.3: AMPS Message Publish Update

21.1.3 OOF Processing

Let’s take another look at the original filter used to subscribe to the ORDERS
SOW topic. A unique case exists if an update occurs in which an ORDER record
status gets changed to a value other than 0 or ’A’. One of the key features
of AMPS is oof processing, which ensures that client data is continually kept
up-to-date. OOF processing is the AMPS method of notifying a client that a new
message has caused a SOW record’s state to change, thus informing the client
that a message which previously matched their filter criteria no longer matches
or was deleted. For more information about oof processing, see the Out of
Focus Message Processing (OOF) chapter.

When such a scenario occurs, AMPS won’t send the update over a normal
subscription. If OOF processing is enabled within AMPS by specifying the
SendOOF header option for this subscription, then updates will occur when
previously matching records no longer match due to an update, expiration, or
deletion.

For example, let’s say the order for MSFT has been filled in the market and the
update comes into AMPS. AMPS won’t send the published message to the
GUI because the order no longer matches the subscription filter; AMPS instead
sends it as part of an oof message. This happens because AMPS knows that
the previous matching record was sent to the GUI client prior to the update.
Once an oof message is received, the GUI can remove the corresponding
order from the orders table to ensure that users see only the up-to-date state of
the orders which match their filter.

21.1.4 Conclusion and Next Steps

In summary, we’ve shown how a GUI application can use the
sow and subscribe command to populate an order table, which is then con-
tinually kept up-to-date. AMPS can create further enhancements, such as those

21.1 View Server Use Case 123

Figure 21.4: AMPS OOF Processing

described below, that improve performance and add greater value to a GUI
client implementation.

sow and delta subscribe

The first improvement that we can make is to limit redundant data being sent
to the GUI, by placing a sow and delta subscribe command instead of a
sow and subscribe command. The sow and delta subscribe command,
which works with the FIX message type, can greatly reduce network congestion
as well as decrease parsing time on the GUI client, yielding a more responsive
end-user experience.

With a delta subscription, AMPS Figure 21.3 sends to the GUI only the values
that have changed: C:39=0 instead of all of the fields that were already sent
to the GUI during the initial SOW query result. This may seem to make little

124 Sample Use Cases

difference in a single GUI deployment; but it can make a significant difference
in an AMPS deployment with hundreds of connected GUI clients that may be
running on a congested network or WAN.

TopN and Stats

We can also improve client-side data utilization and performance by using a
TopN query limiter with a stats acknowledgment, which protects the GUI from
over-subscription.

For example, we may want to put a 10,000 record limit on the initial query
response, given that users rarely want to view the real-time order state for such
a large set. If a TopN value of 10000 and an AckType of stats is used when
placing the initial sow and subscribe command, then the GUI client would
expect to receive up to 10,000 records in the query result, followed by a stats
acknowledgment.

The stats is useful for tracking how many records matched and how many
were sent. The GUI client can leverage the stats acknowledgment metrics to
provide a helpful error to the user. For example, in a scenario where a query
matched 130,000 messages, the GUI client can notify the user that they may
want to refine their content filter to be more selective.

Appendix A
Header Field Reference

A.1 FIX Message Header - Sorted by Value

FIX Header Field Name
20000 Command
20001 CommandId
20002 ClientName
20003 UserId
20004 TransmissionTime
20005 Topic
20006 Filter
20007 MessageType
20008 AckType
20009 SubscriptionId
20012 Expiration
20013 SendSubscriptionIDs
20014 DataOnly
20015 Heartbeat
20016 TimeoutInterval
20017 GracePeriod
20018 Status
20019 QueryID
20020 SendOutOfFocus
20021 LogLevel
20022 UseNamespaces
20023 BatchSize
20025 TopNRecordsReturned

126 Header Field Reference

FIX Header Field Name
20029 SendEmpty
20031 MaximumMessages
20032 SowKeys
20033 SendKeys
20036 Sequence
20037 Bookmark
20038 Password
20054 RecordsDeleted
20055 RecordsReturned
20056 TopicMatches
20057 Matches
20058 MessageLength
20059 SowKey
20060 GroupSequenceNumber
20061 SubscriptionIds
20062 Reason
20063 MessageID

Table A.1: FIX Header Fields - sorted by FIX Value

A.2 FIX Message Header - Sorted by Name

FIX Header Field Name
20008 AckTyp
20037 BkMrk
20023 BtchSz
20002 ClntName
20000 Cmd
20001 CmdId
20014 DatOnly
20012 Expn
20006 Fltr
20017 GrcPrd
20060 GrpSqNum
20015 Hrtbt
20021 LogLvl
20057 Matches
20063 MsgId
20058 MsgLen

A.3 XML Message Header - Sorted by Name 127

FIX Header Field Name
20007 MsgTyp
20031 MxMsgs
20038 PW
20019 QId
20062 Reason
20054 RecordsDeleted
20055 RecordsReturned
20036 Seq
20029 SndEmpty
20033 SndKeys
20020 SndOOF
20013 SndSubIds
20059 SowKey
20032 SowKeys
20018 Status
20009 SubId
20061 SubIds
20016 TmIntvl
20025 TopN
20056 TopicMatches
20005 Tpc
20004 TxmTm
20022 UseNS
20003 UsrId

Table A.2: FIX Header Fields - sorted by Name

A.3 XML Message Header - Sorted by Name

XML Header Field Name
AckTyp AckType
BkMrk Bookmark
BtchSz BatchSize
ClntName ClientName
Cmd Command
CmdId CommandId
DatOnly DataOnly
Expn Expiration
Fltr Filter

128 Header Field Reference

XML Header Field Name
GrcPrd GracePeriod
GrpSqNum GroupSequenceNumber
Hrtbt Heartbeat
LogLvl LogLevel
Matches Matches
MsgId MessageID
MsgLen MessageLength
MsgTyp MessageType
MxMsgs MaximumMessages
PW Password
QId QueryID
Reason Reason
RecordsDeleted RecordsDeleted
RecordsReturned RecordsReturned
Seq Sequence
SndEmpty SendEmpty
SndKeys SendKeys
SndOOF SendOutOfFocus
SndSubIds SendSubscriptionIDs
SowKey SowKey
SowKeys SowKeys
Status Status
SubId SubscriptionId
SubIds SubscriptionIds
TmIntvl TimeoutInterval
TopN TopNRecordsReturned
TopicMatches TopicMatches
Tpc Topic
TxmTm TransmissionTime
UseNS UseNamespaces
UsrId UserId

Table A.3: XML Header Fields - sorted by Name

A.4 Header Fields - Sorted by Name

Name Definition
AckType Acknowledgement type for the given command.

Type: any combination of: received, processed,
completed, stats

A.4 Header Fields - Sorted by Name 129

Name Definition
BatchSize Specifies the number of messages that are batched

together when returning a query result.
Type: integer (default is 1)

Bookmark A client originated identifier used to mark a location
in journaled messages. See chapter Topic Replicas
for more information.
Type: string

ClientName Used to identify a client. Useful for publishers that
wish to identify the source of a publish, client status
messages and for client heartbeats. Can be set with
logon command.
Type: string

Command Command to be executed.
Type: one of: publish, delta publish,
delta subscribe, subscribe,
sow, sow and delta subscribe,
sow and subscribe, sow delete,
unsubscribe, heartbeat, start timer,
stop timer, logon,

CommandId Client specified command id. The CmdId is returned
by the engine in response to client commands.
Type: string

DataOnly If true, only send raw data to subscriber for a match-
ing publish message, i.e. do not include SOAP enve-
lope.
Type: boolean (true or false)

Expiration Publish message expiration time if used in publish.
Type: integer (seconds)

Filter Content filter expression
Type: string, should wrap in CDATA

GracePeriod Grace period after heartbeat interval is exceeded
before client is considered in error state.
Type: integer (milli seconds)

GroupSequenceNumber Group Sequence Number returned with each batch
message of an SOW response.
Type: integer

Heartbeat Heartbeat command
Type: one of: start,stop,beat

LogLevel Set the log level
Type: one of: info,none

Matches Returned in the ack to an SOW query indicating
number of matches
Type: integer

MaximumMessages Specifies the maximum number of messages within
a batch publish.
Type: integer greater than zero

130 Header Field Reference

Name Definition
MessageID Set by AMPS engine to tag every incoming message.

Type: string, eg: MAMPS-XYZ
MessageLength Sent with FIX formatted message data to indicate

the number of bytes used by the message body.
Type: integer

MessageType Message transport type
Type: string, one of xml, fix, nvfix

Password Password used for authenticating with an AMPS
server.
Type: string

QueryID SOW Query identifier set by client to identify a query.
Type: string

Reason Reason indicates textual failure message when ack
message returns a Status of failure.
Type: string

RecordsDeleted Used in conjunction with the stats ack, this is the
number of records deleted from the SOW when issu-
ing a sow delete command.
Type: integer

RecordsReturned Returned in the ack to an SOW query indicating
number of records in the store.
Type: integer

SendEmpty If true, empty messages that are published will be
forwarded to matching subscriptions.
Type: boolean (true or false) default is true

SendKeys Option to instruct AMPS that a client would like to
receive the SowKey(s) back.
Type: boolean

SendOutOfFocus If true, Out-of-Focus messages are sent for the
SOW query.
Type: boolean (true or false)

SendSubscriptionIDs If false, subscription identifiers will not be sent for
a matched message.
Type: boolean (true or false)

Sequence An integer, 1 or greater, corresponding to the publish
message sequence number. For more information
see Chapter 13 on replication.
Type: integer

SowKey An SowKey will accompany each message returned
in an SOW batch, for XML it will be contained in
the "Msg" section. A SowKey may also be added
to messages coming in on a subscription when the
published message matches a record in the SOW.
Type: unsigned long

A.4 Header Fields - Sorted by Name 131

Name Definition
SowKeys Comma separated list of List of SOW Key integer

integers.
Type: integers

Status Used to indicate client status when client is being
monitored for heartbeats.
Type: one of: stopped, alive, timed out,
error

SubscriptionId The subscription identifier set by server when pro-
cessing a subscription.
Type: string, eg: SAMPS-XYZ

SubscriptionIds Comma separated list of SubIds sent from AMPS
engine to identify which client subscriptions match a
given publish message.
Type: string

TimeoutInterval Used in conjunction with the heartbeat interval to set
the timeout interval for a publisher.
Type: integer

TopNRecordsReturned The number of records to return. Note: If TopN is not
equally divisible by the BtchSz, then more records
will be returned so that the total number of records is
equally divisible by the BtchSz setting.
Type: unsigned integer

Topic Topic
Type: string

TopicMatches Returned in the ack to an SOW query indicating
number of topic matches.
Type: integer

TransmissionTime Transmission timestamp set by client.
Type: ISO-8601 datetime

UseNamespaces Use SOAP XML namespaces in all messages from
the AMPS engine.
Type: boolean (true or false)

UserId Used to identify the user id of a command.
Type: string

Table A.4: Header Fields - sorted by Name

Appendix B
Command Reference

This appendix includes a listing of all AMPS commands as well as the required
and optional parameters.

B.1 delta publish

Description

The delta publish command is a way of publishing an incremental update
to a record. If a client uses delta publish to publish an update, AMPS first
extracts the key fields from the record and does a look up for the record in the
SOW. AMPS will then apply the update to the SOW record overwriting any field
that has a newer value in the update and appending to the record any new fields
that were not previously in the SOW record.

If delta publish is used on a record that does not currently exist in the SOW
or if it is used on a topic that does not have a SOW-topic store defined, then
delta publish will behave like a standard publish command.

A delta publish is transparent to other clients and the merged record will be
forwarded to matching subscriptions.

Header Fields

Table B.1 contains the header fields available to a delta publish command.

Table B.1: Header fields used in a delta publish

Field Description
Command Command to be executed. Value: delta publish

Continued on next page

B.1 delta publish 133

TableB.1 -- continued from previous page
Field Description
Topic Topic to place a subscription with.
AckType Acknowledgment type for the given command. Value

is a comma separated list of one or more of the follow-
ing: none , received , processed , completed
or stats

CommandId If specified with an AMPS command requesting an
ack, all requested ack messages will contain the
CommandId in the ack response header.

Expiration An interval used to define the lifetime of a
delta publish message.

Sequence A monotonically increasing number used to identify
published messages in a high availability environ-
ment.

TransmissionTime An ISO-8601 datetime used to note the time the
message is sent by client.

Returns

For a delta publish message, AMPS will send acknowledgment messages
for the following AckType fields: received , processed and persisted
along with a populated Status header field describing the acknowledgment.

Table B.2 contains the AckType messages which can be returned by a
delta publish .

Table B.2: Ack types supported by delta publish

ackType Description
none No ack message is returned. This is the default

behavior.
received The delta publish message has been received.
persisted When an AMPS engine returns an ackType of

persisted this guarantees that 1) all down-
stream synchronous replication(s) all have acknowl-
edged that the message(s) have been deleted
from their respective SOW Topic(s). 2) when the
delta publish message has been sent to all avail-
able asynchronous replications.

processed AMPS has processed the message(es) to be pub-
lished to the SOW.

completed Not supported at this time.
stats Not supported at this time.

134 Command Reference

Errors

Any errors that occur during this command will be returned in the status of a
processed acknowledgment and logged to the log file. Regardless of success
or failure, the processed acknowledgment will only be returned if requested
by including processed in the AckType field.

Examples

Below are some examples of the delta publish command.

delta publish command in FIX and NVFIX

Here is an example of FIX delta publish messages that use ”;” as the field
separator and ”|” for the header separator. For this example, the SOW topic
”topic” has a key defined on /1 (all records sharing the same value for field ”1”
are defined to be the same record).

First, the following FIX record is published to AMPS using delta publish :
”1=a;2=b;3=c;”.

20000=delta_publish;20005=topic;|1=a;2=b;3=c;

Second, the following FIX record is published to AMPS using delta publish
: ”1=a;2=d;4=e;”.

20000=delta_publish;20005=topic;|1=a;2=d;4=e;

After the 2nd delta publish the SOW will contain a single record where ”1=a”
and will have the body of ”1=a;2=d;3=c;4=e;”. The ”1=a” is common to both
records and remains unchanged in the merged record. Field ”2” changes values
from ”b” to ”d” on the update. Field ”3” remains set to value ”c” and is retained
in the merged record. Finally, field ”4” is appended with value ”e” to the end of
the record leaving the merged result ”1=a;2=d;3=c;4=e;”.

FIX and NVFIX messages are the only message type supported
by delta publish .

B.2 delta subscribe 135

B.2 delta subscribe

Description

The delta subscribe command is like the subscribe command except that
subscriptions placed through delta subscribe will only receive messages
which have changed between the SOW record and the new update.

If delta subscribe is used on a record which does not currently exist in the
SOW or if it is used on a topic which does not have a SOW-topic store defined,
then delta subscribe behaves like a subscribe command.

