
Advanced Message
Processing System (AMPS)

Advanced Message Processing System (AMPS)
4.3

Publication date Oct 29, 2015
Copyright © 2015

All rights reserved. 60East, AMPS, and Advanced Message Processing System are trademarks of 60East Technologies, Inc. All other trademarks
are the property of their respective owners.

iii

Table of Contents
I. Introduction and Overview ... 1

1. Introduction to 60East Technologies AMPS .. 2
1.1. Product Overview ... 2
1.2. Software Requirements .. 3
1.3. Organization of this Manual .. 3
1.4. Document Conventions ... 4
1.5. Obtaining Support ... 5

2. Getting Started .. 7
2.1. Installing AMPS ... 7
2.2. Starting AMPS .. 7
2.3. Admin View of the AMPS Server .. 8
2.4. Interacting with AMPS Using Spark .. 8
2.5. Next Steps .. 8

3. Spark ... 10
3.1. Getting help with spark ... 10
3.2. Spark Commands .. 11

II. Understanding AMPS .. 18
4. Publish and Subscribe .. 19

4.1. Topics ... 19
4.2. Filtering Subscriptions By Content ... 21
4.3. Message Types .. 22
4.4. Messages in AMPS ... 28

5. Content Filtering .. 31
5.1. Syntax .. 31

6. Regular Expressions ... 38
6.1. Examples .. 38

7. State of the World (SOW) .. 41
7.1. How Does the State of the World Work? .. 41
7.2. Queries ... 42
7.3. SOW Keys .. 42
7.4. SOW Indexing .. 43
7.5. Configuration .. 44

8. SOW Queries .. 49
8.1. SOW Queries .. 49
8.2. Historical SOW Queries .. 50
8.3. SOW Query-and-Subscribe .. 51
8.4. SOW Query Response Batching ... 53
8.5. Configuring SOW Query Result Sets ... 54

9. SOW Message Expiration .. 56
9.1. Usage ... 56
9.2. Example Message Lifecycle ... 58

10. Out-of-Focus Messages (OOF) ... 59
10.1. Usage .. 59
10.2. Example .. 61

11. Delta Messaging ... 66
11.1. Delta Subscribe ... 66

Advanced Message Processing System (AMPS)

iv

11.2. Delta Publish ... 69
12. Message Acknowledgement .. 71
13. Conflated Topics .. 72

13.1. Configuration .. 72
14. Aggregating Data with View Topics .. 74

14.1. Understanding Views ... 74
14.2. Creating Views and Aggregations ... 74
14.3. Functions .. 77
14.4. Examples .. 78

15. Transactional Messaging and Bookmark Subscriptions ... 83
15.1. Transaction Log .. 83

III. Deployment, Monitoring, and Administration .. 90
16. Running AMPS as a Linux Service ... 91

16.1. Installing the Service ... 91
16.2. Configuring the Service ... 91
16.3. Managing the Service .. 92
16.4. Uninstalling the Service ... 93
16.5. Upgrading the Service ... 93

17. Logging ... 94
17.1. Configuration .. 94
17.2. Log Messages ... 94
17.3. Log Levels .. 95
17.4. Logging to a File .. 97
17.5. Logging to a Compressed File ... 99
17.6. Logging to the Console .. 100
17.7. Logging to Syslog ... 100
17.8. Error Categories .. 102
17.9. Looking Up Errors with ampserr .. 104

18. Event Topics .. 105
18.1. Client Status .. 105
18.2. SOW Statistics .. 106
18.3. Persisting Event Topic Data ... 107

19. Utilities .. 110
20. Monitoring Interface ... 111

20.1. Configuration .. 111
20.2. Time Range Selection .. 112
20.3. Output Formatting ... 113

21. Automating Administration With Actions .. 116
21.1. Running an Action on a Schedule .. 116
21.2. Running an Action in Response to a Signal ... 117
21.3. Running an Action on Startup or Shutdown .. 118
21.4. Rotate Log Files .. 118
21.5. Manage Statistics Files .. 119
21.6. Manage Journal Files ... 120
21.7. Removing Files ... 120
21.8. Manage SOW Contents .. 121
21.9. Create Mini-Dump ... 122
21.10. Manage Security .. 122
21.11. Manage Transports ... 123

Advanced Message Processing System (AMPS)

v

21.12. Manage Replication ... 123
21.13. Shut Down AMPS ... 124
21.14. Do Nothing ... 125
21.15. Action Configuration Examples .. 125

22. Replication and High Availability ... 127
22.1. Overview of AMPS High Availability .. 127
22.2. High Availability Scenarios .. 128
22.3. AMPS Replication ... 131
22.4. High Availability ... 141

23. Operation and Deployment ... 145
23.1. Capacity Planning .. 145
23.2. Linux Operating System Configuration ... 150
23.3. Upgrading an AMPS Installation .. 151
23.4. Best Practices .. 152

24. Securing AMPS ... 157
24.1. Authentication ... 157
24.2. Entitlement .. 158
24.3. Providing an Identity for Outbound Connections (Authenticator) 160

25. Troubleshooting AMPS .. 161
25.1. Planning for Troubleshooting ... 161
25.2. Finding Information in the Log .. 161
25.3. Reading Replication Log Messages .. 162
25.4. Troubleshooting Disconnected Clients .. 163

IV. Building Applications with AMPS .. 166
26. Sample Use Cases .. 167

26.1. View Server Use Case ... 167
V. Appendices .. 173

A. AMPS Distribution Layout .. 174
A.1. /bin directory .. 174

Glossary of AMPS Terminology ... 176
Index ... 177

Part I. Introduction and Overview

2

Chapter 1. Introduction to 60East
Technologies AMPS

Thank you for choosing the Advanced Message Processing System (AMPS™) from 60East Technolo-
gies®. AMPS is a feature-rich message processing system that delivers previously unattainable low-la-
tency and high-throughput performance to users.

