
AMPS Utilities Guide

AMPS Utilities Guide
5.0

Publication date Jun 26, 2017
Copyright © 2015

All rights reserved. 60East, AMPS, and Advanced Message Processing System are trademarks of 60East Technologies, Inc. All other trademarks
are the property of their respective owners.

iii

Table of Contents
1. Utilities ... 1
2. amps_sow_dump .. 2

2.1. Options and Parameters ... 2
2.2. Usage ... 2
2.3. Verbose Output .. 3
2.4. Sizing Chart .. 4

3. amps_journal_dump .. 6
3.1. Command Line Options ... 6
3.2. Looking at the Output ... 6
3.3. Timestamp formatting ... 8

4. ampserr ... 10
4.1. Options and Parameters ... 10
4.2. Usage ... 10

A. Spark .. 12
A.1. Getting help with spark ... 12
A.2. Spark Commands ... 13
A.3. Spark Authentication .. 20

5. amps_upgrade ... 21
5.1. Options and Parameters ... 21
5.2. Usage ... 21

6. amps-sqlite3 ... 23
6.1. Parameters ... 23
6.2. Usage ... 23

7. amps_file ... 24
7.1. Options and Parameters ... 24
7.2. Usage ... 24

1

Chapter 1. Utilities
AMPS provides several utilities that are not essential to message processing, but can be helpful in troubleshooting
or tuning an AMPS instance:

• amps_sow_dump is used to inspect the contents of a SOW topic store.

• amps_journal_dump is used to examine the contents of an AMPS journal file during debugging and program
tuning.

• ampserr is used to expand and examine error messages that may be observed in the logs. This utility allows a
user to input a specific error code, or a class of error codes, examine the error message in more detail, and where
applicable, view known solutions to similar issues.

• AMPS provides a command-line Spark client as a useful tool for checking the status of the AMPS engine. The
Spark client can also be used to run queries, place subscriptions, and publish data.

• amps_upgrade upgrades data files for existing AMPS instances to the current release of AMPS.

2

Chapter 2. amps_sow_dump
amps_sow_dump is a utility used to inspect the contents of a SOW topic store. Additionally it can be used to gather
summary statistics on a SOW file.

2.1. Options and Parameters
Table 2.1. Parameters for amps_sow_dump

Option Description

filename Filename of the SOW file.

-n LIMIT Maximum number of records to print per file.

-v, --verbose Print record metadata for records and file summary.

--sizing-chart Print memory sizing chart for efficiency comparison (experimental).

-e, --escape Escape special characters in record data and header.

-d DELIMITER Prints only the record data using the provided ASCII character value as the record delimiter
[default: 10 for newline].

--version Show the version number of the program and exit.

-h, --help Show the help message and exit.

2.2. Usage
Example 2.1 shows a simple sow dump with the -e flag set to make the header, message and field separators readable.
Each key which exists in the order.sow file is dumped out to stdout. This output can easily be redirected to a new
file, or piped into another program for further analysis.

This example also uses the -e flag which escapes the special characters. The purpose of this is to simplify the output
presented. The field separator used in this example is byte 1 which is replaced with as \x01 by the -e flag.. If
this flag was not used, then a non-ascii character would be displayed, making the output harder to read.

amps_sow_dump expects a filename at a minimum in order to complete the SOW topic store dump
process.

 %> ./amps_sow_dump -e ./order.sow

 id=0\x01value=1743\x01
 id=1\x01value=6554\x01
 id=2\x01value=3243\x01
 id=3\x01value=5332\x01
 id=4\x01value=3725\x01
 id=5\x01value=1598\x01
 id=6\x01value=6094\x01
 id=7\x01value=7524\x01

amps_sow_dump

3

 id=8\x01value=2432\x01
 id=9\x01value=9669\x01
 id=10\x01value=140\x01

Example 2.1. Example of amps_sow_dump Output

2.3. Verbose Output
The amps_sow_dump utility also provides for verbose output, which will display more information about the file
and its structure in addition to the records contained in the file.

 key = 13480918659780819530
 crc = 3156974437
 flags = 0
 file offset = 4352
 slab offset = 4096
 allocated = 128
 data size = 21
 expiration = 0
 update = 0
 generation = 0
 seq = 0
 data = [1=10001
 2=aaaaaaaaaa
]