Header Fields

Table B.3 contains the header fields available to a delta subscribe com-
mand.

Table B.3: Header fields supported by delta subscribe.

Field Description
Command Command to be executed. Value: delta publish

Topic Topic to place a subscription with.
AckType Acknowledgment type for the given command. Value

is a comma separated list of one or more of the follow-
ing: none , received , processed , completed
or stats

CommandId If specified with an AMPS command requesting an
ack, all requested ack messages will contain the
CommandId in the ack response header.

DataOnly A Boolean (true or false) to determine the type of
data sent to the subscriber. A value of true will, for
example, not include SOAP envelope.

Filter CDATA wrapped string which is used as a content
filter expression.

SendEmpty Boolean (true or false) value used to determine
whether empty messages which are published will
be forwarded to matching subscriptions. The default
value is true.

SendSubscriptionIds Boolean (true or false) subscription identifiers will
not be sent for a matched message.

TransmissionTime An ISO-8601 datetime used to note the time the
message is sent by client.

136 Command Reference

Returns

For a delta subscribe message, AMPS will send acknowledgment mes-
sages for the following AckType fields: received , processed , persisted
and stats along with a populated Status header field describing the acknowl-
edgment.

Table B.4 contains the AckType messages which can be returned by a
delta subscribe .

Table B.4: Ack types supported by delta subscribe

ackType Description
none No ack message is returned. This is the default

behavior.
received The delta subscribe message has been re-

ceived.
persisted Not supported at this time.
processed AMPS has compiled the filters for the

delta subscription message(es).
completed The query has been completed. All messages ar-

riving after the receipt of the completed acknowl-
edgment message will be from published messages,
and not from the SOW query.

stats Returns an ack message with Matches ,
TopicMatches and RecordsReturned .

Errors

Any errors that occur during this command will be returned in the status of a
processed acknowledgment and logged to the log file. Regardless of success
or failure, the processed acknowledgment will only be returned if requested by
including processed in the AckType field of the delta subscribe message
header.

Examples

Below are some examples of the delta subscribe command. The following
examples use ”;” as the field separator and ”|” as the header separator.

This first example is a FIX delta subscribe command message

20000=delta_subscribe;20005=order;20008=processed;

This command will place a subscription for all publications on the order topic.
For this example, the order topic has a SOW message key defined to be

B.3 logon 137

/1.After the subscription is placed, another client publishes a new record
1=a;2=b;3=c;:

20000=delta_publish;20005=order;|1=a;2=b;3=c;

Since the message is new and is not currently in the SOW, the full message is
sent to the subscriber: 1=a;2=b;3=c;. Finally, the publishing client publishes
the following update to the record: 1=a;2=c;4=d;:

20000=delta_publish;20005=order;|1=a;2=c;4=d;

When the SOW record is updated, the subscriber receives only the delta
2=c;4=d; because only the 2 and 4 fields differed from what was previously
in the SOW for the same record. The SOW record contains the entire record
1=a;2=c;3=c;4=d; because delta publish was used. If publish had
been used by the publishing client instead, the same result would be sent to
the subscriber, but the SOW would be left to contain the last published record
1=a;2=c;4=d; instead of the merged record.

Notes

Because two messages are only deemed the same if their message keys are
equivalent, delta subscribe will always remove the message keys. For
cases where it is necessary to know which record is which on the client side,
use the SowKey field on the matching record to disambiguate the records.

The delta subscribe command is only supported when using
the FIX and NVFIX message type.

B.3 logon

Description

To help identify clients, it is recommended that clients send a logon command
to the AMPS engine and specify a client name. This client name is used to
identify a client and does not have to be unique as the AMPS engine does not
use if for anything other than placing into the publish message for a client status
event.

138 Command Reference

Header Fields

Table B.5 contains the header fields available to a logon command.

Table B.5: Header fields supported by logon.

Field Description
Command The logon command.
ClientName A string identifier used to give a client a unique id.
AckType Acknowledgment type for the given command. Value

is a comma separated list of one or more of the
following: none , received or processed .

Bookmark The sequence ID of the last message received by the
client. Passing in a bookmark will cause AMPS to
replay the transaction log from the bookmark up to
the most recent message persisted in the transaction
log.

UserId The username passed into the AMPS authentication
and entitlement module.

Password The password passed into the AMPS authentication
and entitlement module.

Returns

A logon message which has specified an AckType of received or
processed will receive an ack message to acknowledge the message re-
ceipt. If a client requests an acknowledgment message, the header will also
contain the ClientName which was part of the original logon message.

When requested, the logon will return a processed ack which is used in
determining if a client was successfully authenticated against a server which
has an authentication module enabled. Section E.3 - AMPS Guarantees has
more information on the returns from a logon when using Authentication and
Entitlement.

Table B.6 contains the AckType messages which can be returned by a logon
command.

Table B.6: Ack types supported by logon

ackType Description
none No ack message is returned. This is the default

behavior.
received The logon message has been received.
persisted Not supported at this time.
processed AMPS has processed the logon message(es).

Continued on next page

B.4 publish 139

TableB.6 -- continued from previous page
ackType Description
completed Not supported at this time.
stats Not supported at this time.

B.4 publish

Description

The publish command is the primary way to inject messages into the AMPS
processing stream. A publish command received by AMPS will be forwarded
to other connected clients with matching subscriptions.

Header Fields

Table B.7 contains the header fields available to a publish command.

Table B.7: Header fields supported by publish

Field Description
Command Command to be executed. Value: publish
Topic Topic to place a subscription with.
AckType Acknowledgment type for the given command. Value

is a comma separated list of one or more of the follow-
ing: none , received , persisted or processed

CommandId If specified with an AMPS command requesting an
ack, all requested ack messages will contain the
CommandId in the ack response header.

Expiration An interval, in seconds, used to define the lifetime
of a publish message.

SequenceId A monotonically increasing identifier used in high
availability configurations to determine message
uniqueness across replicas.

TransmissionTime An ISO-8601 datetime used to note the time the
message is sent by client.

140 Command Reference

Returns

A client which issues a publish can request a processed acknowledgment
message, however this is not recommended as there is a significant perfor-
mance overhead associated with this. Table B.8 contains the AckType mes-
sages which can be returned by a publish .

Table B.8: Ack types supported by publish

acks Description
none No ack message is returned. This is the default

behavior.
received AMPS has received the publish message.
persisted When an AMPS engine returns an ackType of

persisted this guarantees that 1) all downstream
synchronous replication(s) all have acknowledged
that the message(s) have been delivered to their
respective SOW Topic(s). 2) when the publish
message has been sent to all available downstream
asynchronous replications.

processed AMPS has processed the publish message.
completed Not supported at this time.
stats Not supported at this time.

Errors

Any errors that occur during this command will be returned in the status of a
processed acknowledgment and logged to the log file. Regardless of success
or failure, the processed acknowledgment will only be returned if requested
by including processed in the AckType field.

Examples

Below are some examples of the publish command.

Publish command in XML

Here is an example of an XML message that when sent to AMPS will publish
the FIXML message found in the SOAP body to all clients subscribed to the
order topic.

1 <?xml version="1.0" encoding="iso-8859-1"?>
2 <SOAP-ENV:Envelope>
3 <SOAP-ENV:Header>

B.5 sow and delta subscribe 141

4 <Cmd>publish</Cmd>
5 <TxmTm>20061201-17:29:12.000-0500</TxmTm>
6 <Tpc>order</Tpc>
7 </SOAP-ENV:Header>
8 <SOAP-ENV:Body>
9 <FIXML>

10 <Order Side="2" Px="32.00"><Instrmt Sym="MSFT"/><
OrdQty Qty="100"/></Order>

11 </FIXML>
12 </SOAP-ENV:Body>
13 </SOAP-ENV:Envelope>

Listing B.1: SOAP publish example

Publish command in FIX

Here is an example of a FIX publish message that uses ”;” as the field separator,
”|” as the header separator. This message will be sent to all subscribers of the
order topic.

20000=publish;20005=order;|109=clientABCD;35=D;55=MSFT;

B.5 sow and delta subscribe

Description

A sow and delta subscribe command is used to combine the functionality
of sow and a delta subscribe command in a single command.

The sow and delta subscribe command is used to query the contents of
a SOW topic (this is the sow command) and place a subscription such that
any messages which match the subscribed SOW topic and query filter will be
published to the AMPS client (this is the delta subscribe command. As
with the delta subscribe command, publish messages which are updates
SOW records will only contain information which has changed.

If a sow and delta subscribe is issued on a record which does not currently
exist in the SOW topic, or if it is used on a topic which does not have a
SOW-topic store defined, then a sow and delta subscribe behaves like a
sow and subscribe command.

Header Fields

Table B.9 contains the header fields supported by a
sow and delta subscribe command.

142 Command Reference

Table B.9: Header fields supported by sow and delta subscribe.

Field Description
Command Command to be executed. Value:

sow and delta subscribe

Topic The SOW topic to query and subscribe to.
AckType Acknowledgment type for the given command. Value

is a comma separated string of one or more of
the following: none , received , processed ,
completed or stats .

BatchSize Number of records to return in a single sow query
result message. While the default value is 1, it is
recommended to use a higher /hdrFieldBatchSize
value, as even small increases can yield greater
performance in query result delivery.

CommandId If specified with an AMPS command requesting an
ack, all requested ack messages will contain the
CommandId in the ack response header.

DataOnly Only send raw data to subscriber for a matching
publish message if true. Removes SOAP envelope.

Filter Content filter expression.
QueryId Identifier used to identify the client’s SOW

topic query. This identifier will be added to
all messages which are a response to the
sow and delta subscribe

SendEmpty If set to true, empty published messages are for-
warded to matching subscriptions. Default is true.

SendOOF Messages which have fallen out of focus from the
subscription are sent to the client. Default is false.

SendKeys Option to instruct AMPS that the client would like to
receive the SowKey(s) back.

QueryInterval Query Interval that can be specified with a query
and will result in the query being executed with a
specified periodicity.

SendSubscriptionIds If true, subscription identifiers will be sent for a
matched message.

SubscriptionId Identifier used to identify the client’s subscrip-
tion. If no subscription is provided as part of the
sow and delta subscribe then AMPS will gen-
erate one.

TransmissionTime An ISO-8601 datetime used to note the time the
message is sent by the client.

B.5 sow and delta subscribe 143

Returns

AMPS will send acknowledgment messages for the following AckType fields:
received, processed along with a populated Status header field describing
the acknowledgment.

If the sow and delta subscribe command is successful, AMPS will return a
group begin message to notify the client that a group of messages is being
returned. Chapter 5 will provide more information about SOW topic query
behavior. Table B.10 contains the AckType messages which can be returned
by a sow and delta subscribe .

Table B.10: ack types supported by sow and delta subscribe

ackType Description
none No ack message is returned. This is the default

behavior.
received The sow and delta subscribe message has

been received.
persisted Not supported at this time.
processed AMPS has compiled the filter(s) for the

sow and delta subscribe message(es).
completed The sow and delta subscribe message has

completed the SOW portion of the command, and all
future messages will be updated based on publishes.

stats Returns an ack message with Matches ,
TopicMatches and RecordsReturned .

The stats message include three values in the header, the Matches,
TopicMatches and the RecordsReturned. These are defined below:

TopicMatches The total number of records compared across all matching
SOW topics.

Matches The number of records returned that match the topic regular
expression and the content filter. This value can be greater than
RecordsReturned in the case where the number of returned records is
limited by TopN.

RecordReturned The total number of records returned to the client, which can
be limited by the TopN header value.

Errors

Errors for a sow and delta subscribe query are either returned in the
Status field if an AckType has been defined, or the errors may be inserted
into the AMPS log.

144 Command Reference

B.6 sow and subscribe

Description

A sow and subscribe command is used to combine the functionality of sow
and a subscribe command in a single command. The sow and subscribe
command is used to query the contents of a SOW topic (this is the sow com-
mand) and place a subscription such that any messages which match the
subscribed SOW topic and query filter will be published to the AMPS client (this
is the subscribe command.

Table B.11: Header fields supported by sow and subscribe.

Field Description
Command Command to be executed. Value:

sow and subscribe

Topic The SOW topic to query and subscribe to.
AckType Acknowledgment type for the given command. Value

is a comma separated string of one or more of
the following: none , received or processed ,
completed or stats .

BatchSize Number of records to return in a single sow query
result message. While the default value is 1, it is
recommended to use a higher BatchSize value, as
even small increases can yield greater performance
in query result delivery.

CommandId If specified with an AMPS command requesting an
ack, all requested ack messages will contain the
CommandId in the ack response header.

DataOnly Only send raw data to subscriber for a matching
publish message if true. Removes SOAP envelope.

Filter Content filter expression.
Options A comma separated list of flags available to the

sow and subscribe command. Table B.13 de-
scribes the Options available for use in the
subscribe command.

QueryId Identifier used to identify the client’s SOW topic
query. This identifier will be added to all messages
which are a response to the sow and subscribe

QueryInterval Query Interval that can be specified with a query
and will result in the query being executed with a
specified periodicity.

SendSubscriptionIds If true, subscription identifiers will be sent for a
matched message.

Continued on next page

B.6 sow and subscribe 145

TableB.11 -- continued from previous page
Field Description
SubscriptionId Identifier used to identify the client’s subscrip-

tion. If no subscription is provided as part of the
sow and subscribe then AMPS will generate one.

TransmissionTime An ISO-8601 datetime used to note the time the
message is sent by the client.

Returns

AMPS will send acknowledgment messages for the following AckType fields:
received, processed along with a populated Status header field describing
the acknowledgment.

If the sow and subscribe command is successful, AMPS will return a
group begin message to notify the client that a group of messages is be-
ing returned. The SOW Queries chapter will give more information about SOW
topic query behavior.

Table B.12 contains the AckType messages which can be returned by a
sow and subscribe .

Table B.12: ack types supported by sow and subscribe

ackType Description
none No ack message is returned. This is the default

behavior.
received The sow and subscribe message has been re-

ceived.
persisted Not supported at this time.
processed AMPS has compiled the filters for the

sow and subscribe message(es).
completed The sow and subscribe message has completed

the SOW portion of the command, and all future mes-
sages will be updates based on publishes.

stats Returns an ack message with Matches ,
TopicMatches and RecordsReturned .

Table B.13 contains a list of the Options available and their definitions when
used in the AMPS command.

Table B.13: Options types supported by subscribe

Option Description
none This is the default Options type.

Continued on next page

146 Command Reference

TableB.13 -- continued from previous page
Option Description
live Tells AMPS to send messages to subscribing clients

before they have been persisted to a downstream
transaction log. The Subscribing for High Availabil-
ity chapter contains a description of how a live
subscription works in AMPS.

no empties Tells AMPS not to send empty publish messages to
matching subscriptions.

oof Send an OOF message for messages which have
fallen out of focus from the original subscription.

replace Replace the subscription associated with CmdId with
another subscription.

send keys AMPS will send the SOW keys back with matching
messages from the SOW.