1.1. Product Overview
AMPS, the Advanced Message Processing System, is built around an incredibly fast messaging engine
that provides traditional publish-subscribe messaging and a wide array of advanced messaging features.
AMPS combines the capabilities necessary for scalable high-throughput, low-latency messaging in real-
time deployments such as in financial services. AMPS goes beyond basic messaging to include advanced
features such as high availability, historical replay, aggregation and analytics, content filtering and con-
tinuous query, last value caching, and more.

Furthermore, AMPS is designed and engineered specifically for next generation computing environments.
The architecture, design and implementation of AMPS allows the exploitation of parallelism inherent
in emerging multi-socket, multi-core commodity systems and the low-latency, high-bandwidth of 10Gb
Ethernet and faster networks. AMPS is designed to detect and take advantage of the capabilities of the
hardware of the system on which it runs.

AMPS does more than just route and deliver messages. AMPS was designed to lower the latency in
real-world messaging deployments by focusing on the entire lifetime of a message from the message's
origin to the time at which a subscriber takes action on the message. AMPS considers the full message
lifetime, rather than just the "in flight" time, and allows you to optimize your applications to conserve
network bandwidth and subscriber CPU utilization -- typically the first elements of a system to reach the
saturation point in real messaging systems.

AMPS offers both topic and content based subscription semantics, which makes it different than most
other messaging platforms. Some of the highlights of AMPS include:

• Topic and content based publish and subscribe

• Client development kits for popular programming languages such as Java, C#, C++, C and Python

• Built in support for FIX, NVFIX, JSON, BSON and XML messages. AMPS also supports uninterpreted
binary messages, and allows you to create composite message types from existing message types.

• State-of-the-World queries

• Historical State-of-the-World queries

• Easy to use command interface

• Full PERL compatible regular expression matching

Introduction to 60East Technologies AMPS

3

• Content filters with SQL92 WHERE clause semantics

• Built-in latency statistics and client status monitoring

• Advanced subscription management, including delta publish and subscriptions and out-of-focus noti-
fications

• Basic CEP capabilities for real-time computation and analysis

• Aggregation within topics and joins between topics, including joins between different message types

• Replication for high availability

• Fully queryable transaction log

• Message replay functionality

• Extensibility API for adding message types, transports, authentication, and entitlement functionality

1.2. Software Requirements
AMPS is supported on the following platforms:

• Linux 64-bit (2.6 kernel or later) on x86 compatible processors

While 2.6 is the minimum kernel version supported, AMPS will select the most efficient
mechanisms available to it and thus reaps greater benefit from more recent kernel and CPU
versions.

1.3. Organization of this Manual
This manual is divided into the following chapters:

• Chapter 1 — Introduction to AMPS; (this chapter) describes the product, provides information on using
this manual efficiently, and explains how to obtain technical support.

• Chapter 2 —AMPS Basics; covers installation, basic configuration, operation and usage. Start here if
you want to start using AMPS immediately.

• Chapter 3 introduces the spark command-line utility for working with AMPS. This utility is provided
for testing and troubleshooting AMPS, and provides many of the capabilities of the client libraries from
a command-line interface.

• Chapter 4 through Chapter 22 contain feature-specific information:

• Chapter 4 — Publishing and Subscribing

• Section 4.3 — Message Types

Introduction to 60East Technologies AMPS

4

• Chapter 7 — State of the World (SOW)

• Chapter 8 — SOW Queries

• Chapter 5 — Content Filtering

• Chapter 6 — Regular Expressions

• Chapter 17 — Logging

• Chapter 18 — AMPS Event Topics

• Chapter 12 — Message Acknowledgement.

• Chapter 13 — Conflated Topics

• Chapter 14 — View Topics

• Chapter 9 — Message Expiration

• Chapter 10 — OOF - Out of Focus Messages

• Chapter 11 — Delta Messaging

• Chapter 15 — Transactional Messaging and Bookmark Subscriptions

• Chapter 19 — Utilities

• Chapter 23 — Operation and Deployment

• Chapter 20 — Monitoring Interface

• Chapter 22 — High Availability

• Chapter 26 — Sample Use Cases for AMPS

• Chapter 25 describes troubleshooting techniques for AMPS

1.4. Document Conventions
This manual is an introduction to the 60East Technologies AMPS product. It assumes that you have a
working knowledge of Linux, and uses the following conventions.

Table 1.1. Documentation Conventions

Construct Usage
text standard document text

code inline code fragment

variable variables within commands or configuration

Introduction to 60East Technologies AMPS

5

Construct Usage
usage tip or extra information

usage warning

required required parameters in parameter tables
optional optional parameters in parameter tables

Additionally, here are the constructs used for displaying content filters, XML, code, command line, and
script fragments.

(expr1 = 1) OR (expr2 = 2) OR (expr3 = 3) OR (expr4 = 4) OR (expr5 =
5) OR (expr6 = 6) OR (expr7 = 7) OR (expr8 = 8)

Command lines will be formatted as in the following example:

 find . -name *.java

1.5. Obtaining Support
For an outline of your specific support policies, please see your 60East Technologies License Agreement.
Support contracts can be purchased through your 60East Technologies account representative.