 File : ./sow/order.sow
 Version : amps-sow-v1.0
 Valid Keys : 10000
 Record Size : 512
 Maximum Records : 10000
 Multirecords : 0
 Maximum record size : 21
 Average record size : 21.00
 Slab Count : 1

 Slab Detail
 size : 5128192
 file offset : 4096
 valid count : 10000
 invalid count : 0
 stored bytes : 1280000
 data bytes : 210000
 deleted bytes : 0

Example 2.2. amps_sow_dump verbose output

This is the last record reported by amps_sow_dump for this sample SOW file. Table 2.2 describes the rows
in this record.

amps_sow_dump

4

Table 2.2. Parameters for a record in amps_sow_dump

Option Description

key This is the SOWKey for this record - a unique identifier used by AMPS clients to
identify a record.

crc The error checking value used to verify the data integrity of the record.

flags A mask used to identify settings which have been triggered by the AMPS SOW file
store for maintaining this record.

file offset This is the location within the file for the record.

slab offset The location within the slab for the record.

allocated S The number of bytes allocated for the record.

data size The size, in bytes of the data contained in the record.

expiration If set to a value greater than 0, this represents he timestamp when the record will expire
from the SOW.

update Count of updates sent to the record.

generation Each update increments the generation count for a SOW record.

seq The sequence passed in with the message and stored with the record.

data The message data stored in the SOW record.

Table 2.3. Parameters for a file in amps_sow_dump

Option Description

File The filesystem location where the SOW records are persisted.

Version The AMPS SOW file format version.

Valid Keys The number of unique records persisted in the SOW file.

Record Size The number of bytes allocated for each record.

Maximum Records The maximum number of records stored in the SOW file.

Multirecords The number of records which whose contents are larger than the Record Size and
require nultiple records to store the data.

Maximum Record
Size

The size of the largest record persisted in the SOW file.

Average Record Size The average size of all records stored in the SOW file.

Slab Count The number of slabs allocated to the SOW file.

2.4. Sizing Chart
Example 2.3 shows the output from the --sizing-chart flag. This is feature can be useful in tuning AMPS
memory usage and performance. The Record Size with the asterisk shows the current Record Size setting
and allows an AMPS administrator to compare memory usage efficiency along with the potential for a multi-record
penalty.

This feature is currently listed as experimental, so changing AMPS record size configuration based on
the results may not necessarily help performance, and could hurt performance in some cases.

amps_sow_dump

5

%> ./amps_sow_dump --sizing-chart ./order.sow

===
 Record Size Store Efficiency Multirecords
===
 128 128 B 100.00% 0
 256 256 B 50.00% 0
 384 384 B 33.33% 0
 512* 512 B 25.00% 0
 640 640 B 20.00% 0
 768 768 B 16.67% 0
 896 896 B 14.29% 0
1024 1024 B 12.50% 0
1152 1.12 KB 11.11% 0
1280 1.25 KB 10.00% 0
1408 1.38 KB 9.09% 0
1536 1.50 KB 8.33% 0
1664 1.62 KB 7.69% 0
1792 1.75 KB 7.14% 0
1920 1.88 KB 6.67% 0

Example 2.3. Example Output for --sizing-chart

6

Chapter 3. amps_journal_dump
The AMPS journal dump utility is used in examining the contents of an AMPS journal file for debugging and
program tuning. The amps_journal_dump utility is most commonly used as a tool to debug the forensic lifespan
of messages that have previously been published to AMPS. The amps_journal_dump tool is used to show that
messages exist in a journaled topic, and to show the order the message was received in, and the timestamp associated
with the message.

3.1. Command Line Options
The amps_journal_dump program has the following options available. These can also be printed to the screen
by typing amps_journal_dump -help.

Table 3.1. Parameters for amps_journal_dump

Option Description

filename Filename of the AMPS journal file.

-h, --help Show the program help message and quit.

-l LIMIT Limit range of output to entris N:M where N is the first entry and M is the last entry.
Passing in a single value, M, will return the first M results.

--localtime Display ISO 8601 timestamp in localtime.

--extents Add local and replication extents information at the end of the journal dump.

--no-data Do not display data values in the journal dump output.

3.2. Looking at the Output
In this section will examine some sample output from running amps_journal_dump. We will then go over what
each of the entries emitted by the program means.