The stats message include three values in the header, the Matches,
TopicMatches and the RecordsReturned. These are defined below:

TopicMatches The total number of records compared across all matching
SOW topics.

Matches The number of records returned that match the topic regular
expression and the content filter. This value can be greater than
RecordsReturned in the case where the number of returned records is
limited by TopN.

RecordReturned The total number of records returned to the client, which can
be limited by the TopN header value.

Errors

Errors for a sow and subscribe query are either returned in the Status field
if an AckType has been defined, or the errors may be inserted into the AMPS
log.

B.7 sow delete

Description

In AMPS, there are three different ways to remove records from the SOW.
The first method is to construct a publish message identical to the original
message, then change the Command field to a sow delete message. This has
the net effect of causing AMPS recreate the SowKey for the particular message,
then look up the SowKey message in the SOW and finally remove it.

B.7 sow delete 147

The other method to remove messages from the SOW is to construct a
sow delete message and pass in a comma separated list of SowKeys in
the message header which will cause all of the messages to be removed from
the SOW Topic.

The third way to remove records from the SOW is similar to the manner in which
a sow query command with a filter is performed. In this case, instead of
returning the results of the sow command, those records which match the filter
will be deleted from the SOW.

Header Fields

Table B.14 contains the header fields supported by a sow delete .

Table B.14: Header fields supported by sow delete.

Field Description
Command Command to be executed. Value: sow delete.
Topic The SOW Topic from which to delete the message(s)

from.
AckType Acknowledgment type for the given command. Value

is a comma separated list of one or more of the follow-
ing: none ,received , processed , persisted ,
completed and stats

CommandId If specified with an AMPS command requesting an
ack, all requested ack messages will contain the
CommandId in the ack response header.

SowKeys A comma separated list of unique ids to be removed.
Filter Content filter expression.

The SowKeys and Filter header fields can not be used together.
They are mutually exclusive. Using them together in the same
sow delete command will cause indeterminate results.

Returns

For a sow delete message, AMPS will send acknowledgment message,
completed and stats s for the following AckType fields: received ,
processed and persisted along with a populated Status header field de-
scribing th acknowledgment.

148 Command Reference

Table B.15: ack types supported by sow delete

ackType Description
none No ack message is returned. This is the default

behavior.
received The sow delete message has been received.
persisted When an AMPS engine returns an ackType of

persisted this guarantees that 1) all downstream
synchronous replication(s) all have acknowledged
that the message(s) have been deleted from their
respective SOW Topic(s). 2) the sow delete mes-
sage has been sent to all available downstream asyn-
chronous replications.

processed AMPS has compiled the filter(s) for the sow delete
message(es).

completed Supported for a sow delete with a filter. The
completed ack is returned when the query has com-
pleted.

stats Returns an ack message with Matches ,
TopicMatches and RecordsDeleted .

The stats message include three values in the header, the Matches,
TopicMatches and the RecordsReturned. These are defined below:

Errors

Errors which occur during a sow delete are returned as part of the
processed AckType message and recorded to the log. Typical errors in-
volved a missing topic, or a missing/invalid SowKey

Examples

Below are some examples of how to use the sow delete command in AMPS
using both the FIX message format and the SOAP XML message format.

FIX sow delete examples

In the first example, the sow delete command will delete the records with
SowKey equal to c176c6, m2210c4 and c0706a34. Each of the records will
be listed as a comma-separated items in the SowKeys header field.

20000=sow_delete;20005=order;20032=c176c6,m2210c4,←↩
c0706a34;20008=processed;

B.8 sow 149

In the next example, a FIX message will be constructed which will delete
the message which was published in Section B.4. Like that message, the ”;”
character will be used as the field separator and the ”|” character will be used
as the header separator. This message will delete the previously published
message from the all SOW topic and any downstream replicas where the
message may have been persisted.

20000=sow_delete;20005=order;|109=clientABCD;35=D;55=←↩
MSFT;

XML sow delete example

Similar to the previous FIX example, this SOAP message constructed for AMPS
will delete the message published in the example listed in Section B.4.

1 <?xml version="1.0" encoding="iso-8859-1"?>
2 <SOAP-ENV:Envelope>
3 <SOAP-ENV:Header>
4 <Cmd>sow_delete</Cmd>
5 <TxmTm>20121201-12:11:01.000-0500</TxmTm>
6 <Tpc>order</Tpc>
7 </SOAP-ENV:Header>
8 <SOAP-ENV:Body>
9 <FIXML>

10 <Order Side="2" Px="32.00"><Instrmt Sym="MSFT"/><
OrdQty Qty="100"/></Order>

11 </FIXML>
12 </SOAP-ENV:Body>
13 </SOAP-ENV:Envelope>

Listing B.2: SOAP sow delete example

Notes

Never combine the use of the SowKeys header method with the SowKey body
method. AMPS will always examine the SowKeys header message first and
delete those messages regardless of the contents of the message body.

B.8 sow

Description

The sow command is use to query the contents of a previously defined SOW
Topic. A sow command can be used to query an entire SOW Topic, or a filter
can be used to further refine the results found inside a SOW Topic. See the
State of the World (SOW) and SOW Queries chapters for more information.

150 Command Reference

Header Fields

Table B.16 contains the header fields supported by the sow command.

Table B.16: Header fields supported by sow.

Field Description
Command Command to be executed. Value: sow .
Topic The SOW Topic from which the records will be

queried.
AckType Acknowledgment type for the given command. Value

is a comma separated list of one or more of the follow-
ing: none , received , processed , completed
or stats .

CommandId If specified with an AMPS command requesting an
ack, all requested ack messages will contain the
CommandId in the ack response header.

QueryId Unique identifier which is returned as part of the
response delivered back to the client.

Filter See the Content Filtering chapter for more informa-
tion.

BatchSize Number of records to return in a single sow query
result message. While the default value is 1, it is
recommended to use a higher BatchSize value, as
even small increases can yield greater performance
in query result delivery.

Returns

When a sow message is received AMPS can return a received message
as notification that the message has arrived. When the message has been
processed, AMPS will return the processed command along with the errors if
any have occurred. Otherwise the processed will be an acknowledgment.

The results returned by a SOW are put into a sow record group by first sending a
group begin message, followed by the matching SOW records. A group end
message is used to denote the close of query results processing.

Table B.17 contains a listing of the acknowledgment messages supported by
the sow command.

Table B.17: ack types supported by sow

ackType Description
none No ack message is returned. This is the default

behavior.
Continued on next page

B.9 start timer 151

TableB.17 -- continued from previous page
ackType Description
received The sow message has been received.
persisted Not supported at this time.
processed AMPS has compiled the filter(s) for the sow mes-

sage(es).
completed The sow message has completed the SOW portion of

the command.
stats Returns statistics related to the state of the SOW

query results.

The stats message include three values in the header, the Matches,
TopicMatches and the RecordsReturned. These are defined below:

TopicMatches The total number of records compared across all matching
SOW topics.

Matches The number of records returned that match the topic regular
expression and the content filter. This value can be greater than
RecordsReturned in the case where the number of returned records is
limited by TopN.

RecordReturned The total number of records returned to the client, which can
be limited by the TopN header value.

The ordering of records returned by a SOW query is undefined.

B.9 start timer

Description

The start timer resets the AMPS client and latency statistics counter, and
starts the timer for for the client and latency statistic counter. This is used in
conjunction with stop timer to generate statistics which are published to the
AMPS log.

Header Fields

Table B.18 contains the header fields supported by the start timer com-
mand.

152 Command Reference

Table B.18: Header fields supported by start timer.

Field Description
Command Command to be executed. Value: start timer

B.10 stop timer

Description

The stop timer command is used in conjunction with the start timer .
Once a stop timer command has been issued, AMPS will write statistics to
the log file to generate a profile of the number of clients and messages observed
and processed by AMPS.

Header Fields

Table B.19 contains the header fields supported by the stop timer command.

Table B.19: Header fields supported by stop timer.

Field Description
Command Command to be executed. Value: stop timer

AckType Acknowledgment type for the given command. Only
processed is supported for this command.

CommandId If specified with an AMPS command requesting an
ack, all requested ack messages will contain the
CommandId in the ack response header.

Returns

The stop timer command can return an acknowledgment message if the
AckType is set to processed. The returned ack message will contain a
Status field which will contain any messages from AMPS.

The stop timer will return a ClientStatus message which contains the
statistics measured since the last call to the start timer command. Ta-
ble B.20 contains the AckType messages supported by the stop timer com-
mand.

Continued on next page

B.11 subscribe 153

TableB.20 -- continued from previous page
ackType Description

Table B.20: ack types supported by sow

ackType Description
none Not supported at this time.
received Not supported at this time.
parsed Not supported at this time.
persisted Not supported at this time.
processed AMPS has processed the stop timer mes-

sage(es).
completed Not supported at this time.
stats Not supported at this time.

B.11 subscribe

Description

The subscribe command is the primary way to retrieve messages from the
AMPS processing stream. A client can issue a subscribe command on a
topic to receive all published messages to that topic in the future. Additionally,
content filtering can be used to choose which messages the client is interested
in receiving.

Header Fields

Table B.21 contains the supported header fields for the subscribe command.

Table B.21: Header fields supported by subscribe.

Field Description
Command Command to be executed. Value: subscribe
Topic Topic to place a subscription with.
AckType Acknowledgment type for the given command. Value

is a comma separated list of one or more of the
following: none , received , processed , or
completed . Table B.22 describes the acknowl-
edgement messages.

CommandId If specified with an AMPS command requesting an
ack, all requested ack messages will contain the
CommandId in the ack response header.

Continued on next page

154 Command Reference

TableB.21 -- continued from previous page
Field Description
DataOnly A Boolean value (true or false) which, if true,

will only send raw data to subscriber for a matching
publish message i.e., do not include SOAP envelope.

Filter DATA wrapped string which is used as a content
filter expression.

Options A comma separated list of flags available to the
subscribe command. Table B.23 describes the
Options available for use in the subscribe com-
mand.

SendSubscriptionIds Boolean (true or false) subscription identifiers will
not be sent for a matched message.

TransmissionTime An ISO-8601 datetime used to note the time the
message is sent by client.

Returns

It is possible to specify an processed acknowledgment be sent back to the
client that issued the subscribe command. Within this processed acknowl-
edgment, a client can get back the result of placing the subscription (success
or failure) and the SubscriptionId which uniquely identifies the subscription
within AMPS. Keeping track of the SubscriptionId is useful for unsubscrib-
ing from subscriptions and issuing SOW queries.

Table B.22 contains a list of the supported AckType messages available to the
subscribe command.

Table B.22: ack types supported by subscribe

Ack Type Description
none No ack message is returned. This is the default

behavior.
received The subscribe message has been received.
persisted Not supported at this time.
processed AMPS has compiled the filter(s) for the subscribe

message(es).
completed The subscribe message has completed the SOW

portion of the command, and all future messages will
be updates based on publishes.

Table B.23 contains a list of the of Options available and their definitions in
the AMPS command.

B.11 subscribe 155

Table B.23: Options types supported by subscribe

Option Description
none This is the default Options type.
live Tells AMPS to send messages to subscribing clients

before they have been persisted to a downstream
transaction log. The Subscribing for High Availabil-
ity chapter contains a description of how a live
subscription works in AMPS.

no empties Not supported by this message type.
oof Not supported by this message type.
replace Replace the subscription associated with CmdId with

another subscription.
send keys Not supported by this messgae type.

Errors

Any errors that occur during this command will be returned in the status of a
processed acknowledgment and logged to the log file. Regardless of success
or failure, the processed acknowledgment will only be returned if requested
by including processed in the AckType field.

Examples

Below are some examples of the subscribe command.

subscribe command in XML

Here is an example of an XML message that when sent to AMPS will subscribe
to all messages on the order topic that match the following filter:

{/FIXML/Order/Instrmt/@Sym = 'IBM') AND ←↩
(/FIXML/Order/@Px >= 90.00 AND

/FIXML/Order/@Px < 91.0)}

1 <?xml version="1.0" encoding="iso-8859-1"?>
2 <SOAP-ENV:Envelope>
3 <SOAP-ENV:Header>
4 <Cmd>subscribe</Cmd>
5 <TxmTm>20061201-17:29:12.000-0500</TxmTm>
6 <Tpc>order</Tpc>
7 <AckTyp>processed</AckTyp>
8 <Fltr>
9 <![CDATA[(/FIXML/Order/Instrmt/@Sym =

10 'IBM') AND (/FIXML/Order/@Px >= 90.00 AND

156 Command Reference

11 /FIXML/Order/@Px < 91.0)]]>
12 </Fltr>
13 </SOAP-ENV:Header>
14 <SOAP-ENV:Body />
15 </SOAP-ENV:Envelope>

B.12 unsubscribe

Description

The unsubscribe command allows a client to notify amps that it no longer
wishes to receive messages related to a previous subscription. A client can issue
a unsubscribe for an individual subscription by using the SubId returned
from the subscribe command, or the user may use the all keyword to
unsubscribe from all AMPS SOW topic subscriptions.

Header Fields

Table B.24 contains the header fields supported by unsubscribe .

Table B.24: Header fields supported by unsubscribe.

Field Description
Command Command to be executed. Value: unsubscribe
SubId Subscription Id returned from AMPS to the client

when the original subscription was placed. The
keyword all can also be used to unsubscribe from
all current subscriptions for the client.

AckTyp Acknowledgment type for the given command. Value
is a comma separated list of one or more of the
following: none , received or processed .

CommandId If specified with an AMPS command requesting an
ack, all requested ack messages will contain the
CommandId in the ack response header.

Returns

An unsubscribe command will acknowledge a received when the
unsubscribe message is received and the AckTyp is set to received .
AMPS will also return an ack for a processed request.

Table B.25 contains a the supported AckType messages available to the
unsubscribe command.

B.12 unsubscribe 157

Table B.25: ack types supported by unsubscribe

ackType Description
none No ack message is returned. This is the default

behavior.
received The unsubscribe message has been received.
persisted Not supported at this time.
processed AMPS has processed the unsubscribe mes-

sage(es).
completed Not supported at this time.
stats Not supported at this time.

Appendix C
Configuration Reference

Once you have reviewed the Getting Started chapter and would like to start
configuring some of the more advanced features of AMPS, you will want to keep
this chapter handy. If you have not read Chapter 2 for the First Steps for AMPS,
please start there before reading this chapter.

C.1 AMPS Configuration Basics

The easiest way to create a custom XML configuration file for AMPS is to use the
amps config.xml file provided in the $AMPSDIR/demo directory. Listing C.1
shows a simplified sample configuration file.