Support Steps
You can save time if you complete the following steps before you contact 60East Technologies Support:

1. Check the documentation. The problem may already be solved and documented in the User’s Guide or
reference guide for the product. 60East Technologies also provides answers to frequently asked support
questions on the support web site at http://support.crankuptheamps.com.

2. Isolate the problem.

If you require Support Services, please isolate the problem to the smallest test case possible. Capture
erroneous output into a text file along with the commands used to generate the errors.

3. Collect your information.

• Your product version number.

• Your operating system and its kernel version number.

• The expected behavior, observed behavior and all input used to reproduce the problem.

http://support.crankuptheamps.com

Introduction to 60East Technologies AMPS

6

• Submit your request.

• If you have a minidump file, be sure to include that in your email to
crash@crankuptheamps.com.

The AMPS version number used when reporting your product version number follows a format listed
below. The version number is composed of the following:

 MAJOR.MINOR.MAINTENANCE.HOTFIX.TIMESTAMP.TAG

Each AMPS version number component has the following breakdown:

Table 1.2. Version Number Components

Component Description
MAJOR Increments when there are changes in functionality, file formats, configs, or

deprecated functionality.

MINOR Ticks when new functionality is added.

MAINTENANCE Increments with standard bug fixing, maintenance, small features and en-
hancements.

HOTFIX A release for a critical defect impacting a customer. A hotfix release is de-
signed to be 100% compatible with the release it fixes (that is, a release with
same MAJOR.MINOR.MAINTENANCE version)

TIMESTAMP Proprietary build timestamp.

TAG Identifier that corresponds to precise code used in the release.

Contacting 60East Technologies Support
 Please contact 60East Technologies Support Services according to the terms of your 60East Technologies
License Agreement.

Support is offered through the United States:

Toll-free: (888) 206-1365
International: (702) 979-1323
FAX: (888) 216-8502
Web: http://www.crankuptheamps.com
E-Mail: sales@crankuptheamps.com
Support: support@crankuptheamps.com

mailto:crash@crankuptheamps.com
http://www.crankuptheamps.com
mailto:sales@crankuptheamps.com
mailto:support@crankuptheamps.com

7

Chapter 2. Getting Started
Chapter 2 is for users who are new to AMPS and want to get up and running on a simple instance of
AMPS. This chapter will walk new users through the file structure of an AMPS installation, configuring
a simple AMPS instance and running the demonstration tools provided as part of the distribution to show
how a simple publisher can send messages to AMPS.

2.1. Installing AMPS
To install AMPS, unpack the distribution for your platform where you want the binaries and libraries to
be stored. For the remainder of this guide, the installation directory will be referred to as $AMPSDIR as
if an environment variable with that name was set to the correct path.

Within $AMPSDIR the following sub-directories listed in Table 2.1.

Table 2.1. AMPS Distribution Directories

Directory Description
api Include files for modules that work directly with the AMPS server binary
bin AMPS engine binaries and utilities
docs Documentation
lib Library dependencies
sdk Include files for the AMPS extension API

AMPS client libraries are available as a separate download from the AMPS web site. See the
AMPS developer page at http://www.crankuptheamps.com/developer to download the latest
libraries.

2.2. Starting AMPS
The AMPS Engine binary is named ampServer and is found in $AMPSDIR/bin. Start the AMPS
engine with a single command line argument that includes a valid path to an AMPS configuration file. For
example, you can start AMPS with the demo configuration as follows:

$AMPSDIR/bin/ampServer $AMPSDIR/demos/amps_config.xml

AMPS uses the current working directory for storing files (logs and persistence) for any relative
paths specified in the configuration. While this is important for real deployments, the demo
configuration used in this chapter does not persist anything, so you can safely start AMPS from
any working directory using this configuration.

On older processor architectures, ampServer will start the ampServer-compat binary.
The ampServer-compat binary avoids using hardware instructions that are not available
on these systems.

http://www.crankuptheamps.com/developer

Getting Started

8

If your first start-up is successful, you should see AMPS display a simple message similar to the following
to let you know that your instance has started correctly.

AMPS 4.0.0.0 - Copyright (c) 2006 - 2014 60East Technologies, Inc.
(Built: Nov 16 2014 13:53:41)

For all support questions: support@crankuptheamps.com

If you see this, congratulations! You have successfully cranked up the AMPS!

2.3. Admin View of the AMPS Server
When AMPS has been started correctly, you can get an indication if it is up or not by connecting to its
admin port with a browser at http://<host>:<port> where <host> is the host the AMPS instance
is running on and <port> is the administration port configured in the configuration file. When successful,
a hierarchy of information regarding the instance will be displayed. If you've started AMPS using the
sample configuration file, try connecting to http://localhost:8085. For more information on
the monitoring capabilities, please see AMPS Monitoring Reference Guide, available from the 60East
documentation site at http://docs.crankuptheamps.com/.

2.4. Interacting with AMPS Using Spark
AMPS provides the spark utility as a command line interface to interacting with an AMPS server.
spark provides many of the capabilities of the AMPS client libraries through this interface. The utili-
ty lets you execute commands like 'subscribe', 'publish', 'sow', 'sow_and_subscribe'
and 'sow_delete'.

You can read more about spark in the spark chapter of the AMPS User Guide. Other useful tools for
troubleshooting AMPS are described in the AMPS Utilities Guide.

2.5. Next Steps
The next step is to configure your own instance of AMPS to meet your messaging needs. The AMPS
configuration is covered in more detail in AMPS Configuration Reference Guide

After you have successfully configured your own instance, there are two paths where you can go next.