 File Name : ./AMPS.0000000000.journal
 File Size : 10485760
 Version : amps::txlog/vx
 Extents : [1:10]

 Entry : 5644
 CRC : 3483899014
 type : publish
 entry size : 512
 msg len : 11
 msg type : fix
 localTxId : 5645
 sourceTxId : 0
 source : 0
 client : 13683435528643874114
 clientSeq : 1353

amps_journal_dump

7

 topicHash : 10864674256041732524
 SOW Key : 18446744073709551615
 iso8601 timestamp : 20130612T151247.410553
 flags : 0
 topic len : 40
 auth ID len : 0
 topic : [test_topic_name]
 auth ID : []
 data : [1=1353 2=a]

 Total Entries : 1
 Total Bytes : 5632
 Remaining Bytes : 10480128

Example 3.1. Example of amps_journal_dump Output

As is apparent in Example 3.1, the output from amps_journal_dump is split into three sections, a header, a listing
of the contents of the journal file and a footer.

The header contains general information about the journal file as it is represented in the filesystem, and state data
about the journal file.

Table 3.2. amps_journal_dump listing header.

Option Description

File Name The name fo the file as it appears on the local filesystem.

File Size Number of total bytes allocated by the journal file.

Version This is the version of the formatting used to write the data in the journal file.

Extents A pair of numbers where the first is the number of extents used by the journal file, and the
second is the number of blocks allocated for the journal file.

The second section of the amps_journal_dump lists each of the entries contained in the journal file, along with
all of the meta-data used to track and describe the entry. For the sake of simplicity,Example 3.1 only shows a single
listing, but it is more likely that a journal will contain multiple entries.

Table 3.3. amps_journal_dump sample listing

Option Description

Entry A monotonically increasing value representing the order in which the record was inserted
into the transaction log file.

CRC The cyclic redundancy check used for error checking the message.

type The AMPS command used in the original message.

entry size The number of bytes allocated to the transaction log record.

msg len The number of bytes consumed by the data segment of the record.

msg type The message type used to format the data segment in the record.

localTxId The monotonically increasing identifier used across all records local transaction log journal
files.

sourceTxId The localTxId as it appears on the upstream replication source.

amps_journal_dump

8

Option Description

source A unique identifier used to represent the upstream source of the record. If the source is 0
then the transaction originated from the current host.

client The unique identifier associated with the client that published the message recorded in the
transaction log.

clientSeq The monotonically increasing sequence identifier from the client.

topicHash The unique identifier for the topic the record was published to.

SOW Key The unique identifer for the record in the SOW Topic.

iso 8601 timestamp The ISO-8601 formatted timestamp representing the time the record was published to the
transaction log. Notice that to keep timestamps consistent across instances that may be
geographically dispersed, AMPS always timestamps in the UTC timezone. You can, how-
ever, ask AMPS to convert timestamps to a different timezone as described in Section 3.3.

timestamp The raw timestamp stored in the AMPS transaction log. This is a microsecond-precision
timestamp.

flags A bitmask used to represent any set flags on the transaction log record.

topic len The number of characters in the topic field.

auth ID len The number of characters in the authId field.

topic The plaintext name of the topic the record was published to.

authID The identifier associated with the authentication token used with the publish message.

data The raw data contained in the message.

As seen in Example 3.1, the final section contains general usage information about the data contained in the journal
file.

Table 3.4. amps_journal_dump listing header.

Option Description

Total Entries Total number of journal entries entered into the journal file.

Total bytes The number of reserved bytes consumed by the journal file.

Remaining Bytes The number of unused bytes available out of the total reserved file size.

3.3. Timestamp formatting

The timestamp format used in amps_journal_dump is formatted by default using the system timezone for its
location. To display the time in another timezone, the TZ environment variable can be configured to modify the
output.

 %> TZ='America/New_York' ./amps_journal_dump A.000000000.journal

Example 3.2. Example of formatting timestamp output for Eastern Timezone.

 %> TZ='Asia/Tokyo' ./amps_journal_dump A.000000000.journal

Example 3.3. Example of formatting timestamp output for Tokyo.

amps_journal_dump

9

 %> TZ='Europe/London' ./amps_journal_dump A.000000000.journal

Example 3.4. Example of formatting timestamp output for London.

NOTE: This will not work on dates prior to 1970.

10

Chapter 4. ampserr
AMPS contains a utility to expand and examine error messages which may be observed in the logs. The ampserr
utility allows a user to input a specific error code, or a class of error codes, examine the error message in more detail
and, where applicable, view known solutions to similar issues.

4.1. Options and Parameters
Table 4.1. Parameters for ampserr

Option Description

error The error code to lookup. This can also be a regular expression.