1 <?xml version="1.0"?>
2 <AMPSConfig>
3

4 <Name>AMPS</Name>
5

6 <Admin>
7 <InetAddr>localhost:9090</InetAddr>
8 <FileName>./stats.db</FileName>
9 </Admin>

10

11 <Transports>
12 <Transport>
13 <Name>fix-tcp</Name>
14 <Type>tcp</Type>
15 <InetAddr>9004</InetAddr>
16 <ReuseAddr>false</ReuseAddr>
17 <MessageType>fix</MessageType>
18 </Transport>
19 <Transport>

C.1 AMPS Configuration Basics 159

20 <Name>xml-tcp</Name>
21 <Type>tcp</Type>
22 <InetAddr>9005</InetAddr>
23 <ReuseAddr>false</ReuseAddr>
24 <MessageType>xml</MessageType>
25 </Transport>
26 </Transports>
27

28 <Logging>
29 <Target>
30 <Protocol>stdout</Protocol>
31 <Level>errors</Level>
32 <Levels>stats</Levels>
33 <ExcludeErrors>05-0006</ExcludeErrors>
34 </Target>
35 </Logging>
36

37 </AMPSConfig>

Listing C.1: Simple AMPS configuration file

The AMPS configuration XML file is defined first by wrapping the config file with
an AMPSConfig tag to identify it as a configuration file. Next, the instance is
given a name using the <Name> tag.

Once our instance has a name, it is good to define where the administration
port will be connecting to. By default, the administration port can be found by
pointing a browser to http://localhost:8085, but if a different port or host
name is desired, then that is defined in the Admin and InetAddr tags. The
Admin port is discussed more in Table C.5.

Next up is how to get messages into AMPS. There are several different transport
types which can be parsed by AMPS, all of which are discussed in greater
detail in the Transports chapter, but for now this chapter will focus on the two
most common, fix-tcp and xml-tcp. In AMPS, each key to defining each
transport is to give them a unique InetAddr port and a unique MessageType
tag. This pairing is how AMPS is able to determine which parser to apply
to different incoming messages on a specific port. In the above example, if
messages are coming in on port 9005, then the xml parser will be used to parse
and extract the message data. Similarly, if messages are received on port 9004,
then a FIX parser will be used to parse and extract message data.

The last portion of the configuration is Logging. In the above example, the
Logging tag defines only one log target, however one or more Logging
targets is quite common. Again referring to the example, all logging messages
which are errors and below, in addition to all log messages which are stats
will be logged to the Protocol definition of stdout - or in other words, these
messages will be logged to the terminal, and not to a file. AMPS supports a
robust set of logging features and configurations, all of which are covered in
more detail in the Logging chapter.

160 Configuration Reference

C.1.1 AMPS Configuration File Special Characters

Log Rotation Name

When specifying an AMPS log file which has RotationThreshold specified,
using the %n string in the log file name is a useful mechanism for ensuring the
name of the log file is unique and sequential. Listing C.2 shows a file name
token replacement in the AMPS configuration file.

1 <Logging>
2 <Target>
3 <Protocol>file</Protocol>
4 <Level>info</Level>
5 <FileName>log/log-%n.log</FileName>
6 <RotationThreshold>2G</RotationThreshold>
7 </Target>
8 </Logging>

Listing C.2: File tokens used in configuration file

In the above example, a log file will be created in the AMPSDIR/log/ directory.
The first time this file is created, it will be named log-1.log. Once the log
file reaches the RotationThreshold limit of 2G, the previous log file will be
saved, and the new log file name will be incremented by one. Thus, the next
log file will be named AMPSDIR/log/log-2.log.

Dates

AMPS allows administrators to use date based file names when specifying the
file name in the configuration, as demonstrated in Listing C.3.

1 <Logging>
2 <Target>
3 <Protocol>file</Protocol>
4 <Level>info</Level>
5 <FileName>
6 log/log-\%Y-\%m-\%dT\%H\%m\%s.log
7 </FileName>
8 <RotationThreshold>2G</RotationThreshold>
9 </Target>

10 </Logging

Listing C.3: Date tokens used in configuration file

In the above example, a log file will be created in the $AMPSDIR/log named
2011-01-01-120000.log if the log was created at noon on January 1, 2011.

C.1 AMPS Configuration Basics 161

C.1.2 Using Units in the Configuration

To make configuration easy, AMPS permits the use of units to expand values.
For example, if a time interval is measured in seconds, the letter s can be
appended to the value. For example, the following SOW topic definition used
the Expiration tag to set the record expiration to 86400 seconds (one day).

1 <TopicDefinition>
2 ...
3 <Expiration> 86400s </Expiration>
4 ...
5 </TopicDefinition>

Listing C.4: Expiration using seconds.

An even easier way to specify an expiration of one day is to use the following
Expiration :

1 <TopicDefinition>
2 ...
3 <Expiration>1d</Expiration>
4 ...
5 </TopicDefinition>

Listing C.5: Expiration using seconds.

Table C.1 shows a listing of the time units AMPS supports in the configuration
file.

Table C.1: AMPS Configuration - Time Units

Units Description
ns nanoseconds
us microseconds
ms milliseconds
s seconds
m minutes
h hours
d days
w weeks

AMPS configuration supports a similar mechanism for byte-based units when
specifying sizes in the configuration file, also. Table C.2 shows a listing of the
byte units AMPS supports in the configuration file.

162 Configuration Reference

Table C.2: AMPS Configuration - Byte Units

Units Description
kb kilobytes
mb megabytes
gb gigabytes
tb terabytes

Dealing with large numbers in AMPS configuration can also be simplified by
using common exponent values to handle raw values. This means that instead
of having to input 10000000 to represent ten million, a user can input 10M.
Table C.3 contains a list of the exponents supported.

Table C.3: AMPS Configuration - Numeric Units

Units Description
k 103 - thousand
M 106 - million

To make remembering the units easier, AMPS interval and byte
units are not case sensitive.

C.1.3 Environment Variables in AMPS Configuration

AMPS configuration also allows for environment variables to be used as part of
the data when specifying a configuration file.

If a global system variable is commonly used in an organization, it may be useful
to define this in one location and re-use it across multiple AMPS installations
or applications. AMPS will replace any token which is wrapped with ${} with
the environment variable which defined in the current user operating system
environment. Listing C.6 demonstrates how the environment variable ENV LOG
is used to define a global environment variable for the location of the host
logging.

1 <Logging>
2 <Target>
3 <Protocol>file</Protocol>
4 <FileName>${ENV_LOG}</FileName>
5 <Level>info</Level>
6 <RotationThreshold>2G</RotationThreshold>
7 </Target>

C.2 Generating a Configuration File 163

8 </Logging>

Listing C.6: Environment variable used in configuration

Internal Environment Variables

In addition to supporting custom environment variables, AMPS includes a con-
figuration variable, AMPS CONFIG DIRECTORY, which can be used to reference
the directory in which the configuration file used to start AMPS is located. For
example if AMPS was started with the following command at the command
prompt:

%>./ampServer ../amps/config/config.xml

Then the log file configuration option shown in Listing C.7 can be used to instruct
AMPS to create the log files in the same parent directory as the configuration
file -- in this case ../amps/config/logs/infoLog.log.

1 <Logging>
2 <Target>
3 <Protocol>file</Protocol>
4 <FileName>
5 ${AMPS_CONFIG_DIRECTORY}/logs/infoLog.log
6 </FileName>
7 <Level>info</Level>
8 <RotationThreshold>2G</RotationThreshold>
9 </Target>

10 </Logging>

Listing C.7: AMPS CONFIG DIRECTORY Environment variable example

In addition to the AMPS CONFIG DIRECTORY environment variable, AMPS also
supports the AMPS CONFIG PATH which is an absolute path to the configuration
file used to start AMPS.

C.2 Generating a Configuration File

This appendix includes a listing of all AMPS configuration parameters. AMPS
provides a command line option to help an administrator quickly set up an
AMPS server. In addition to the quick setup discussed in the Next Steps section
of the Getting Started chapter, AMPS also provides the following command
line options to create a basic XML configuration file. Running the following
command will create a configuration file named config.xml which will be
used as a starting point to discuss configuration in this appendix.

ampServer --sample-config > config.xml

164 Configuration Reference

C.3 Features

Below we will be breaking down each of the tags and defining their respective
roles in configuring the AMPS server.

C.3.1 Name

The Name element give the AMPS instance a name.

Table C.4: Name Parameters

Element Description
Name This element defines the name of your AMPS in-

stance. The name is used as the ’ident’ parameter
when logging to syslog

1 <Name>AMPS</Name>

Listing C.8: Name Example

C.3.2 Admin

The Admin tag is used to control the behavior of the administration server.

Table C.5: Admin Parameters

Element Description
InetAddr Defines a port for the embedded HTTP admin server,

which can then be accessed via a browser
FileName location for storing the statistics information reported

by the Admin Server
default: :memory: - location to store statistics
information.

Interval The refresh interval for the Admin Server to update
gathered statistics
default: 10s
minimum: 1s

1 <Admin>
2 <InetAddr>localhost:9090</InetAddr>
3 <FileName>stats.db</FileName>
4 <Interval>20s</Interval>
5 </Admin>

C.3 Features 165

Listing C.9: Admin Example

C.3.3 Modules

The Modules section of the AMPS configuration file is used to configure and
define any plug-in modules which have been written for AMPS. The modules
supported for AMPS are the authorization and entitlements modules.

The available features of a Module are listed in Table C.6.

Table C.6: Module Parameters

Element Description
Name A plain text name for the module. This will be used

as a reference when the module is implemented in
concert with another AMPS feature (for example, a
SOW topic).

Library The location of the module library which will be called
to implement interface’s feature.

Options A list of supported features for the implemented li-
brary.

An example of an AMPS configuration which uses an authorization and en-
titlement plug-in module is listed below in Listing C.10. In our example, a
custom authentication module named libauthenticate customer001.so
has been written to manage the authentication portion of AMPS authenti-
cation. Similarly, a custom entitlements module has been written named
libentitlement customer001.so to manage the permissions and access
of the authenticated user.

The first step is to define the global Modules section of the AMPS configuration,
and then list the individual modules.

1 <AMPSConfig>
2 ...
3 <Modules>
4 <Module>
5 <Name>authentication1</Name>
6 <Library>libauthenticate_customer001.so</Library>
7 <Options>
8 <LogLevel>info</LogLevel>
9 <Mode>debugging</Mode>

10 </Options>
11 </Module>
12 <Module>
13 <Name>entitlement1</Name>

166 Configuration Reference

14 <Library>libentitlement_customer001.so</Library>
15 <Options>
16 <LogLevel>error</LogLevel>
17 <Mode>prod</Mode>
18 </Options>
19 </Module>
20 ...
21 </Modules>
22 ...
23 </AMPSConfig>

Listing C.10: Sample global config of authentication and entitlements modules.

We now have an authentication module and an entitlements module that we
can reference elsewhere in the AMPS configuration file to enable authentication
and/or entitlements for supported features. For example, we can globally list
our Authentication as part of the AMPS configuration file and then use
it to ensure that our Transports are properly enabling authentication and
entitlements. This is accomplished via an entry similar to Listing C.11.

1 <AMPSConfig>
2 ...
3 <Authentication>
4 <Module>amps-no-authorization</Module>
5 </Authentication>
6 <Entitlement>
7 <Module>amps-no-authorization</Module>
8 </Entitlement>
9 ...

10 <Transports>
11 <Transport>
12 <Name>fix-tcp-001</Name>
13 ...
14 <Authentication>
15 <Module>authenticate_customer001</Module>
16 </Authentication>
17 <Entitlement>
18 <Module>entitlement_customer001</Module>
19 </Entitlement>
20 </Transport>
21 <Transport>
22 <Name>fix-tcp-007</Name>
23 ...
24 <Authentication>
25 <Module>authenticate_customer007</Module>
26 </Authentication>
27 <Entitlement>
28 <Module>entitlement_customer007</Module>
29 </Entitlement>
30 </Transport>
31 </Transports>

C.3 Features 167

32 ...
33 </AMPSConfig>

Listing C.11: Example of security enabled transports.

In example listed in Listing C.11, our fix-tcp-001 transport is secured
with the authenticate customer001 authentication module, and the
entitlement customer001 entitlement module, which is defined in a global
Modules section similar to the one listed in Listing C.10. Similarly, the
fix-tcp-007 transport is secured with the authenticate customer007
authentication module and the entitlement customer007 entitlement mod-
ule.

C.3.4 Message Types

This tag defines the message types supported by the AMPS instance. A single
AMPS instance can support multiple message types, as such a MessageTypes
can contain multiple MessageType definitions.

The Type attributes for fix, nvfix, xml and soapxml have already been
defined in AMPS, so redefinition of them is only required if a Type’s settings
need to be changed (i.e.: the MessageSeparator for a fix message).

Table C.7: Message Type Parameters

Element Description
Name This element defines the name for the message type.

The name is used to specify MessageType in other
sections, e.g. Transport, TopicDefinition.

Module The element defines the ’dynamic library’ module
that will be loaded for this message type. Valid Mod-
ules are:

• fix: Standard fix, only allow numeric tags
• nvfix: Standard fix, but allows non-numeric

tags
• soapfix: Standard fix wrapped inside a SOAP

body
• xml: XML wrapped inside a SOAP body

Type
FieldSeparator Sequence of characters used to separate field items

in a FIX message. Note: this field is the ASCII value
of the char sequence.

HeaderSeparator Sequence of characters used to separate the header
from the body in a FIX message. Note: this field is
the ASCII value of the char sequence.

Continued on next page

168 Configuration Reference

TableC.7 -- continued from previous page
Element Description
MessageSeparator Sequence of characters used to separate message

items in the body in a FIX message. Note: this field
is the ASCII value of the char sequence.

AMPSVersionCompliance When set to 2, this flag adds the fields used in the
SOWStats internal messages which were found in
AMPS versions prior to the version 3.0 release.

1 <MessageTypes>
2 <MessageType>
3 <Name>fix</Name>
4 <Module>fix</Module>
5 <?- The following are FIX specific options ?>
6 <FieldSeparator>1</FieldSeparator>
7 <HeaderSeparator>2</HeaderSeparator>
8 <MessageSeparator>3</MessageSeparator>
9 </MessageType>

10 </MessageTypes>

Listing C.12: Message Types Example

C.3.5 Transports Types

AMPS supports FIX and XML message formats as the transport types for com-
munication between publishers and subscribers. Transports is a container
which contains a list one or more of Transport definitions. This section will
focus on the singular Transport.

Table C.8: Transport Parameters

Element Description
InetAddr The port AMPS will listen on for this transport.
Name Define a name for the Transport.
Type The type of Transport

valid values: tcp

MessageType Defines the message type for this transport, and is
a reference to the name of a specific message type
defined in the MessageTypes section.