One path is to continue using this guide and learn how to configure, administer and customize AMPS
in depth so that it may meet the needs of your deployment. If you are a system administrator who is
responsible for the deployment, availability and management of data to other users, then you may want
to focus on this User Guide first.

Getting Started

9

The other path introduces the AMPS Client APIs. This path is targeted at software developers looking to
integrate AMPS into their own solutions. 60East provides client libraries for C, C++, C#, Java and Python.
These libraries are available for download from the 60East website. The website also includes evaluation
kits designed to help programmers quickly get started with AMPS. For developers, the basic functionality
of the AMPS server is explained in this User Guide. The Developer Guides and API documentation explain
how to use that particular client library to create applications that use AMPS functionality.

10

Chapter 3. Spark
AMPS contains a command-line client, spark, which can be used to run queries, place subscriptions,
and publish data. While it can be used for each of these purposes, Spark is provided as a useful tool for
checking the status of the AMPS engine.

The spark utility is included in the bin directory of the AMPS install location. The spark client is
written in Java, so running spark requires a Java Virtual Machine for Java 1.6 or later.

To run this client, simply type ./bin/spark at the command line from the AMPS installation directory.
AMPS will output the help screen as shown below, with a brief description of the spark client features.

%> ./bin/spark
===============================
- Spark - AMPS client utility -
===============================
Usage:

 spark help [command]

Supported Commands:

 help
 ping
 publish
 sow
 sow_and_subscribe
 sow_delete
 subscribe

Example:

 %> ./spark help sow

Returns the help and usage information for the 'sow' command.

Example 3.1. Spark Usage Screen

3.1. Getting help with spark
Spark requires that a supported command is passed as an argument. Within each supported command,
there are additional unique requirements and options available to change the behavior of Spark and how
it interacts with the AMPS engine.

For example, if more information was needed to run a publish command in Spark, the following would
display the help screen for the Spark client's publish feature.

Spark

11

%>./spark help publish
===============================
- Spark - AMPS client utility -
===============================
Usage:

 spark publish [options]

Required Parameters:

 server -- AMPS server to connect to
 topic -- topic to publish to

Options:
 delimiter -- decimal value of separator character
 for messages. Default is 10 (LF)
 delta -- use delta publish
 file -- file to publish records from,
 standard in when omitted
 prot -- protocol to use (amps, fix, nvfix, xml)(default:
 amps)
 rate -- decimal value used to send messages
 at a fixed rate. '.25' implies 1 message
 every 4 seconds. '1000' implies 1000 messages
 per second.

Example:

 %> ./spark publish -server localhost:9003 -topic Trades
 -file data.fix

 Connects to the AMPS instance listening on port 9003
 and publishes records found in the 'data.fix'
 file to topic 'Trades'.

Example 3.2. Usage of spark publish Command

3.2. Spark Commands
Below, the commands supported by spark will be shown, along with some examples of how to use the
various commands.

Spark

12

 publish
The publish command is used to publish data to a topic on an AMPS server.

Options
Table 3.1. Spark publish options

Option Definition
server AMPS server to connect to.
topic Topic to publish to.
delimiter Decimal value of message separator character (default 10).
delta Use delta publish (sends a delta_publish command to AMPS).
file File to publish messages from, stdin when omitted. spark interprets each line in the

input as a message.
proto Protocol type to use. In this release, spark supports amps, fix, nvfix, json and

xml. Defaults to amps.
rate Messages to publish per second. This is a decimal value, so values less than 1 can be

provided to create a delay of more than a second between messages. '.25' implies 1 mes-
sage every 4 seconds. '1000' implies 1000 messages per second.

Examples

The examples in this guide will demonstrate how to publish records to AMPS using the spark client in
one of the three following ways: a single record, a python script or by file.

 %> echo '{ "id" : 1, "data": "hello, world!" }' | \
 ./spark publish -server localhost:9007 -topic order

 total messages published: 1 (50.00/s)

Example 3.3. Publishing a single XML message.

In Example 3.3 a single record is published to AMPS using the echo command. If you are comfortable
with creating records by hand this is a simple and effective way to test publishing in AMPS.

In the example, the XML message is published to the topic order on the AMPS instance. This publish can
be followed with a sow command in spark to test if the record was indeed published to the ordertopic.

 %> python -c "for n in xrange(100): print '{\"id\":%d}' % n" | \
 ./spark publish -topic disorder -rate 50 \
 -server localhost:9007

Spark

13

 total messages published: 100 (50.00/s)

Example 3.4. Publishing multiple messages using python.

In Example 3.4 the -c flag is used to pass in a simple loop and print command to the python interpreter
and have it print the results to stdout.

The python script generates 10 JSON messages of the form {"id":0}, {"id":1} ... {"id":99}.
The output of this command is then piped to spark using the | character, which will publish the messages
to the disorder topic inside the AMPS instance.

 %> ./spark publish -server localhost:9007 -topic chaos \
 -file data.json

 total messages published: 50 (12000.00/s)

Example 3.5. Spark publish from a file

Generating a file of test data is a common way to test AMPS functionality. Example 3.5 demonstrates how
to publish a file of data to the topic chaos in an AMPS server. As mentioned above, spark interprets
each line of the file as a distinct message.

 sow
The sow command allows a spark client to query the latest messages which have been persisted to a
topic. The SOW in AMPS acts as a database last update cache, and the sow command in spark is one
of the ways to query the database. This sow command, supports regular expression topic matching and
content filtering, which allow a query to be very specific when looking for data.