4.2. Usage
The following example shows the output of the “00-0001” error message:

%> ./ampserr 01-0001
AMPS Message 00-0001 [level = info]

 DESCRIPTION: AMPS Copyright message.
 ACTION: No recommended action available.

Found 1 error matching '00-0001'.

Example 4.1. Example of ampserr Usage

The following example will return all messages that begin with “00-”. NOTE: For the sake of brevity, this manual
does not include all messages that match this query.

%> ./ampserr 00-

AMPS Message 00-0000 [level = trace]

 DESCRIPTION: Internal log message used by AMPS
 development team. If you see this message
 logged, please notify AMPS support.

 ACTION: No recommended action available.

AMPS Message 30-0000 [level = warning]

 DESCRIPTION : AMPS internal thread monitoring has
 detected a thread that hasn’t made progress
 and appears 'stuck'. This can happen with long
 operations or a bug within AMPS.

ampserr

11

 ACTION : Monitor AMPS and if these 'stuck'
 messages continue, then a restart of the engine
 could be the only way to resolve it. If it
 appears busy (high CPU utilization) then it
 could be a long operation (large query filter.)

Example 4.2. ampserr Usage with Regular Expression

The following example will return all error messages. NOTE: For the sake of brevity, this manual does not include
all messages that match this query.

%> ./ampserr .

AMPS Message 00-0000 [level = trace]

 DESCRIPTION: Internal log message used by AMPS
 development team. If you see this message
 logged, please notify AMPS support.

 ACTION No recommended action available.

AMPS Message 30-0000 [level = warning]

 DESCRIPTION : AMPS internal thread monitoring
 has detected a thread that hasn’t made
 progress and appears 'stuck'. This can
 happen with long operations or a bug
 within AMPS.

 ACTION : Monitor AMPS and if these 'stuck'
 messages continue, then a restart of the
 engine could be the only way to resolve it.
 If it appears busy (high CPU utilization)
 then it could be a long operation (large
 query filter.)

Example 4.3. ampserr Usage with Regular Expression for Error Messages

12

Appendix A. Spark
AMPS contains a command-line client, spark, which can be used to run queries, place subscriptions, and publish
data. While it can be used for each of these purposes, spark is provided as a useful tool for informal testing and
troubleshooting of AMPS instances. For example, you can use spark to test whether an AMPS instance is reachable
from a particular system, or use spark to perform ad hoc queries to inspect the data in AMPS.

This chapter describes the commands available in the spark. For more information on the features available in
AMPS, see the relevant chapters in the AMPS User Guide.

The spark utility is included in the bin directory of the AMPS install location. The spark client is written in
Java, so running spark requires a Java Virtual Machine for Java 1.6 or later.

To run this client, simply type ./bin/spark at the command line from the AMPS installation directory. AMPS
will output the help screen as shown below, with a brief description of the spark client features.

%> ./bin/spark
===============================
- Spark - AMPS client utility -
===============================
Usage:

 spark help [command]

Supported Commands:

 help
 ping
 publish
 sow
 sow_and_subscribe
 sow_delete
 subscribe

Example:

 %> ./spark help sow

Returns the help and usage information for the 'sow' command.

Example A.1. Spark Usage Screen

A.1. Getting help with spark
Spark requires that a supported command is passed as an argument. Within each supported command, there are
additional unique requirements and options available to change the behavior of Spark and how it interacts with the
AMPS engine.

For example, if more information was needed to run a publish command in Spark, the following would display
the help screen for the Spark client's publish feature.

Spark

13

%>./spark help publish
===============================
- Spark - AMPS client utility -
===============================
Usage:

 spark publish [options]

Required Parameters:

 server -- AMPS server to connect to
 topic -- topic to publish to

Options:

 authenticator -- Custom AMPS authenticator factory to use
 delimiter -- decimal value of message separator character
 (default 10)
 delta -- use delta publish
 file -- file to publish records from, standard in when omitted
 proto -- protocol to use (amps, fix, nvfix, xml)
 (type, prot are synonyms for backward compatibility)
 (default: amps)
 rate -- decimal value used to send messages
 at a fixed rate. '.25' implies 1 message every
 4 seconds. '1000' implies 1000 messages per second.

Example:

 % ./spark publish -server localhost:9003 -topic Trades -file data.fix

 Connects to the AMPS instance listening on port 9003 and publishes
 records
 found in the 'data.fix' file to topic 'Trades'.