ReuseAddr Permits an AMPS instance to use a socket which is
in a WAIT state. This can occur when AMPS has
been restarted using the same InetAddr and the
previous instance did not fully close the port.
- valid values: true, false
- default: false

Continued on next page

C.3 Features 169

TableC.8 -- continued from previous page
Element Description
SlowClientDisconnect Define whether or not to disconnect clients that are

slow after they breach the offline threshold. By de-
fault SlowClientDisconnect is enabled and will
disconnect
- default: true
- valid values: true, false

ClientOffline Defines whether or not a slow client should offline
messages to avoid unlimited memory queuing.
- valid values: enabled, disabled
- default: disabled

ClientBufferThreshold Defines how much memory a slow client can use
before off lining.
- units: Bytes

ClientOfflineThreshold Defines how many messages a slow client can offline
before being disconnected.
- units: Messages

ClientOfflineDirectory Location to persist messages for a slow client in antic-
ipation of it resuming message processing. Required
if ClientOffline is enabled.

1 <Transports>
2

3 <!-- fix messages using TCP -->
4 <Transport>
5 <Name>fix-tcp</Name>
6 <Type>tcp</Type>
7 <InetAddr>9004</InetAddr>
8 <ReuseAddr>true</ReuseAddr>
9 <MessageType>fix</MessageType>

10 <ClientBufferThreshold>
11 4194304
12 </ClientBufferThreshold>
13 <ClientOffline>enabled</ClientOffline>
14 <ClientOfflineThreshold>
15 10000
16 </ClientOfflineThreshold>
17 <ClientOfflineDirectory>
18 /var/tmp
19 </ClientOfflineDirectory>
20 <SlowClientDisconnect>true</SlowClientDisconnect>
21 </Transport>
22

23 <!-- nvfix messages using TCP -->
24 <Transport>
25 <Name>nvfix-tcp</Name>
26 <Type>tcp</Type>

170 Configuration Reference

27 <InetAddr>9005</InetAddr>
28 <ReuseAddr>true</ReuseAddr>
29 <MessageType>nvfix</MessageType>
30 </Transport>
31

32 <!-- xml messages using TCP -->
33 <Transport>
34 <Name>soap-tcp</Name>
35 <Type>tcp</Type>
36 <InetAddr>9006</InetAddr>
37 <ReuseAddr>true</ReuseAddr>
38 <MessageType>xml</MessageType>
39 </Transport>
40

41 </Transports>

Listing C.13: Transports Example

C.3.6 Logging

AMPS supports several different types of log formats, and multiple targets can
be defined simultaneously.

Table C.9: Logging Parameters

Element Description
Protocol Define the logging target protocol

- valid values: stdout, stderr, file, gzip,
syslog

FileName File to log to. If RotationThreshold is specified then
-%n is added to the file. If the protocol is gzip, then
.gz is added to the file name
- default: $PWD/%Y-%m-%dT%H%M%S.log

RotationThreshold Log size at which log rotation will occur. See Ta-
ble C.2 for details on specifying file size.

Level Defines a lower bound (inclusive) log level at which
all log messages at the specified level and up are
logged.
- valid values: none, trace, debug, stats,
info, warning, error, critical, emergency

Levels A comma separated list of specific log levels. Only
log messages at the specified levels will be logged
- valid values: none, trace, debug, stats,
info, warning, error, critical, emergency

IncludeErrors All errors that should be included when logging.
ExcludeErrors All errors that should be excluded when logging.

Continued on next page

C.3 Features 171

TableC.9 -- continued from previous page
Element Description
Ident Syslog identifier for the AMPS instance.

- default: AMPS Instance Name
Options A comma separated list of syslog options.
Facility Syslog facility to use.

1 <Logging>
2 <Target>
3 <Protocol>file</Protocol>
4 <FileName>
5 /var/tmp/amps/logs/\%Y\%m\%d\%H\%M\%S-\%n.log
6 </FileName>
7 <RotationThreshold>2G</RotationThreshold>
8 <Level>trace</Level>
9 <Levels>critical</Levels>

10 </Target>
11 <Target>
12 <Protocol>syslog</Protocol>
13 <Level>critical</Level>
14 <Ident>amps_dma</Ident>
15 <Options>LOG_CONS,LOG_NDELAY,LOG_PID</Options>
16 <Facility>LOG_USER</Facility>
17 </Target>
18 </Logging>

Listing C.14: Logging Example

C.3.7 State of the World (SOW)

State of the World (SOW) provides a mechanism for AMPS to persist the most
recent publish for each message.

Table C.10 contains a listing of the parameters for a TopicDefinition section
in the TopicMetaData section of an AMPS configuration file.

Table C.10: State of the World Parameters - TopicDefinition

Element Description
FileName The file where the State of the World data will be

stored.
Key Defines the specific key (as an XPath) whose value

makes a message unique. This determines when a
new record is created versus updated. This element
can be specified multiple times to create a composite
key.

Continued on next page

172 Configuration Reference

TableC.10 -- continued from previous page
Element Description
MessageType Type of messages to be stored.
Topic SOW topic - all unique messages (see Key above)

on this topic will be stored in a topic specific SOW
database.

RecordSize Size (in bytes) of a SOW record for this topic.
- default: 1024

InitialSize Initial size (in records) of the SOW database file for
this topic.
- default: 2048

IncrementSize Number of records to expand the SOW database (for
this topic) by when more space is required.
- default: 1000

Expiration Time (in seconds) for how long a record should live
in the SOW database for this topic. This element is
only honored when ExpirationProcessing is enabled.
A value of 0 indicates that the records should never
be expired.

KeyDomain The seed value for SowKeys used with in the topic.
The default is the topic name, but it can be changed
to a string value to unify SowKey values between
different topics.

Duration Define the storage duration for a SOW topic. SOW
databases listed as persistent retain their in-
stance life cycles, while those listed as transient
do not.
-default: persistent
-valid values: persistent,transient

An example of a SOW configuration looks like the following:

1 <TopicMetaData>
2 <TopicDefinition>
3 <Topic>orders</Topic>
4 <Name>orders</Name>
5 <Key>/orderId</Key>
6 <MessageType>nvfix</MessageType>
7 <FileName>./sow/%n</FileName>
8 </TopicDefinition>
9 </TopicMetaData>

Listing C.15: SOW TopicMetaData Configuration

C.3 Features 173

C.3.8 Replication Destination

An AMPS replication target is defined within the Replication section of
an AMPS configuration file. Within the Replication section, there are one
or more Destination sections, each specifying a unique replication target.
Table C.11 contains a listing of the parameters for the Destination section in
the Replication section of an AMPS configuration file.

Table C.11: State of the World Parameters - ReplicaDefinition

Element Description
Destination Required parent tag which defines a unique replica-

tion target.
SyncType Defines how synchronization of ack messages is

handled. Is one of sync or async.
Transport The message type and URI where messages will be

replicated. Requires a Type, MessageType which
must be ”amps-replication” and InetAddr .

Name The name of the replication.
Topic Defines the topic name for this replica. Requires a

Name and MessageType

1 <Replication>
2 <Destination>
3 <Name>amps-2</Name>
4 <Topic>
5 <Name>ORDER_STATE-Replication</Name>
6 <MessageType>xml</MessageType>
7 </Topic>
8 <SyncType>sync</SyncType>
9 <Transport>

10 <MessageType>xml</MessageType>
11 <InetAddr>localhost:19005</InetAddr>
12 </Transport>
13 </Destination>
14 </Replication>

Listing C.16: Replication example

C.3.9 View Definition

Table C.12 contains a listing of the parameters for a ViewDefinition section
in the TopicMetaData section of an AMPS configuration file.

174 Configuration Reference

Table C.12: State of the World Parameters - ViewDefinition

Element Description
FileName File location to store view data.
MessageType One of fix, xml or nvfix.
Topic Defines the topic name for this view.
UnderlyingTopic Defines the SOW topic this view is based on.
Projection/Field Defines what the view will contain. This element

can be specified multiple times to compose a com-
plex view. Complex expressions that use aggrega-
tion functions and conditional branching can also be
used.

Grouping/Field Defines how the records in the underlying topic will
be grouped. This is analogous to a ’group by’

KeyDomains The seed value for SowKeys used within this topic.
The default is the topic name, but it can be changed
to a string value to unify SowKey values between
different topics.

1

2 <TopicMetaData>
3 <TopicDefinition>
4 <Topic>/ett/order</Topic>
5 <MessageType>fix</MessageType>
6 <Key>/orderId</Key>
7 </TopicDefinition>
8 <ViewDefinition>
9 <Topic>TOTAL_VALUE</Topic>

10 <UnderlyingTopic>/ett/order</UnderlyingTopic>
11 <Projection>
12 <Field>/109</Field>
13 <Field>SUM(/14 * /6) AS /71406</Field>
14 </Projection>
15 <Grouping>
16 <Field>/109</Field>
17 </Grouping>
18 </ViewDefinition>
19 </TopicMetaData>

Listing C.17: State of the World Example

C.3.10 Transaction Log

In order to support the high availability features of AMPS, a TransactionLog
can be configured to keep a journal of messages published to an AMPS instance
and all upstream replicas. The High Availability chapter coveres the use cases

C.3 Features 175

where a TransactionLog can be used to maximize the availability of your
AMPS instance.

Table C.13: Transaction Log Configuration Parameters

Element Description
JournalDirectory Filesystem location where journal files will be stored.
PreAllocatedJournalFiles The number of journal files AMPS will create as part

of the server startup.
Default: 2
Minimum: 1

MinJournalSize The smallest possible journal size that AMPS will
create.
Default: 1
Minimum: 10M

BatchSize A tuning parameter to configur the number of jour-
nal files to create at a time. When AMPS runs out
of available journal files to write to, it will create
BatchSize more journal files in a single pass.
Default: 128
Maximum: 1024
Minimum: 1

Topic If no topic is specified, AMPS will store all messages
in the transaction log. If a Topic is specified, then

FlushInterval The interval with which messages will be written to
the journal file from AMPS.
Default: 100ms
Maximum: 100ms
Minimum: 30us

O DIRECT Where supported, O DIRECT will perform DMA di-
rectly from/to physical memory to a userspce buffer.
Having this enabled can improve AMPS perfor-
mance, however not all devices support O DIRECT.
Default: enabled

In the example listed in Listing C.18 we demonstrate a transaction log where the
journal file will be written to ./amps/journal. When AMPS starts a single jour-
nal file will be pre allocated as noted by the PreallocationJournalFiles
setting, and when a the first SOW is completely full, 128 new journal files will
be created. This journal is only going to contain messages which match the
the topic orders and also have a message type of fix. All messages that are
going to be written to this file will be flushed in 40us intervals.

1 <AMPSConfig>
2 ...
3

4 <TransactionLog>
5 <JournalDirectory>./amps/journal/</JournalDirectory>

176 Configuration Reference

6 <PreallocatedJournalFiles>1</PreallocatedJournalFiles>
7 <MinJournalSize>10MB</MinJournalSize>
8 <BatchSize>128</BatchSize>
9 <Topic>

10 <Name>orders</Name>
11 <MessageType>fix</MessageType>
12 </Topic>
13 <FlushInterval>40ms</FlushInterval>
14 </TransactionLog>
15

16 ...
17 </AMPSConfig>

Listing C.18: Transaction Log Configuration Example

C.3.11 SOW Statistics Interval

AMPS can publish SOW statistics for each SOW topic which has been config-
ured. The SOWStatsInterval is specified as an interval (see AMPS Configu-
ration - Time Units) between updates to the /AMPS/SOWStats topic.

Table C.14: SOW Statistics Interval Parameters

Element Description
SOWStatsInterval Interval for which SOW statistics are updated.

1 <AMPSConfig>
2 ...
3 <SOWStatsInterval>10s</SOWStatsInterval>
4 ...
5 </AMPSConfig>

Listing C.19: SOW Statistics Interval Example

Minidump Directory

The minidump directory is used to specify a location for AMPS to create a file
which contains program information which is useful for support and diagnostics.
AMPS will generate a minidump file on any crash event, or a minidump file
can be generated at any point in time through the monitoring interface (see
Section D.2).

C.3 Features 177

Table C.15: Mini Dump Directory Parameters

Element Description
MiniDumpDirectory Location to store AMPS mini dumps. Default is

/tmp.

1 <MiniDumpDirectory>/var/tmp</MiniDumpDirectory>

Listing C.20: Mini Dump Directory Example

Configuration Validation

Configuration validation can be used to enable or disable the validation checking
performed by AMPS on the initialization of each instance. Disabling the configu-
ration validation can cause AMPS to start in an invalid state or not properly log
warnings or errors in the configuration file.

Configuration validation should only be used in testing or debug-
ging. It is strongly not recommended to be used in a production
or development environment.

Table C.16: Replication Destinations Parameters

Element Description
ConfigValidation Setting this to disabled will turn off AMPS config-

uration validation. The default is enabled which
ensures that the current AMPS configuration meets
valid parameter ranges and data types.

1 <AMPSConfig>
2 <ConfigValidation>enabled</ConfigValidation>
3 </AMPSConfig>

Listing C.21: Configuration Validation Example

Appendix D
Monitoring Interface Reference

D.1 Host Interface

The host URI contains information about the current operating system devices,
such as the CPU, memory, disk and network. In addition, a host’s network
hostname and system timestamp time are also exposed through the monitoring
interface.

CPUs

The cpu resource allows an administrator to view the CPU devices attached to
the host. Selection of the cpu link in the host resource generates a list of all
CPUs attached to the host, and also an aggregate all option.

Table D.1: CPU Statistics

Element Description
idle percent Percent of CPU time that the system did not spend

waiting on an I/O request to complete.
iowait percent Percent of CPU time spent waiting for I/O requests

to complete.
system percent Percent of CPU utilization time which occurred while

executing kernel processes.
user percent Percent of CPU utilization time which occurred while

running at the application level.

D.1 Host Interface 179

Disks

The disks resource lists each of the disk devices attached to the host and
permits the inspection of disk usage statistics. This information is a readily con-
sumable version of the /proc/diskstats file. Statistics reported are based
on the statistics monitoring update frequency (see Interval in Section C.1.2).
This means, for example, that reads is the number of disk-reads for the given
statistics update interval.

Table D.2: Disk Statistics

Element Description
in progress Number of I/O requests waiting to be processed.
read time Number of milliseconds spent reading.
reads Number of reads completed.
reads merged Reads and writes which are adjacent to each other

may be merged for efficiency. This calculates the
number of merged read/write operations.

sectors read Number of sectors read.
sectors written Number of sectors written.
total time Number of milliseconds spent performing I/O opera-

tions.
weighted cost Weighted cost is incremented at each I/O start, I/O

completion, I/O merge or read of these stats by the
number of I/Os in progress (in progress) times
the number of milliseconds spent doing I/O since the
last update of this field. This can provide an easy
measure of both I/O completion time and the backlog
that may be accumulating.

write time Number of milliseconds spend writing.
writes Number of writes performed.

Memory

The memory resource gives details about the system memory statistics. All
statistics reported are based on the current system statistics reported by ex-
amining the /proc/meminfo file. These statistics are updated based on the
statistics monitoring update frequency (see Interval in Section C.3.2). All
memory statistics are reported in kB.