Options
Table 3.2. Spark sow options

Option Definition
server AMPS server to connect to.
topic Topic to publish to.
batchsize Batch Size to use during query. A batch size > 1 can help improve performance.
filter The content filter to use.
proto Protocol type to use. In this release, spark supports amps, fix, nvfix, json and

xml. Defaults to amps.
orderby An expression that AMPS will use to order the results.
topn Request AMPS to limit the query response to the first N records returned.

Spark

14

Examples

%> ./spark sow -server localhost:9004 -topic order \
 -filter "/id = '1'"

{ "id" : 1, "data" : "hello, world" }
Total messages received: 1 (Infinity/s)

Example 3.6.

This sow command will query the order topic and filter results which match the xpath expression /msg/
id = '1'. This query will return the result published in Example 3.3.

 subscribe
The subscribe command allows a spark client to query all incoming message to a topic in real time.
Similar to the sow command, the subscribe command supports regular expression topic matching
and content filtering, which allow a query to be very specific when looking for data as it is published to
AMPS. Unlike the sow command, a subscription can be placed on a topic which does not have a persistent
SOW cache configured. This allows a subscribe command to be very flexible in the messages it can be
configured to receive.

Options
Table 3.3. Spark subscribe options

Option Definition
server AMPS server to connect to.
topic Topic to subscribe to.
delta Use delta subscription (sends a delta_subscribe command to AMPS).
filter Content filter to use.
proto Protocol type to use. In this release, spark supports amps, fix, nvfix, json and

xml. Defaults to amps.

Examples

 %> ./spark subscribe -server localhost:9003 -topic chaos -filter "/
name = 'cup'"

Spark

15

 1=cup^A2=cupboard

Example 3.7. Spark subscribe example

Example 3.7 places a subscription on the chaos topic with a filter that will only return results for messages
where /1 = 'cup'. If we place this subscription before the publish command in Example 3.5 is
executed, then we will get the results listed above.

 sow_and_subscribe
The sow_and_subscribe command is a combination of the sow command and the subscribe
command. When a sow_and_subscribe is requested, AMPS will first return all messages which
match the query and are stored in the SOW. Once this has completed, all messages which match the
subscription query will then be sent to the client.

The sow_and_subscribe is a powerful tool to use when it is necessary to examine both the contents
of the SOW, and the live subscription stream.

Options
Table 3.4. Spark sow_and_subscribe options

Option Definition
server AMPS server to connect to.
topic Topic to subscribe to.
batchsize Batch Size to use during query.
delta Request delta for subscriptions (sends a sow_and_delta_subscribe command to

AMPS)
filter Content filter to use.
proto Protocol type to use. In this release, spark supports amps, fix, nvfix, json and

xml. Defaults to amps.
orderby An expression that AMPS will use to order the SOW query results.
topn Request AMPS to limit the SOW query results to the first N records returned.

Examples

 %> ./spark sow_and_subscribe -server localhost:9003 -topic chaos -
filter "/name = 'cup'"

 { "name" : "cup", "place" : "cupboard" }

Spark

16

Example 3.8.

In Example 3.8 the same topic and filter are being used as in the subscribe example in Example 3.7.
The results of this query initially are similar also, since only the messages which are stored in the SOW
are returned. If a publisher were started that published data to the topic that matched the content filter,
then those messages would then be printed out to the screen in the same manner as a subscription.

 sow-delete
The sow_delete command is used to remove records from the SOW topic in AMPS. It is recommended,
but not required, to use a filter in conjunction with a SOW delete. If a filter is specified, only messages
which match the filter will be removed.

It can useful to test a filter by first using the desired filter in a sow command and make sure the recored
returned match what is expected. If that is successful, then it is safe to use the filter for a sow_delete.
Once records are deleted from the SOW, they are not recoverable.

Options
Table 3.5. Spark sow-delete options

Option Definition
server AMPS server to connect to.
topic Topic to delete records from.
filter Content filter to use.
proto Protocol type to use. In this release, spark supports amps, fix, nvfix, json and

xml. Defaults to amps.

Examples

 %> ./spark sow_delete -server localhost:9005 \
 -topic order -filter "/name = 'cup'"

 Deleted 1 records in 10ms.

Example 3.9.

In Example 3.9 we are asking for AMPS to delete records in the topic order which match the filter /1
= 'cup'. In this example, we delete the record we published and queried previously in the publish
and sow spark examples, respectively. spark reports that one matching message was removed fro the
SOW topic.

Spark

17

 ping
The spark ping command us used to connect to the amps instance and attempt to logon. This tool is
useful to determine if an AMPS instance is running and responsive.

Options
Table 3.6. Spark ping options

Option Definition
server AMPS server to connect to.
proto Protocol type to use. In this release, spark supports amps, fix, nvfix, json and

xml. Defaults to amps.

Examples

 %> ./spark ping -server localhost:9007
 Successfully connected to tcp://user@localhost:9007/amps

Example 3.10. Successful ping using spark

In Example 3.10, spark was able to successfully log onto the AMPS instance that was located on port
9004.

 %> ./spark ping -server localhost:9119
 Unable to connect to AMPS
 (com.crankuptheamps.client.exception.ConnectionRefusedException:
 Unable to
 connect to AMPS at localhost:9119).

Example 3.11. Unsuccessful ping using spark

In Example 3.11, spark was not able to successfully log onto the AMPS instance that was located on
port 9119. The error shows the exception thrown by spark, which in this case was a ConnectionRe-
fusedException from Java.