Example A.2. Usage of spark publish Command

A.2. Spark Commands
Below, the commands supported by spark will be shown, along with some examples of how to use the various
commands and descriptions of the most commonly-used options. For the full range of options provided by spark,
including options provided for compatibility with previous spark releases, use the spark help command as
described above.

 publish
The publish command is used to publish data to a topic on an AMPS server.

Spark

14

Common Options - spark publish
Table A.1. Spark publish options

Option Definition

server AMPS server to connect to.

topic Topic to publish to.

delimiter Decimal value of message separator character (default 10).

delta Use delta publish (sends a delta_publish command to AMPS).

file File to publish messages from, stdin when omitted. spark interprets each line in the input as a
message. The file provided to this argument can be either uncompressed or compressed in ZIP
format.

proto Protocol to use. In this release, spark supports amps, fix, nvfix and xml. Defaults to amps.

spark also supports json as a synonym for amps in this release.

rate Messages to publish per second. This is a decimal value, so values less than 1 can be provided to
create a delay of more than a second between messages. '.25' implies 1 message every 4 seconds.
'1000' implies 1000 messages per second.

type For protocols and transports that accept multiple message types on a given transport, specifies
the message type to use.

Examples

The examples in this guide will demonstrate how to publish records to AMPS using the spark client in one of the
three following ways: a single record, a python script or by file.

 %> echo '{ "id" : 1, "data": "hello, world!" }' | \
 ./spark publish -server localhost:9007 -type json -topic order

 total messages published: 1 (50.00/s)

Example A.3. Publishing a single XML message.

In Example A.3 a single record is published to AMPS using the echo command. If you are comfortable with creating
records by hand this is a simple and effective way to test publishing in AMPS.

In the example, the JSON message is published to the topic order on the AMPS instance. This publish can be followed
with a sow command in spark to test if the record was indeed published to the ordertopic.

 %> python -c "for n in xrange(100): print '{\"id\":%d}' % n" | \
 ./spark publish -topic disorder -type json -rate 50 \
 -server localhost:9007

 total messages published: 100 (50.00/s)

Example A.4. Publishing multiple messages using python.

Spark

15

In Example A.4 the -c flag is used to pass in a simple loop and print command to the python interpreter and have
it print the results to stdout.

The python script generates 100 JSON messages of the form {"id":0}, {"id":1} ... {"id":99}. The output
of this command is then piped to spark using the | character, which will publish the messages to the disorder topic
inside the AMPS instance.

 %> ./spark publish -server localhost:9007 -type json -topic chaos \
 -file data.json

 total messages published: 50 (12000.00/s)

Example A.5. Spark publish from a file

Generating a file of test data is a common way to test AMPS functionality. Example A.5 demonstrates how to publish
a file of data to the topic chaos in an AMPS server. As mentioned above, spark interprets each line of the file as
a distinct message.

 sow
The sow command allows a spark client to query the latest messages which have been persisted to a topic. The
SOW in AMPS acts as a database last update cache, and the sow command in spark is one of the ways to query
the database. This sow command supports regular expression topic matching and content filtering, which allow a
query to be very specific when looking for data.

For the sow command to succeed, the topic queried must provide a SOW. This includes SOW topics and views,
queues, and conflated topics. These features of AMPS are discussed in more detail in the User Guide.

Common Options - spark sow
Table A.2. Spark sow options

Option Definition

server AMPS server to connect to.

topic Topic to query.

batchsize Batch Size to use during query. A batch size > 1 can help improve performance, as described in
the chapter of the User Guide discussing the SOW.

filter The content filter to use.

proto Protocol to use. In this release, spark supports amps, fix, nvfix and xml. Defaults to amps.

spark also supports json as a synonym for amps in this release.

orderby An expression that AMPS will use to order the results.

topn Request AMPS to limit the query response to the first N records returned.

type For protocols and transports that accept multiple message types on a given transport, specifies
the message type to use.

Spark

16

Examples

%> ./spark sow -server localhost:9007 -type json -topic order \
 -filter "/id = '1'"

{ "id" : 1, "data" : "hello, world" }
Total messages received: 1 (Infinity/s)

Example A.6. spark SOW query

This sow command will query the order topic and filter results which match the xpath expression /id = '1'.
This query will return the result published in Example A.3.