Table D.3: Memory Statistics

Element Description
available The total amount of memory available. Calculated

as the sum of free, buffers and cached.
Continued on next page

180 Monitoring Interface Reference

TableD.3 -- continued from previous page
Element Description
buffers The amount of physical memory available for file

buffers.
cached The amount of physical memory used as cache mem-

ory.
free The amount of physical memory left unused by the

system.
in use The amount of memory currently in use. Calculated

as total - (free + buffers + cached).
swap free The amount of swap memory which is unused.
swap total The total amount of physical swap memory.
total Total amount of RAM.

Name

The name resource displays the network DNS name for the host.

Network

The network resource allows an administrator to examine networking interface
statistics on the host. Selecting the network resource displays a list of the
network interfaces attached to the host. Selecting one of the interfaces will
list the available properties. Rate based Statistics reported are based on the
statistics monitoring update frequency (see Interval in Section C.1.2). For
example, collisions for interface eth0 would report the total number of
collisions since the last statistics update interval.

Table D.4: Network Statistics

Element Description
bytes in Number of bytes received by the interface.
bytes out Number of bytes transmitted by the interface.
carrier errors Total number of transmit and receive errors.
collisions Number of collisions detected on the interface.
compressed in The number of compressed packets received by the

interface.
compressed out The number of compressed packets sent by the in-

terface.
drop in The number of receive packets dropped by the inter-

face driver.
drop out The number of sent packets dropped by the interface

driver.
Continued on next page

D.2 Instance Interface 181

TableD.4 -- continued from previous page
Element Description
errors in The total number of receive errors detected by the

device.
errors out The total number of send errors detected by the

device.
fifo errors in The number of FIFO buffer errors while receiving.
fifo errors out The number of FIFO buffer errors while sending.
frame errors The number of packet framing errors.
multicast The number of multicast frames transmitted or re-

ceived by the device driver.
packets in The total number of packets received by the inter-

face.
packets out The total number of packets sent by the interface.

UTC time

The utc time resource displays the system time on the host. Note: the
utc time time reflects the time on the host that the HTTP GET was processed.
This differs from all other resources in the host interface as their update
frequencies are determined by the Interval tag. For more information on the
Interval tag see Admin Parameters.

D.2 Instance Interface

The Instance resource provided by the AMPS monitoring interface is the ad-
ministrative overview of a running AMPS instance. At a glance an administrator
has access to a wide view of statistic and configuration information related to
AMPS usage.

administrator

clients

Selecting the clients resource will list all connected clients by name. Selecting
a single client will permit them to be disconnected.

authorization

Selecting the authorization resource will allow the authentication or
entitlement resources to be reset. Selecting either one of these will present

182 Monitoring Interface Reference

a reset link which will call the reset function defined by the respective authen-
tication or entitlement resource. For more information on building authentication
and entitlements into AMPS, please refer to Appendix E.

minidump

Selecting the minidump resource will create a minidump of the current running
AMPS instance. The minidump will be saved in directory specified by the
MiniDumpDirectory. the See Table C.15 for more information.

replication

Selecting the replication resource will list all currently configured replica-
tions. Selecting any individual replication destination will permit them to be
downgraded.

clients

Selecting the clients resource will list all connected clients by name. Selecting
a single client will grant the user the ability to view various properties regarding
a client.

Table D.5: Client Statistics

Element Description
ack count Number of acknowledgments sent.
ack count per sec Rate of acknowledgments sent.
bytes in Number of bytes received.
bytes in per sec Rate of bytes received.
bytes out Number of bytes sent.
bytes out per sec Rate of bytes sent.
client name Unique identifier of the client set during the logon.
connect time UTC time client connection is established.
connection name Name of the connection
disconnect count Number of times disconnected.
is connected Boolean value establishing
messages in Number of messages sent from client.
messages in per sec Rate of messages sent.
publish count Number of messages published.
publish count per sec Rate of messages published.
queries canceled Number of queries canceled by client.
queries canceled per sec Rate of queries canceled by client.

Continued on next page

D.2 Instance Interface 183

TableD.5 -- continued from previous page
Element Description
queries completed Number of queries completed.
queries completed per sec Rate of queries completed.
queries requested Number of queries.
queries requested per sec Rate of queries.
query bytes out Number of query bytes sent.
query bytes out per sec Rate of query bytes sent.
query time time taken for queries to complete.
queue depth out Number of messages queued to be sent to client.
queue max latency The age of the oldest item in the queue which has

not yet been sent. This is used as a measure of how
far behind AMPS believes a subscribing client is.

queued bytes out Number of queued bytes waiting to be sent.
remote address IP and port of the client connection.
subscription count Number of subscriptions the client has requested.

config.xml

Selecting this will display the current AMPS configuration file, but default called
config.xml.

config path

Filesystem location of the configuration file.

cpu

The CPU resource lists properties related to overall CPU usage of the AMPS
instance. Selecting the items below give more specific information to the type of
CPU utilization being consumed by the AMPS user.

Table D.6: CPU Statistics

Element Description
system percent Percent of CPU utilization time consumed while exe-

cuting kernel processes.
total percent Total percent of CPU utilization.
user percent Percent of CPU utilization time consumed while pro-

cessing non-I/O events.

184 Monitoring Interface Reference

cwd

The current working directory of where the AMPS instance was invoked from.

logging

The logging resource contains information about the resources consumed
during various AMPS logging processes. Selecting a logging mechanism (con-
sole, file or syslog) will first list all logs of that particular type. Drilling down
into one of those logs will pull up more granular information about logging. If a
logging mechanism is not defined in the configuration, then the results will be
blank when the logging resource is selected.

console

Below are the options available for reporting when console logging is enabled.

Table D.7: Console Logging Statistics

Element Description
bytes written Number of bytes written to the console.
exclude errors Errors which are excluded from logging.
include errors Errors which are included during logging.
log levels Log level used to control logging output.
target Console to which logging output is directed. Default

is stdout.

file

Below are the options available for reporting when file logging is enabled.

Table D.8: File Logging Statistics

Element Description
bytes written Number of bytes written to the console.
exclude errors Errors which are excluded from logging.
file name File defined in the config.xml where the log file is

written to.
file name mask Make of the logging output file name, if available.
file system free percent Amount of file system available.
include errors Errors which are included during logging.
log levels Log level used to control logging output.

Continued on next page

D.2 Instance Interface 185

TableD.8 -- continued from previous page
Element Description
rotation Boolean representation denoting if log rotation is

turned on
rotation threshold Log size at which log rotation will occur.

syslog

Below are the options available for reporting when syslog logging is enabled.

Table D.9: System Logging Statistics

Element Description
bytes written Number of bytes written to the console.
exclude errors Errors which are excluded from logging.
facility Integer enumeration of the logging facility used by

syslog.
ident Syslog name of the logging instance.
include errors Errors which are included during logging.
log levels Log level used to control logging output.
logopt Bitfield of possible log options included. These

values are configured in the config.xml file in the
<Options> tag.

memory

AMPS can provide information regarding the process’s memory usage in its
RSS and VMSize via the memory resource in the monitoring interface.

Table D.10: AMPS Instance Memory

Element Description
rss The resident set size of the AMPS process.
vmsize The virtual memory size of the AMPS process.

message types

Information regarding the message types (or transports) used by AMPS are
maintained in the message types resource. AMPS can track the following
information for all four of the message types supported: fix, nvfix, soapfix
and xml.

186 Monitoring Interface Reference

Table D.11: AMPS Instance Message Types

Element Description
module The type of transport module defined.
name The name of the transport type.
options Any special options provided by the transport.
type The transport type.

name

Name of the AMPS Instance.

pid

The process ID of the current ampServer process.

processors

Selecting the processors resource will list all the available message proces-
sors that the AMPS instance has invoked to handle messages. Each AMPS
message processor will be listed individually, or selecting the all resource will
list an aggregate of the available message processors. All AMPS message
processors have the following attributes available:

Table D.12: AMPS Message Processors

Element Description
bytes published Total number of bytes published.
bytes published per sec Rate at which bytes are published.
client publishes Number of publish messages from the client.
client publishes per sec Rate of publish messages from the client.
description Descriptor of the processors resource.
last active Number of seconds since a processor was last active
matches found Number of messages found.
matches found per sec Rate of messages found.
messages received Number of messages received.
messages received per secRate of messages received.

D.2 Instance Interface 187

queries

The queries resource lists all available information regarding the query mes-
sages sent to AMPS.

queued queries

A count of all queries which have not yet completed processing.

replication

Selecting the replication resource will display a list of available downstream
replication instances used by this instance of AMPS. Selecting an individual
replication instance will display the following statistics.

Table D.13: Replication

Element Description
bytes out number of bytes sent.
bytes out per sec rate of bytes sent.
client type specifies whether client is a replication source or

destination.
connect time time connected to replication instance.
disconnect count number of times replication destination has been

disconnected.
disconnect time total amount of time in which the replication destina-

tion has been disconnected.
filter string used to select subset of topic records.
is connected Boolean telling whether replication destination is cur-

rently connected.
message type type of messages used to pass records to the client.
messages out number of messages sent.
messages out per sec rate of messages sent.
name name of replication configuration
pass through Boolean stating whether messages can only be sent

to one client, or can messages be sent on to other
downstream clients.

replication type One of either sync or async
topic The name of the topic which is being replicated.

188 Monitoring Interface Reference

sow

Clicking the sow link will list all available sow topics for the AMPS instance.
Selecting a single sow topic will list the following available statistics about the
sow topic:

Table D.14: SOW interface

Element Description
file system free percent Percent of file system disk space available.
free records Number of records available before another slab has

to be allocated.
mappings Number of unique records stored in the SOW
max datasize Largest message.
max records Maximum number of records which can be stored in

a SOW topic.
multirecords number of messages that span multiple records
path File system location of the SOW topics file store.
record size Size of each message stored in the SOW topic.
size Total size of the SOW topic file store. Can be

computed by finding the product of max records
* record size.

slabs analogous to ’blocks’ in memory management. This
is the number of mmapped memory regions servicing
the SOW topic.

valid keys number of distinct messages in the SOW - defined
by the SOW topic key.

statistics

The statistics resource contains information regarding how AMPS monitors
its own statistics.

Table D.15: Statistics Interface

Element Description
disk per sample
file name Location where statistics are stored. Default is

:memory: which stores the statistics database in
system memory.

file size Size on disk of the statistics database.
interval Time in milliseconds between statistics database

updates.
Continued on next page

D.2 Instance Interface 189

TableD.15 -- continued from previous page
Element Description
memory used Size in bytes of the system memory consumption of

the statistics database.
queries Number of queries processed from the statistics

database.
time per sample Time taken to process each statistics database

query.
total samples Number of statistics database updates which have

taken place since the AMPS server started.
total time Total amount of time spent publishing statistics

subscriptions

Each client which submits a subscribe command message is tracked by
AMPS, and their relevant metrics are captured in the monitoring instance
database. Selecting the subscriptions resource lists the available sub-
scribers. Selecting a subscriber will list the available statistics below:

Table D.16: Subscriptions Interface

Element Description
client id The ID of the subscribing client.
filter Any filters applied to the subscribing topic.
is bookmark Boolean value to determine if the subscription is a

bookmark.
is oof enabled Boolean value to determine if the subscription has

OOF (Out Of Focus Processing) enabled.
is replication Boolean value to determine if the subscription is

applied to a replication.
message type Transport type of the subscription message. All re-

turn acknowledgments and messages use the same
transport as the subscription.

send empties Boolean to determine if sending empty messages is
required / permitted.

subscription type Type of subscription.
topic Subscription topic.

uptime

The length of time that the AMPS instance has been running which conforms to
a hh:mm:ss.uuuuuu format. This format is explained in Table D.17

190 Monitoring Interface Reference

Table D.17: Time formatting used in uptime

Abbreviation Definition
hh hours
mm minutes
ss seconds
uuuuuu microseconds

user id

The username for the owner for the ampServer process.

version

Version of the current running instance of AMPS.

views

Clicking the views link will give a list of the views defined in the configuration
file for the AMPS instance. Clicking a view will display the detailed resources
for views.

Table D.18: Subscriptions Interface

Element Description
grouping List of one or more fields which are used to determine

message aggregation.
projection The formula defined in the AMPS config for the com-

puted transformation of one or more fields onto a
new field.

queue depth The number of messages in the view which have not
yet completed processing.

topic The name of the new AMPS topic created by this
view.

underlying topic The source topic used to compute the projected view.

Appendix E
Authentication and
Entitlements

Within AMPS feature set is support for adding an authentication module, like
Kerberos, to enable and require authentication prior to permitting a client to
have access to an AMPS server. Additionally AMPS provides an entitlements
module which allows an administrator to have control over the features which
are granted access to an authenticated user. This chapter will cover how to
configure AMPS to enable authentication, how to write an AMPS module to
grant entitlements and how to logon/authenticate a client with an authentication-
enabled AMPS instance.

E.1 Configuration

Configuration of the Authentication and Entitlements modules are covered in
greater detail in greater detail in Section C.3.3. A brief example of an Au-
thentication module which is applied to an AMPS Transport is demonstrated
below.

The first step in enabling Authentication for AMPS is to configure the Module
which will be used throughout the configuration as the Authentication module.
An example of this is listed below in Listing E.1

1 <AMPSConfig>
2 ...
3 <Modules>
4 <Module>
5 <Name>authentication1</Name>
6 <Library>libauthenticate_customer001.so</Library>
7 <Options>
8 <LogLevel>info</LogLevel>

192 Authentication and Entitlements

9 <Mode>debugging</Mode>
10 </Options>
11 </Module>
12 ...
13 </Modules>
14 ...
15 </AMPSConfig>

Listing E.1: Global Configuration for Authentication

As shown in Listing E.1, line 3 shows the Modules tag which is used to contain
all of the Module definitions for the configuration file. A Module is a pluggable
library which is defined in a Module tag and is then referenced by an AMPS
feature which makes use of that Module. In this instance, our Module is named
authentication1 - as indicated on line 4 with the Name tag - and it references
the libauthenticate customer001.so shared library as the Library im-
plementation, as defined on line 5. The Options are items which are passed
into the Module and are handled internal to the library’s implementation.

Now that we have defined and named our shared library authentication1,
let us begin by implementing a Transport which uses this module for its
Authentication. We will use Listing E.2 as a simple example.

1 <AMPSConfig>
2 ...
3 <Transports>
4 <Transport>
5 <Name>fix-tcp-001</Name>
6 ...
7 <Authentication>
8 <Module>authentication1</Module>
9 </Authentication>

10 </Transport>
11 ...
12 </Transports>
13 ...
14 </AMPSConfig>

Listing E.2: Example of Transport with Authentication Enabled

The Authentication module used to define the fix-tcp-001 transport
is listed starting on line. The Authentication tag is used to define the
supported type of module implemented, and the Module tag references the
Name of the module listed in auth:config-auth. Our transport will now use
require that users’ credentials are authenticated via the logon command.