Part II. Understanding AMPS

19

Chapter 4. Publish and Subscribe
AMPS is a rich message delivery system. At the core of the system, the AMPS engine is highly-optimized
for publish and subscribe delivery. In this style of messaging, publishers send messages to a message
broker (such as AMPS) which then routes and delivers messages to the subscribers. "Pub/Sub" systems,
as they are often called, are a key part of most enterprise message buses, where publishers broadcast
messages without necessarily knowing all of the subscribers that will receive them. This decoupling of the
publishers from the subscribers allows maximum flexibility when adding new data sources or consumers.

PUBLISHER
Topic: LN_ORDERS

Ticker: IBM|Price:125

SUBSCRIBER
Topic: LN_ORDERS

AMPS

SUBSCRIBER
Filter: Ticker = = "MSFT"

SUBSCRIBER 2
Filter: Ticker = = "IBM"

Figure 4.1. Publish and Subscribe

AMPS can route messages from publishers to subscribers using a topic identifier and/or content within the
message’s payload. For example, in Chapter 4, there is a Publisher sending AMPS a message pertaining
to the LN_ORDERS topic. The message being sent contains information on Ticker “IBM” with a Price of
125, both of these properties are contained within the message payload itself (i.e., the message content).
AMPS routes the message to Subscriber 1 because it is subscribing to all messages on the LN_ORDERS
topic. Similarly, AMPS routes the message to Subscriber 2 because it is subscribed to any messages having
the Ticker equal to “IBM”. Subscriber 3 is looking for a different Ticker value and is not sent the message.

4.1. Topics
A topic is a string that is used to declare a subject of interest for purposes of routing messages between
publishers and subscribers. Topic-based Publish and-Subscribe (e.g., Pub/Sub) is the simplest form of Pub/
Sub filtering. All messages are published with a topic designation to the AMPS engine, and subscribers
will receive messages for topics to which they have subscribed.

Publish and Subscribe

20

PUBLISHER 1
Topic: LN_ORDERS

PUBLISHER 2
Topic: NY_ORDERS

AMPS

SUBSCRIBER 1
Topic: LN_ORDERS

SUBSCRIBER 3
Topic: NY_ORDERS

SUBSCRIBER 2
Topic: .*_ORDERS

Figure 4.2. Topic Based Pub/Sub

For example, in Section 4.1, there are two publishers: Publisher 1 and Publisher 2 which publish to the
topics LN_ORDERS and NY_ORDERS, respectively. Messages published to AMPS are filtered and routed
to the subscribers of a respective topic. For example, Subscriber 1, which is subscribed to all messages for
the LN_ORDERS topic will receive everything published by Publisher 1. Subscriber 2, which is subscribed
to the regular expression topic ".*_ORDERS" will receive all orders published by Publisher 1 and 2.

Regular expression matching makes it easy to create topic paths in AMPS. Some messaging systems re-
quire a specific delimiter for paths. AMPS allows you the flexibility to use any delimiter. However, 60East
recommends using characters that do not have significance in regular expressions, such as forward slashes.
For example, rather than using northamerica.orders as a path, use northamerica/orders.

Regular Expressions
With AMPS, a subscriber can use a regular expression to simultaneously subscribe to multiple topics that
match the given pattern. This feature can be used to effectively subscribe to topics without knowing the
topic names in advance. Note that the messages themselves have no notion of a topic pattern. The topic
for a given message is unambiguously specified using a literal string. From the publisher’s point of view,
it is publishing a message to a topic; it is never publishing to a topic pattern.

Subscription topics are interpreted as regular expressions if they include special regular expression char-
acters. Otherwise, they must be an exact match. Some examples of regular expressions within topics are
included in Table 4.1.

Publish and Subscribe

21

Table 4.1. Topic Regular Expression Examples

Topic Behavior
^trade$ matches only “trade”.

^client.* matches “client”, “clients”, “client001”, etc.

.*trade.* matches “NYSEtrades”, “ICEtrade”, etc.

For more information regarding the regular expression syntax supported within AMPS, please see the
Regular Expression chapter in the AMPS User Guide.

AMPS can be configured to disallow regular expression topic matching for subscriptions. See the AMPS
Configuration Guide for details.

4.2. Filtering Subscriptions By Content
One thing that differentiates AMPS from classic messaging systems is its ability to route messages based
on message content. Instead of a publisher declaring metadata describing the message for downstream
consumers, the publisher can simply publish the message content to AMPS and let AMPS examine the
native message content to determine how best to deliver the message.

The ability to use content filters greatly reduces the problem of oversubscription that occurs when topics
are the only facility for subscribing to message content. The topic space can be kept simple and content
filters used to deliver only the desired messages. The topic space can reflect broad categories of messages
and does not have to be polluted with metadata that is usually found in the content of the message. In
addition, many of the advanced features of AMPS such as out-of-focus messaging, aggregation, views,
and SOW topics rely on the ability to filter content.

Content-based messaging is somewhat analogous to database queries that include a WHERE clause. Topics
can be considered tables into which rows are inserted (or updated). A subscription is similar to issuing
a SELECT from the topic table with a WHERE clause to limit the rows which are returned. Topic-based
messaging is analogous to a SELECT on a table with no limiting WHERE clause.

AMPS uses a combination of XPath-based identifiers and SQL-92 operators for content filtering. Some
examples are shown below:

Example Filter for a JSON message
(/Order/Instrument/Symbol = 'IBM') AND
(/Order/Px >= 90.00 AND /Order/Px < 91.00)

Example Filter for an XML Message:

 (/FIXML/Order/Instrmt/@Sym = ’IBM’) AND (/FIXML/Order/@Px

Publish and Subscribe

22

 >= 90.00 AND /FIXML/Order/@Px < 91.0)

Example Filter for a FIX Message:

 /35 < 10 AND /34 = /9

For more information about how content is handled within AMPS, check out the Content Filtering chapter
in the AMPS User Guide.