If the topic does not provide a SOW, the command returns an error indicating that the command is not valid for
that topic.

 subscribe
The subscribe command allows a spark client to query all incoming messages to a topic in real time. Similar
to the sow command, the subscribe command supports regular expression topic matching and content filtering,
which allow a query to be very specific when looking for data as it is published to AMPS. Unlike the sow command,
a subscription can be placed on a topic which does not have a persistent SOW cache configured. This allows a
subscribe command to be very flexible in the messages it can be configured to receive.

Common Options - spark subscribe
Table A.3. Spark subscribe options

Option Definition

server AMPS server to connect to.

topic Topic to subscribe to.

delta Use delta subscription (sends a delta_subscribe command to AMPS).

filter Content filter to use.

proto Protocol to use. In this release, spark supports amps, fix, nvfix and xml. Defaults to amps.

spark also supports json as a synonym for amps in this release.

ack Enable acknowledgements when receiving from a queue. Notice that, when this option is provid-
ed, spark acknowledges messages from the queue, signalling to AMPS that the message has
been fully processed. (See the User Guide chapter on AMPS message queues for more informa-
tion.)

backlog Request a max_backlog of greater than 1 when receiving from a queue. (See the User Guide
chapter on AMPS message queues for more information.)

type For protocols and transports that accept multiple message types on a given transport, specifies
the message type to use.

Spark

17

Examples

 %> ./spark subscribe -server localhost:9007 -topic chaos \
 -type json -filter "/name = 'cup'"

{ "name" : "cup", "place" : "cupboard" }

Example A.7. Spark subscribe example

Example A.7 places a subscription on the chaos topic with a filter that will only return results for messages where
/name = 'cup'. If we place this subscription before the publish command in Example A.5 is executed, then
we will get the results listed above.

 sow_and_subscribe
The sow_and_subscribe command is a combination of the sow command and the subscribe command.
When a sow_and_subscribe is requested, AMPS will first return all messages which match the query and are
stored in the SOW. Once this has completed, all messages which match the subscription query will then be sent to
the client.

The sow_and_subscribe is a powerful tool to use when it is necessary to examine both the contents of the
SOW, and the live subscription stream.

Common Options - spark sow_and_subscribe
Table A.4. Spark sow_and_subscribe options

Option Definition

server AMPS server to connect to.

topic Topic to query and subscribe to.

batchsize Batch Size to use during query.

delta Request delta for subscriptions (sends a sow_and_delta_subscribe command to AMPS)

filter Content filter to use.

proto Protocol to use. In this release, spark supports amps, fix, nvfix and xml. Defaults to amps.

spark also supports json as a synonym for amps in this release.

orderby An expression that AMPS will use to order the SOW query results.

topn Request AMPS to limit the SOW query results to the first N records returned.

type For protocols and transports that accept multiple message types on a given transport, specifies
the message type to use.

Examples

Spark

18

 %> ./spark sow_and_subscribe -server localhost:9007 -type json \
 -topic chaos -filter "/name = 'cup'"

 { "name" : "cup", "place" : "cupboard" }

Example A.8. spark SOW and subscribe example

In Example A.8 the same topic and filter are being used as in the subscribe example in Example A.7. The results
of this query initially are similar also, since only the messages which are stored in the SOW are returned. If a publisher
were started that published data to the topic that matched the content filter, then those messages would then be printed
out to the screen in the same manner as a subscription.

 sow_delete
The sow_delete command is used to remove records from the SOW topic in AMPS. If a filter is specified, only
messages which match the filter will be removed. If a file is provided, the command reads messages from the file
and sends those messages to AMPS. AMPS will delete the matching messages from the SOW. If no filter or file
is specified, the command reads messages from standard input (one per line) and sends those messages to AMPS
for deletion.

It can be useful to test a filter by first using the desired filter in a sow command and make sure the recored returned
match what is expected. If that is successful, then it is safe to use the filter for a sow_delete. Once records are
deleted from the SOW, they are not recoverable.

Common Options - sow_delete
Table A.5. Spark sow_delete options

Option Definition

server AMPS server to connect to.

topic Topic to delete records from.

filter Content filter to use. Notice that a filter of 1=1 is true for every message, and will delete the
entire set of records in the SOW.

file File from which to read messages to be deleted.

proto Protocol to use. In this release, spark supports amps, fix, nvfix and xml. Defaults to amps.

spark also supports json as a synonym for amps in this release.

type For protocols and transports that accept multiple message types on a given transport, specifies
the message type to use.