E.2 AMPS Administration

The AMPS Administration console provides a mechanism for the purpose of
resetting the authorization state of currently logged in and authenticated clients

E.3 AMPS Guarantees 193

in AMPS.

During a reset, AMPS will attempt to create a new context for the respective
module. On successful creation of a new context which will clear any cached
state associated with the previous context, and then destroy the old context.

On an error, where the context could not be created AMPS will continue to
operate with the old context until the problem can be corrected and a context
reset can be successfully performed.

Greater detail in accessing the links via the AMPS administration console is
covered in Section D.2.

E.3 AMPS Guarantees

For AMPS to enable authentication and entitlement, there are first a few rules
that an AMPS client must follow in order to guarantee a successful logon. They
are as follows:

1. Send logon command with UserId and Password set in the header
fields of the command The logon must also request a processed ac-
knowledgement which is used in returning the state of authentication.

2. Receive the processed acknowledgement.

3. If the Status of the processed acknowledgement is failure with a Reason
of Retry goto step 4. Otherwise skip to step 5.

4. The processed ack will contain a UserId and Password to use in retry-
ing the authentication. For most authentication mechanisms, this first
retry will have a Password which contains a server side token (the server
nonce) that is used to perform the second step of the client-side authenti-
cation and logon a second time. For other authentication mechanisms, the
UserId can be modified to perform hygiene or aliasing, to support aliases
or correction of common authentication errors (deployment specific). Us-
ing this new UserId and Password token, the client will re-authenticate
on the client side and go to step 1.

5. If not failing because of the retry reason, then the reason must be invalid
credentials and the client should notify the user and stop.

Other scenarios that a client developer will need to be aware of when working
with an authenticated AMPS instance are listed below:

When the authentication module returns AMPS FAILURE from
amps authenticate, AMPS will disconnect the session. Any
command issued after the session has been disconnected will be silently
discarded.

AMPS will force an implicit logon command for clients which have not issued
one explicitly. The UserId and Password will be empty strings in this
case. Handling this case will be implementation specific, and will be an

194 Authentication and Entitlements

exercise left to the developer responsible for implementing the authentica-
tion and entitlement modules. This arrangement places the responsibility
of determining which sessions are permitted to remain connected on the
authentication module.

E.4 Authentication Interface

For the Authentication Interface, all init functions have the
AMPS CONFIG PATH environment variables available to them. The
AMPS CONFIG PATH is an absolute path to the AMPS configuration file.

AMPS Authentication Module Init

The amps authentication module init method is used to initialize the
authentication module.

{int amps_authentication_module_init}(
amps_module_options options,
amps_module_logger message,
amps_module_allocator allocator);

Parameters options Vector of amps option structures({0,0}
sentinel).

logger Logging function to use for any messages.
allocator Allocator to use in allocating memory that

AMPS needs to free.
Returns AMPS SUCCESS The module was successfully initialized.

AMPS FAILURE An error occurred (should be logged if ap-
propriate).

AMPS Authentication Module Terminate

The amps authentication module terminate method is used to termi-
nate the authentication module.

int amps_authentication_module_terminate();

Parameters None
Returns AMPS SUCCESS The module was successfully terminated.

E.4 Authentication Interface 195

AMPS FAILURE An error occurred (should be logged if ap-
propriate).

Notes AMPS guarantees that no function within this module will be
executed unless amps authentication module init
is invoked first.

AMPS Authentication Create Context

The amps authentication create context method initializes and returns
an authentication context.

amps_authentication_context
amps_authentication_create_context()

Parameters None
Returns NULL on error, otherwise a valid

amps authentication context.

AMPS Authentication Destroy Context

The amps authentication destroy context is called to destroy a speci-
fied authentication context.

int amps_authentication_destroy_context(
amps_authentication_context context);

Parameters context The authentication context to destroy.
Returns AMPS SUCCESS The context was successfully destroyed.

AMPS FAILURE An error occurred (should be logged if ap-
propriate).

196 Authentication and Entitlements

AMPS Authenticate

The amps authenticate method is used to authenticate a user’s credentials
against a specified authentication context.

int amps_authenticate(
amps_authentication_context context
const char* user,
const char* passwd,
char** userOut,
size_t* userOutLength,
char** passwdOut,
size_t* passwdOutLength);

Parameters context The authentication context to use to au-
thenticate against.

user User name to authenticate.
passwd Password token to use for authentication.
userOut Alternative user name to use.
userOutLength Alternative password token to use for au-

thentication.
passwdOut Alternative password token to use for au-

thentication.
passwdOutLengthAlternative password token length.

Returns AMPS SUCCESS User has been authenticated.
AMPS RETRY Retry authentication with alternative user/-

password.
AMPS FAILURE Failed to authenticate user.

Notes In protocols which may require retrying authentication with
an alternate user name or password token, the function
must return AMPS RETRY to force the retry. The func-
tion must provide the alternate user name and length
in the userOut and userOutLength pointer, and the
alternate password and length via the passwdOut and
passwdOutLength pointers. userOut and passwdOut
must be changed to point at strings allocated by this func-
tion. These strings must be allocated using the allocator
passed into the amps entitlement module init, and
are automatically freed by the AMPS server when no longer
needed.

E.5 Entitlements Module interface 197

E.5 Entitlements Module interface

AMPS Entitlement Module Init

The amps entitlement module init method is used to initialize the entitle-
ment module.

int amps_entitlement_module_init(
amps_module_options options,
amps_module_logger logger,
amps_module_allocator allocator);

Parameters options Vector of amps option structures({0,0}
sentinel) (from config).

logger Logging function to use for any messages.
allocator Allocator to use in allocating memory that

needs to be freed by AMPS.
Returns AMPS SUCCESS The module was successfully initialized.

AMPS FAILURE An error occurred (should be logged if ap-
propriate).

int amps_entitlement_module_terminate()

Purpose Terminates the entitlement module.
Parameters None.
Returns AMPS SUCCESS The module was successfully terminated.

AMPS FAILURE An error occurred (should be logged if ap-
propriate).

Notes AMPS guarantees that no function within this module will
be executed unless amps entitlement module init is
invoked first.

AMPS Entitlement Create Context

The amps entitlement create context method initializes and returns an
entitlement context.

amps_entitlement_context
amps_entitlement_create_context();

198 Authentication and Entitlements

Parameters None.
Returns NULL on error, otherwise a valid amps entitlement context.

AMPS Entitlement Destroy Context

The amps entitlement destroy context method is used to destroy the
entitlement context.

int amps_entitlement_destroy_context(
amps_entitlement_context context);

Parameters context The entitlement context to destroy.
Returns AMPS SUCCESS The context was successfully destroyed.

AMPS FAILURE An error occurred (should be logged if ap-
propriate).

E.5.1 AMPS Entitlement Check

The amps entitlement check method checks if a user is entitled to access
a specific resource.

int amps_entitlement_check(
amps_entitlement_context context,
const char* user,
amps_entitlement_resource_type resourceType,
const char* resource,
const char** filter,
int entitlement);

Parameters context The entitlement context to use for the
check.

user User identifier to check.
resourceType Resource type.
resource Resource identifier.
filter The content filter for the resource (Re-

served for future use).
entitlement Set to either AMPS READ ALLOWED or

AMPS WRITE ALLOWED.

E.6 Additional Notes 199

Returns AMPS SUCCESS The entitlement check was successful.
AMPS FAILURE An error occurred (should be logged if ap-

propriate).

E.6 Additional Notes

• AMPS will cache values/responses so redundant queries will be mini-
mized.

• AMPS will not be re-entrant on a single context.

• Memory allocated via the amps allocator function (the error strings)
will be freed by AMPS.

• Any options found in the configuration element will be sent via the
options vector. For example, <SPN>foo.baml.com</SPN> is in-
cluded in the Authentication element, the vector would look like: {{SPN,
foo.baml.com}, {0,0}}.

• The Module provided will use dlopen/dlsym to determine if it exports
the correct symbols. If not, a critical error will be emitted and AMPS will
shutdown. This allows a full path to a library to be provided or a simple
library name to force using the LD LIBRARY PATH.

• A function to clear the authentication or entitlement state would clear
cached data within AMPS and terminate and re-initialize the library.

• Using the same library for both authentication and entitlement will result in
an error.

Appendix F
Glossary

acknowledgment a networking technique in which the receiver of a message
is responsible for informing the sender that the message was received.

conflation the process of merging a group of messages into a single message.
e.g.when sending acknowledgment messages for a group of sequential
messages, sending only the most recent message can be used to conflate
all messages which have outstanding acknowledgments waiting to be
processed.

filter a text string that is used to match a subset of messages from a larger set
of messages.

message expiration the process where the life span of records stored are
allowed limited.

message type the data format used to encapsulate messages

oof (out of focus) the process of notifying subscribing clients that a message
which was previously a result of a SOW or a SOW subscribe filter result
has either expired, been deleted from the SOW or has been updated such
that it no longer matches the filter criteria.

replica a downstream copy of records already stored in the SOW, Transaction
Log or Replica of another instance of AMPS.

replication the process of duplicating the messages stored into an AMPS
instance for the purpose of enabling high availability features.

replication source an instance of AMPS which is the primary recipient of a
published message which are then sent out to a replication destination.

replication destination the recipient of replicated messages from the replica-
tion source.

slow client A client that is over-subscribed and being sent messages at a rate
which is faster than it can consume.

201

SOW (State of the World) the last value cache used to store the current state
of messages belonging to a topic.

topic a label which is affixed to every message by a publisher which used to
aggregate and group messages.

transport the network protocol used to to transfer messages between AMPS
subscribers, publishers and replicas.

transaction log a history of all messages published which can be used to
recreate an up to date state of all messages processed.

view a data relation which is constructed from the records of a SOW topic.

List of Figures

3.1 Publish and Subscribe . 11
3.2 Topic Based Pub/Sub . 12

4.1 A SOW topic named ORDERS with a key definition of /Key 16
4.2 Updating the MSFT record by matching incoming message keys . 16

5.1 SOW Query Sequence Diagram 21
5.2 SOW-And-Subscribe Query Sequence Diagram 22

8.1 TCP/IP packet . 37

16.1 sow and subscribe example. 72
16.2 sow and subscribe with State filter. 73
16.3 sow and subscribe with oof enabled 74
16.4 OOF message . 75
16.5 Initial sow and delta subscribe 76
16.6 delta publish message after a game 76
16.7 publish and oof after a trade 77
16.8 The final client table . 78

20.1 Synchronous Persistence Acknowledgment 103
20.2 Asynchronous Persistence Acknowledgment 104
20.3 Persisted Ack strategy. 105
20.4 Single AMPS instance . 109
20.5 Simple High Availability Pair . 110
20.6 Complex High Availability with Regional Replication 113

21.1 AMPS View Server Deployment Configuration 120
21.2 AMPS GUI Instance With sow and subscribe 121
21.3 AMPS Message Publish Update 122
21.4 AMPS OOF Processing . 123

List of Tables

1.1 Documentation Conventions . 3
1.2 Version Number Components . 5

2.1 AMPS Distribution Directories . 6

3.1 Topic Regular Expression Examples 13

4.1 Topic Definition Configuration Description 17

6.1 Escape Sequences . 26
6.2 Logical AND with NULL/NaN Values 29
6.3 Logical OR with NULL/NaN Values. 29

7.1 Regular Expression Meta-characters 31
7.2 Regular Expression Repetition Constructs 31
7.3 Regular Expression Behavior Modifiers 32

8.1 TCP/IP Transport configuration parameters 35

10.1 Log Levels . 44
10.2 Log filename masks . 46
10.3 Log file rotation units . 46
10.4 Logging options available for SYSLOG configuration. 49
10.5 Comparison of AMPS log severity to Syslog severity. 50
10.6 AMPS Error Categories. 51

11.1 /AMPS/ClientStatus Format Fields 54
11.2 Client Status FIX Format Fields 55

12.1 Acknowledgment messages supported by AMPS. 57
12.2 Commands and supported acknowledgment types. 58

13.1 Topic Replica Configuration Parameters 61

14.1 ORDERS table identifiers . 63
14.2 Aggregate functions. 65

204 LIST OF TABLES

17.1 Parameters for amps sow dump. 79
17.2 Parameters for amps journal dump. 82
17.3 Parameters for amps err. 82

18.1 Memory estimation equation. 87
18.2 Example memory estimation. 87
18.3 Minimum SOW size. 88
18.4 Maximum SOW size. 88
18.5 Maximum Message Size allowed in SOW. 88
18.6 Network capacity formula . 89
18.7 Network capacity formula . 90

A.1 FIX Header Fields - sorted by FIX Value 126
A.2 FIX Header Fields - sorted by Name 127
A.3 XML Header Fields - sorted by Name 128
A.4 Header Fields - sorted by Name 131

B.1 Header fields used in a delta publish 132
B.2 Ack types supported by delta publish 133
B.3 Header fields supported by delta subscribe. 135
B.4 Ack types supported by delta subscribe 136
B.5 Header fields supported by logon. 138
B.6 Ack types supported by logon 138
B.7 Header fields supported by publish 139
B.8 Ack types supported by publish 140
B.9 Header fields supported by sow and delta subscribe. 142
B.10 ack types supported by sow and delta subscribe 143
B.11 Header fields supported by sow and subscribe. 144
B.12 ack types supported by sow and subscribe 145
B.13 Options types supported by subscribe 145
B.14 Header fields supported by sow delete. 147
B.15 ack types supported by sow delete 148
B.16 Header fields supported by sow. 150
B.17 ack types supported by sow . 150
B.18 Header fields supported by start timer. 152
B.19 Header fields supported by stop timer. 152
B.20 ack types supported by sow . 152
B.21 Header fields supported by subscribe. 153
B.22 ack types supported by subscribe 154
B.23 Options types supported by subscribe 154
B.24 Header fields supported by unsubscribe. 156
B.25 ack types supported by unsubscribe 157

C.1 AMPS Configuration - Time Units 161
C.2 AMPS Configuration - Byte Units 162
C.3 AMPS Configuration - Numeric Units 162
C.4 Name Parameters . 164
C.5 Admin Parameters . 164
C.6 Module Parameters . 165
C.7 Message Type Parameters . 167

LIST OF TABLES 205

C.8 Transport Parameters . 168
C.9 Logging Parameters . 170
C.10 State of the World Parameters - TopicDefinition 171
C.11 State of the World Parameters - ReplicaDefinition 173
C.12 State of the World Parameters - ViewDefinition 174
C.13 Transaction Log Configuration Parameters 175
C.14 SOW Statistics Interval Parameters 176
C.15 Mini Dump Directory Parameters 177
C.16 Replication Destinations Parameters 177