Unlike some other messaging systems, AMPS lets you use a relatively small set of topics to
categorize messages at a high level and use content filters to retrieve specific data published
to those topics. Examples of good, broad topic choices:

trades, positions, MarketData, Europe, alerts

This approach makes it easier to administer AMPS, easier for publishers to decide which topics
to publish to, and easier for subscribers to be sure that they've subscribed to all relevant topics.

Replacing the Content Filter on a Subscription
AMPS allows you to replace the content filter on an existing subscription. When this happens, AMPS
begins sending messages on the subscription that match the new filter. When an application needs to bring
more messages into scope, this can be more efficient than creating another subscription.

For example, an application might start off with a filter such as the following

/region = 'WesternUS'

The application might then need to bring other regions into scope, for example:

/region IN ('WesternUS', 'Alaska', 'Hawaii')

Replacing a filter is an atomic operation. That is, the application is guaranteed not to miss messages that
are in both the original and replacement filter, and is guaranteed to receive all messages for the new filter
as of the point at which the replacement happens.

4.3. Message Types

Message communication between the publisher and subscriber in AMPS is managed through the use of
message types. Message types define the data contained within an AMPS message. Each topic has a
specific message type.

Publish and Subscribe

23

All message types in AMPS are implemented as plug-in modules. For more information on plug-in mod-
ules, contact 60East support for access to the AMPS Server SDK.

Default Message Types
AMPS automatically loads modules for the following message types:

Table 4.2. AMPS Default Message Types

Message Type Name Description

bson Binary JSON (BSON)

fix FIX messages using numeric tags.

json JSON messages

nvfix NVFIX messages, using arbitrary alphanumeric
tags.

xml XML messages (of any schema)

binary Uninterpreted binary payload. Because this mod-
ule does not attempt to parse the payload, it does
not support content filtering, views and aggregates.
Likewise, because there is no set format for the pay-
load, this message type cannot support features that
construct messages (such as delta messaging, /AM-
PS/.* topic subscriptions and stats acks).

With these message types, AMPS automatically loads the module and declares a message type. For ef-
ficiency, AMPS only parses the content of a message if required, and only to the extent required. For
example, if AMPS only needs to find the id tag in an NFVIX message, AMPS will not fully parse the
message, but will stop parsing the message after finding the id tag.

The FIX and NVFIX message types support configuration of the field and message delimiters.

AMPS allows you to create new message types by assembling existing message types into a composite
message. Composite message types are described in the section called “Composite Messages”, and require
additional configuration:

Table 4.3. AMPS composite message types

Message Type Name Description

composite-global Composite message type that combines message
parts for content filtering. This message type com-
bines one or more existing message types into a
message. This type is described in more detail in the
section called “Composite Messages”.

composite-local Composite message type, filterable by individual
parts. This message type combines one or more ex-
isting message types into a message. This type is de-

Publish and Subscribe

24

Message Type Name Description
scribed in more detail in the section called “Com-
posite Messages”.

Composite Messages
Sometimes, applications only need to filter on a small subset of the fields in a message. Sometimes appli-
cations need to send and receive messages that cannot be meaningfully parsed by AMPS, such as images
or audio files. For these cases, AMPS provides a composite message type that lets you create a new mes-
sage type by combining existing message types.

For example, you might create a message type that includes three parts: the metadata for an image as a
json document, a small JPG thumbnail as a binary message part, and a full size PNG image as another
binary message part.

Composite messages can also be useful when the message itself is large or resource-intensive to parse.
In this case, you can create a message type that includes the information needed to filter messages in a
JSON or NVFIX part, and include the full message in the unparsed payload of the composite message,
as described below.

AMPS provides two different types of composite messages. Messages created using the compos-
ite-local module preserve information about the individual parts for filtering, aggregation, and pro-
jection. Messages creating using the composite-global module treat the individual parts as elements
of a single document.

Configuring Composite Message Types

To use a composite message type, you must first configure the type by declaring it in the MessageTypes
section of the AMPS configuration file. The declaration contains the name of the new composite message
type, specifies that the new type is composite, and lists the parts of the composite message type.

For example, the MessageType element below declares a new composite message type named im-
ages. The new type contains a json document at the beginning of the message, followed by two un-
interpreted binary message parts. AMPS will combine the XPath identifiers for all message parts into a
single set of identifiers. Notice that, because only one part of the message type is parsable, using com-
posite-global simplifies the identifiers for the message.

<MessageTypes>
...
 <MessageType>
 <Name>images</Name>
 <Module>composite-global</Module>
 <MessageType>json</MessageType>
 <MessageType>binary</MessageType>
 <MessageType>binary</MessageType>
 </MessageType>

Publish and Subscribe

25

...
</MessageTypes>

The MessageType entries for the composite message can be any AMPS message type, including any
previously defined composite message.

Once the new composite message type is created, you can use the new type in the configuration file.

Composite message types have the following restrictions:

• Delta subscribe and delta publish are not supported for message types that use composite-global.

• Views, joins, and aggregation cannot project message types that use composite-global. (However,
composite message types that use composite-global can be an UnderlyingTopic or one of
the topics in a Join.)

• Composite message types do not support features that automatically construct messages, such as sub-
scriptions the AMPS/.* topics and stats acks, regardless of the module the type uses.