Examples

 %> ./spark sow_delete -server localhost:9007 \
 -topic order -type json -filter "/name = 'cup'"

Spark

19

 Deleted 1 records in 10ms.

Example A.9. spark SOW delete example

With the spark command in Example A.9, we are asking for AMPS to delete records in the topic order which
match the filter /name = 'cup'. In this example, we delete the record we published and queried previously
in the publish and sow spark examples, respectively. spark reports that one matching message was removed
from the SOW topic.

 ping
The spark ping command is used to connect to the amps instance and attempt to logon. This tool is useful to
determine if an AMPS instance is running and responsive.

Common Options - spark ping
Table A.6. Spark ping options

Option Definition

server AMPS server to connect to.

proto Protocol to use. In this release, spark supports amps, fix, nvfix and xml. Defaults to amps.

spark also supports json as a synonym for amps in this release.

Examples

 %> ./spark ping -server localhost:9007 -type json
 Successfully connected to tcp://user@localhost:9007/amps/json

Example A.10. Successful ping using spark

In Example A.10, spark was able to successfully log onto the AMPS instance that was located on port 9007.

 %> ./spark ping -server localhost:9119
 Unable to connect to AMPS
 (com.crankuptheamps.client.exception.ConnectionRefusedException: Unable to
 connect to AMPS at localhost:9119).

Example A.11. Unsuccessful ping using spark

In Example A.11, spark was not able to successfully log onto the AMPS instance that was located on port 9119.
The error shows the exception thrown by spark, which in this case was a ConnectionRefusedException
from Java.

Spark

20

A.3. Spark Authentication
Spark includes a way to provide credentials to AMPS for use with instances that are configured to require authenti-
cation. For example, to use a specific user ID and password to authenticate to AMPS, simply provide them in the
URI in the format user:password@host:port.

The command below shows how to use spark to subscribe to a server, providing the specified username and password
to AMPS.

$AMPS_HOME/bin/spark subscribe -type json \
 -server username:password@localhost:9007

AMPS also provides the ability to implement custom authentication, and many production deployments use cus-
tomized authentication methods. To support this, the spark authentication scheme is customizable. By default, the
authentication scheme spark uses simply provides the user name and password from the -server parameter, as
described above.

Authentication schemes for spark are implemented in Java as classes that implement Authenticator -- the
same method used by the AMPS Java client. To use a different authentication scheme with spark, you implement
the AuthenticatorFactory interface in spark to return your custom authenticator, adjust the CLASSPATH
to include the .jar file that contains the authenticator, and then provide the name of your AuthenticatorFac-
tory on the command line. See the AMPS Java Client API documentation for details on implementing a custom
Authenticator.

The command below explicitly loads the default factory, found in the spark package, without adjusting the CLASS-
PATH.

$AMPS_HOME/bin/spark subscribe –server username:password@localhost:9007 \
 -type json -topic foo \
 -authenticator com.crankuptheamps.spark.DefaultAuthenticatorFactory

21

Chapter 5. amps_upgrade
New verisons of AMPS periodically change the format of the data files AMPS uses. The amps_upgrade utilty
upgrades datafiles from previous versions of AMPS to the current version. amps_upgrade supports upgrades
from version 3.0.3 or later instances.

5.1. Options and Parameters
Table 5.1. Options for amps_upgrade

Option Description

--verbose Print additional details on each operation to stdout

--trace Print the operations that amps_upgrade performs to stdout.

Table 5.2. Instance parameters for amps_upgrade

Option Description

--from=BASE The root directory of the AMPS installation being migrated. This is the directory in which
you usually start the ampServer process. Any relative paths in the config file will be
evaluated relative to this directory.

--config=CONFIG The xml configuration file for the AMPS server being migrated.

--work-
dir=WORK_DIR

The working directory from which the ampServer is invoked.

--tmp-
dir=TMP_DIR

The temporary directory where upgrade files are written while the upgrade process is un-
derway. If this directory does not exist, it will be created. amps_upgrade will fail with-
out changing any existing files if this directory already exists and contains files from a
previous migration.

Table 5.3. Actions for amps_upgrade

Option Description

--check-current Returns true if the instance is the same version as the amps_migrate utility, with no
upgrade needed

--dry-run Step through the entire upgrade process, printing activity, without making changes. Re-
turns false if errors are encountered or upgrade is impossible.

--upgrade Upgrade the instance, returning false if the upgrade is impossible or the upgrade process
fails.