D.1 CPU Statistics . 178
D.2 Disk Statistics . 179
D.3 Memory Statistics . 179
D.4 Network Statistics . 180
D.5 Client Statistics . 182
D.6 CPU Statistics . 183
D.7 Console Logging Statistics . 184
D.8 File Logging Statistics . 184
D.9 System Logging Statistics . 185
D.10 AMPS Instance Memory . 185
D.11 AMPS Instance Message Types 186
D.12 AMPS Message Processors . 186
D.13 Replication . 187
D.14 SOW interface . 188
D.15 Statistics Interface . 188
D.16 Subscriptions Interface . 189
D.17 Time formatting used in uptime 190
D.18 Subscriptions Interface . 190

Listings

7.1 Filter Regular Expression Example 30
7.2 Case Insensitive Regular Expression 31
7.3 Suffix Matching Regular Expression 31
7.4 Case Insensitive Prefix Regular Expression 31
7.5 Raw String Example . 32
7.6 Regular String Example . 32
7.7 Topic Regular Expression . 33
8.1 TCP with FIX transport example. 34
8.2 TCP/IP configuration transport example 35
9.1 FIX message type configuration example. 38
9.2 Simple publish message in XML format. 40
16.1 Topic Configuration . 70
18.1 Example of FIX Transport with Slow Client Configuration 94
20.1 Replication Source Example . 116
20.2 Replication Destination Example 117
B.1 SOAP publish example . 140
B.2 SOAP sow delete example . 149
C.1 Simple AMPS configuration file 158
C.2 File tokens used in configuration file 160
C.3 Date tokens used in configuration file 160
C.4 Expiration using seconds. 161
C.5 Expiration using seconds. 161
C.6 Environment variable used in configuration 162
C.7 AMPS CONFIG DIRECTORY Environment variable example . . 163
C.8 Name Example . 164
C.9 Admin Example . 164
C.10 Sample global config of authentication and entitlements modules. 165
C.11 Example of security enabled transports. 166
C.12 Message Types Example . 168
C.13 Transports Example . 169
C.14 Logging Example . 171
C.15 SOW TopicMetaData Configuration 172
C.16 Replication example . 173
C.17 State of the World Example . 174

LISTINGS 207

C.18 Transaction Log Configuration Example 175
C.19 SOW Statistics Interval Example 176
C.20 Mini Dump Directory Example . 177
C.21 Configuration Validation Example 177
E.1 Global Configuration for Authentication 191
E.2 Example of Transport with Authentication Enabled 192

Index

Symbols
/AMPS/ClientStatus, 53
/AMPS/SOWStats, 54
AMPS
-- connectivity, 34
-- message protocols, 34
-- network protocols, 34
-- transports, 34
60East Technologies, 5

A
ack, 57
-- completed, 57
-- none, 57
-- persisted, 57
-- processed, 57
-- received, 57
-- stats, 57
AckType, 136, 140, 148
-- AckType, 134
-- completed, 57, 133, 135, 136, 142--

145, 147, 148, 150, 151, 153, 154,
157

-- none, 57, 133, 135, 136, 138, 139,
142--145, 147, 148, 150, 152--154,
156, 157

-- parsed, 153
-- persisted, 57, 102, 103, 111, 112,

115, 133, 136, 139, 140, 143, 145,
147, 148, 151, 153, 154, 157

-- processed, 57, 58, 111, 114, 133--
136, 138--140, 142--145, 147, 148,
150, 151, 153, 154, 156, 157

-- received, 57, 58, 133, 135, 136, 138,
139, 142--145, 147, 148, 150, 153,
154, 156, 157

-- stats, 57, 119, 124, 133, 135, 136,
142--148, 150, 151, 153, 157

Admin console
-- configuration, 164
Admin view, 8
aggregate functions, 65
-- null values, 65
aggregation, 65
AMPS
-- capacity, 86
-- commands, 132
-- demos, 7
-- events, 53
-- fix, 125
-- installation, 6
-- internal topics, 53
-- logging, 42
-- operation and deployment, 86
-- queries, 20
-- starting, 7
-- State, 15
-- topics, 12, 53
-- Utilities, 79
-- XML, 125
amps journal dump, 81
amps sow dump, 79
ampserr, 52
Authentication
-- configuration, 165
authentication, 181, 191
authorization, 191
avg, 65

B
backlog, 36
basics, 6
BatchSize, 22, 23, 150
Bookmark
-- epoch, 101

INDEX 209

-- zero, 101
bookmarks, 104

C
caching, 15
capacity planning, 86
client
-- backlog, 36
-- disconnect, 36
-- offlining, 36
-- slow, 36
-- status, 53
client events, 53
ClientStatus, 53
Command, 146
command, 132
-- Ack, 104
-- ClientStatus, 152
-- OOF, 74, 75, 146
-- ack, 57, 104--106, 133, 138, 152,

156
-- completed, 136
-- delta publish message after a game,

76
-- delta publish, 71, 76, 77, 132--135,

137
-- delta subscribe, 135--137, 141
-- delta subscription, 136
-- group begin, 20, 22, 23, 121, 143,

145, 150
-- group end, 20, 22, 23, 121, 150
-- logon, 102, 104, 111, 112, 137, 138,

192, 193
-- oof, 77, 122
-- publish, 39, 41, 77, 121, 137, 139--

141
-- sow and delta subscribe, 75--78,

123, 141--143
-- sow and subscribe, 21--24, 70, 72--

75, 78, 120--124, 141, 144--146
-- sow and suscribe, 119
-- sow delete, 146--148
-- sow, 20, 22--24, 33, 70, 141, 144,

147, 149--152
-- start timer, 151, 152
-- stop timer, 151--153
-- subscribe, 58, 101, 135, 144, 145,

153, 154, 156
-- subscription, 121, 156
-- unsubscribe, 156, 157

-- delta publish, 58, 132
-- delta subscribe, 58, 135
-- logon, 58
-- oof, 70
-- publish, 58, 139
-- sow, 59, 149
-- sow and delta subscribe, 58, 141
-- sow and subscribe, 59, 144
-- sow delete, 59, 146
-- start timer, 151
-- stop timer, 152
-- subscribe, 59, 153
-- unsubscribe, 59, 156
commands
-- logon, 137
Configuration, 158, 164
-- Admin console, 164
-- Authentication, 165
-- Entitlements, 165
-- Instance name, 164
-- Modules, 165
configuration
-- AMPSConfig, 159
-- Admin, 159, 164
-- Destination, 173
-- Expiration, 161
-- InetAddr, 159, 173
-- Logging, 159
-- MessageType, 18, 173
-- Name, 164
-- Protocol, 159
-- Replication, 173
-- SOWStatsInterval, 54
-- TopicDefinition, 18, 56
-- admin, 96
-- mini dump, 176
-- monitoring interface, 96
-- SOWStatsInterval, 176
-- TransactionLog, 174
-- validation, 177
-- view topic, 173
conflation, 111
connectivity, 34
content filtering, 25
-- NaN, 28
-- NULL, 28
count, 65

D
delta

210 INDEX

-- publish, 132
delta publish, 132
delta subscribe, 135
demo applications, 7
deployment, 86
disconnect, 36
document conventions, 3

E
engine
-- statistics, 54
Entitlement
-- configuration, 165
entitlement, 181
entitlements, 191
epoch bookmark, 101
error categories, 50
Errors
-- ampserr, 52
-- error categories, 50
event topics, 53
events, 53
extracting records, 20

F
falling behind, 36
filters, 25
FIX, 125
fix, 34
FIX messages, 9
formatting of documentation, 3
functions
-- aggregate, 65
-- -- null values, 65

G
Glossary, 200

H
High Availability, 101
-- bookmarks, 104
-- configuration, 115
-- deployment examples, 108
-- fail-over examples, 114
-- live subscription, 106
-- points of failure, 114
-- publish, 104
-- publisher responsibilities, guaran-

tees, 111
-- regional replication, 112

-- replication destination, 117
-- replication source, 116
-- subscribe, 106
-- transaction log, 101
high availability
-- replication, 102
highlights, 1

I
installation, 6
internal event topics, 53
intro to topics, 12
IS NULL, 28

K
kerberos, 191

L
last value cache, 15
Logging
-- configuration, 170
logging, 42, 184
-- file, 184
-- memory, 185
-- syslog, 185
logging:console, 184
logon, 137

M
message expiration, 67
Message Header
-- AckType, 133, 136, 138, 140, 143,

145--147, 152, 154
-- AckTyp, 57, 156
-- BatchSize, 144
-- BkMrk, 106
-- Bookmark, 101
-- ClientName, 138
-- CmdId, 146, 155
-- Matches, 136, 143, 145, 148
-- OOF, 74, 75
-- Options, 106, 144, 145, 154
-- Password, 193
-- Reason, 58
-- RecordsDeleted, 148
-- RecordsReturned, 136, 143, 145
-- SendOOF, 70, 72, 73, 75
-- SeqNo, 104--108
-- SowKeys, 148
-- SowKey, 148

INDEX 211

-- Status, 58, 133, 136, 143, 145, 146,
152

-- SubId, 58, 156
-- TopicMatches, 136, 143, 145, 148
-- UserId, 193
-- ackType, 133, 140, 148
-- bookmark, 104, 138
message protocols, 34
message types, 38
-- configuration, 167
-- fix, 38, 39
-- nvfix, 38
-- XML, 38, 40
MessageLength, 24
minidump, 95, 176, 182
Modules
-- configuration, 165
monitoring interface, 96, 97, 178
-- administration
-- -- replication, 182
-- configuration, 96
-- host, 97, 178
-- -- cpu, 178
-- -- disks, 179
-- -- memory, 179
-- -- name, 180
-- -- network, 180
-- -- utc time, 181
-- instance, 97, 181
-- -- administrator, 181
-- -- clients, 182
-- -- config.xml, 183
-- -- config path, 183
-- -- cpu, 183
-- -- cwd, 184
-- -- logging, 184
-- -- memory, 185
-- -- message types, 185
-- -- name, 186
-- -- pid, 186
-- -- processors, 186
-- -- queries, 187
-- -- replication, 187
-- -- sow, 188
-- -- statistics, 188
-- -- subscriptions, 189
-- -- uptime, 189
-- -- user id, 190
-- -- version, 190
-- -- views, 190

-- output formatting, 98
-- -- csv, 99
-- -- rnc, 100
-- -- xml, 98
-- time range selection, 97

N
network protocols, 34
null values, 65

O
offlining, 36
oof, 70
operating systems, 2
operation, 86
Operation and Deployment
-- minidump, 95
-- slow clients, 93
Options
-- live, 146, 155
-- no empties, 146, 155
-- none, 145, 154
-- oof, 146, 155
-- replace, 146, 155
-- send keys, 146, 155
organization, 2
Out of Focus, 70
overview, 1

P
platforms, 2
playback, 101
pub/sub, 11
Publish
-- high availability, 104
publish, 11, 139
publish and subscribe, 11

Q
query
-- filters, 25
QueryId, 20

R
raw strings, 32
RecordSize, 17
Regular Expressions
-- raw strings, 32
regular expressions, 12
-- topics, 12
replay, 101

212 INDEX

Replication, 173
replication, 101, 102, 187

S
slow client, 36
slow clients, 93
SOW, 15, 171
-- configuration, 16, 171
-- content filters, 25
-- queries, 16
-- query filters, 25
-- RecordSize, 17
-- statistics, 54
-- topic definition, 16
sow, 149
SOW events, 53
SOW Queries, 20
sow and delta subscribe, 141
sow and subscribe, 144
sow delete, 146
SowKey, 24, 137, 148, 149
SowKeys, 149
spark utility, 9
start timer, 151
starting, 7
State of the World (SOW), 15
State of the World events, 53
statistics
-- SOW, 54
stop timer, 152
storage, 15
Subscribe
-- high availability, 106
subscribe, 11, 153
sum, 65
support, 4
-- channels, 5
-- technical, 4
supported platforms, 2
syslog, 185

T
tag reference, 125
TCP/IP, 34
technical support, 4
Topic
-- replication, 173
topic
-- ClientStatus, 53
-- SOWStats, 54

topics
-- regular expressions, 12
transaction log, 101
transactions, 101
transports, 34, 168
troubleshooting
-- mini dump, 176

U
unsubscribe, 156
Utilities, 79
-- amps journal dump, 81
-- amps sow dump, 79
-- ampserr, 79

V
View Topic
-- configuration, 173

W
web console, 96, 178

X
XML, 34, 125

	Introduction to 60East Technologies AMPS
	Welcome
	Product Overview
	Software Requirements
	Organization of this Manual
	Document Conventions
	Technical Support

	Getting Started
	Installing AMPS
	Starting AMPS
	Running the Demonstration Applications
	Admin View of the AMPS Server
	Interacting with AMPS Using Spark
	FIX Messages - A Quick FIX Primer
	Next Steps

	Publish and Subscribe
	Topics
	Content

	State of the World (SOW)
	How Does the State of the World Work?
	Queries
	Configuration

	SOW Queries
	Simple SOW Queries
	SOW Query-and-Subscribe
	SOW Query Response Batching

	Content Filtering
	Syntax

	Regular Expressions
	Examples

	Transports
	Configuration
	TCP/IP Transport

	Message Types
	Configuration
	FIX
	SOAP

	Logging
	Configuration
	Log Messages
	Log Levels
	Logging to a File
	Logging to a Compressed File
	Logging to the Console
	Logging to Syslog
	Error Categories
	Error discovery with ampserr

	Event Topics
	Client Status
	SOW Statistics
	Persisting Event Topic Data

	Message Acknowledgment
	Subscription Acknowledgment Messages

	Topic Replicas
	Configuration

	View Topics
	Example

	Message Expiration
	Usage
	Example Message Lifecycle

	Out of Focus Message Processing (OOF)
	Usage
	Example
	Another Example

	Utilities
	amps_sow_dump
	amps_journal_dump
	ampserr
	spark

	Operation and Deployment
	Capacity Planning
	Linux Operating System Configuration
	Best Practices

	Monitoring Interface
	Configuration
	Time Range Selection
	Output Formatting

	High Availability
	Transaction Log
	Replication
	Bookmarks
	Publishing for High Availability
	Subscribing for High Availability
	Deployment Examples
	Potential Points of Failure
	Configuration

	Sample Use Cases
	View Server Use Case

	Header Field Reference
	FIX Message Header - Sorted by Value
	FIX Message Header - Sorted by Name
	XML Message Header - Sorted by Name
	Header Fields - Sorted by Name

	Command Reference
	delta_publish
	delta_subscribe
	logon
	publish
	sow_and_delta_subscribe
	sow_and_subscribe
	sow_delete
	sow
	start_timer
	stop_timer
	subscribe
	unsubscribe

	Configuration Reference
	AMPS Configuration Basics
	Generating a Configuration File
	Features

	Monitoring Interface Reference
	Host Interface
	Instance Interface

	Authentication and Entitlements
	Configuration
	AMPS Administration
	AMPS Guarantees
	Authentication Interface
	Entitlements Module interface
	Additional Notes

	Glossary