-h, --help Show usage information and exit.

--version Show the program's version number and exit.

5.2. Usage
Simply upgrade an AMPS instance that's executed in the /amps/server directory from another version to this version,
storing temporary files in the /amps/tmp directory:

amps_upgrade

22

$ amps_upgrade --from=/amps --config=/amps/config.xml --work-dir=/amps/
server --tmp-dir=/amps/tmp --upgrade

Example 5.1. upgrading an instance with amps_upgrade

Try out a migration without actually committing the changes to your AMPS instance:

$ amps_upgrade --from=/amps --config=/amps/config.xml --work-dir=/amps/
server --tmp-dir=/amps/tmp --dry-run

Example 5.2. amps_upgrade dry run

Check to see if your AMPS instance is current:

$ amps_upgrade --from=/amps --config=/amps/config.xml --work-dir=/amps/
server --tmp-dir=/amps/tmp --check-current

Example 5.3. check to see if an upgrade is needed

23

Chapter 6. amps-sqlite3
AMPS stores statistics in a sqlite3 database. The amps-sqlite3 script is a convenience wrapper to make it easier to
query the AMPS statistics database.

The wrapper provides two main functions:

1. When run, the wrapper creates a set of temporary tables that join the dynamic and static statistics from the database.
For example, CPU information for the host system is captured in the HCPUS_STATIC and HCPUS_DYNAMIC
tables. For ease of querying, the wrapper joins these into a single HCPU table.

2. The wrapper includes a set of convenience functions for working with date and time. These wrapper functions
convert back and forth from the timestamps used in the database to the ISO8601 format used in AMPS logs.

See the AMPS Monitoring Reference for details on the statistics captured.

6.1. Parameters
Table 6.1. Parameters for amps-sqlite3

Parameter Description

database The sqlite3 database file to query.

query The query to run. Notice that the query must be enclosed in quotes.

The amps-sqlite3 wrapper provides a set of convienience functions that can be included in the query. These
functions are evaluated before the query is presentd to the sqlite3 database engine.

Table 6.2. Convenience functions in amps-sqlite3

Option Description

iso8601(timestamp) Convert timestamp to an ISO8601 format string.

iso8601_local(timestamp) Convert timestamp to an ISO8601 format string in the local timezone.

timestamp(string) Convert the provided ISO8601 format string to a timestamp.

6.2. Usage
Simply provide the file name of the database to query and the query to run:

$ amps-sqlite3 stats.db "select iso8601(timestamp),system_percent from hcpus
 order by timestamp"

Example 6.1. returning a histogram of CPU load for the host

24

Chapter 7. amps_file
AMPS contains a utility that identifies the file type and version number of AMPS files.

7.1. Options and Parameters
Table 7.1. Parameters for amps_file

Option Description

file_name The file name to report on. This argument supports UNIX shell globbing.

7.2. Usage
The following example shows the output of running amps_file on a SOW file:

%> ./amps_file /amps_dir/sow/mytopic.sow

mytopic.sow: AMPS sow 4.0

Example 7.1. Example of ampserr Usage

In this case, the file is recognized as an AMPS SOW file that uses the version 4.0 of the AMPS SOW file format.

	AMPS Utilities Guide
	Table of Contents
	Chapter 1. Utilities
	Chapter 2. amps_sow_dump
	2.1. Options and Parameters
	2.2. Usage
	2.3. Verbose Output
	2.4. Sizing Chart

	Chapter 3. amps_journal_dump
	3.1. Command Line Options
	3.2. Looking at the Output
	3.3. Timestamp formatting

	Chapter 4. ampserr
	4.1. Options and Parameters
	4.2. Usage

	Appendix A. Spark
	A.1. Getting help with spark
	A.2. Spark Commands
	publish
	Common Options - spark publish
	Examples

	sow
	Common Options - spark sow
	Examples

	subscribe
	Common Options - spark subscribe
	Examples

	sow_and_subscribe
	Common Options - spark sow_and_subscribe
	Examples

	sow_delete
	Common Options - sow_delete
	Examples

	ping
	Common Options - spark ping
	Examples

	A.3. Spark Authentication

	Chapter 5. amps_upgrade
	5.1. Options and Parameters
	5.2. Usage

	Chapter 6. amps-sqlite3
	6.1. Parameters
	6.2. Usage

	Chapter 7. amps_file
	7.1. Options and Parameters
	7.2. Usage