Unparsed Payload Section

All composite message types, regardless of how they are defined, provide an unparsed payload section.
The unparsed payload section does not need to be declared in the MessageType declaration. As the
name suggests, AMPS does not parse or interpret this section, so the unparsed payload can contain any
content of any type. The AMPS clients provide access to set the unparsed payload on outgoing messages,
and to retrieve the unparsed payload from incoming messages.

The unparsed payload is included to simplify the common technique where a message type contains a
header that is used for filtering followed by an unparsed binary. If your composite message type contains
a single binary part, consider using the unparsed payload section in your application rather than declaring
a binary message part.

Content Filtering with Composite Message Types
Composite message types support filtering on the contents of the composite message. There are some
simple conventions to remember when constructing expressions to filter on. For more details about content
filtering, see Section 4.2.

These conventions are consistent anywhere that AMPS needs to find a value within the composite message
type. That includes content filters for client subscriptions, identifying SOW keys, creating views and
aggregates, creating conflated topics, and so on.

composite-global

When using the composite-global message type, AMPS combines all parts of the message into a
unified set of XPath identifiers. AMPS creates the set of identifiers for each part of the message. If differ-

Publish and Subscribe

26

ent parts of the message contain the same identifier, AMPS treats that identifier as though the identifier
contained an array of values: AMPS creates an array that contains all of the values in the different parts
of the message. Message types that do not support content filtering do not provide XPath identifiers.

For example, consider the message below for a composite-global message type that includes two
json parts and a binary part:

{"id":1,"data":"sample","message":"part one message"}
{"message":"another part","customer":"Awesome Amalgamated, Ltd."}
0xDEEA0934DF23A37780934...

AMPS constructs the following set of XPath identifiers and values:

Table 4.4. Composite-global message identifiers

Identifier Value

/id 1

/data "sample"

/message ["part one message", "another
part"]

/customer "Awesome Amalgamated, Ltd."

In short, when using composite-global, AMPS combines the parsable parts of the message into a
single global set of XPath values, and ignores any part of the message that cannot be parsed.

composite-local

When using the composite-local message type, AMPS creates a distinct set of XPath identifiers for
each part of the message. AMPS adds an XPath step with the position of the message part at the beginning
of the identifier. Message types that do not support content filtering do not provide XPath identifiers, and
AMPS skips over them.

For example, consider the message below for a composite-local message type that includes two
json parts and a binary part:

{"id":1,"data":"sample","message":"part one message"}
{"message":"another part","customer":"Awesome Amalgamated, Ltd."}
0xDEEA0934DF23A37780934...

AMPS constructs the following set of XPath identifiers and values:

Table 4.5. Composite-local message identifiers

Identifier Value

/0/id 1

/0/data "sample"

Publish and Subscribe

27

Identifier Value

/0/message "part one message"

/1/message "another part"

/1/customer "Awesome Amalgamated, Ltd."

In short, when using composite-local, AMPS creates XPath identifiers for each part of the message,
using the position of the message part within the composite as the first part of the identifier. AMPS skips
over any part of the message that cannot be parsed, and simply produces no values for that part of the
message.

Choosing A Composite Type
To choose which composite type best fits your application, consider the following factors:

• If you need to use delta messaging with this message type, use composite-local.

• If there may be redundant field names in the parts of the message, and it is important to be able to filter
based on which part contains the field, use composite-local.

• If you need to be able to create views of this type, use composite-local.

Otherwise, composite-global may be easier and more straightforward for client filtering, since
clients do not need to know the detailed structure of the message type to be able to filter on the message.

Loading Additional Message Types
AMPS includes the ability to load custom message types in external modules. As with all AMPS modules,
custom message types are compiled into shared object files. AMPS dynamically loads these message types
on startup, using the information provided in the configuration file. Once you have loaded and declared
those types, you can use the type just as you use the default message types.

For example, the configuration below creates a message type named custom-type that uses a module
named libmy-type-module.so and specifies a transport for messages of that type:

<Modules>
 <Module>
 <Name>custom-type-module</Name>
 <Library>./custom-modules/libmy-type-module.so</Library>
 </Module>
</Modules>

<MessageTypes>
 <MessageType>
 <Name>custom-type</Name>
 <Module>custom-type-module</Module>

Publish and Subscribe

28

 </MessageType>
</MessageTypes>

<Transports>
 <Transport>
 <Name>custom-type-tcp</Name>
 <Type>tcp</Type>
 <InetAddr>9008</InetAddr>
 <MessageType>custom-type</MessageType>
 <Protocol>amps</Protocol>
 </Transport>
</Transports>

Specifies the name to use to refer to this module in the rest of the configuation file
Path to the library to load for this module. In this example, the path is a relative path below the
directory where AMPS is started.
The name to use for this message type in the rest of the configuration file.
Reference to the module that implements this message type, using the Name defined in the Module
configuration.
The message type that this transport uses, using the Name defined in the MessageType configu-
ration.

Once a message type has been declared, you can use it in exactly the same way you use the default message
types.

Notice, however, that custom-developed message types may only provide support for a subset of the
features of AMPS. For example, the binary message type provided with AMPS does not support features
that require AMPS to parse or construct a message, as described above. The developer of the message
type must provide information on what capabilities the message type provides.

4.4. Messages in AMPS

Communication between applications and the AMPS server uses AMPS messages. AMPS Messages are
received or sent for every operation in AMPS. Each AMPS message has a specific type, and consists of
a set of headers and a payload. The headers are defined by AMPS formatted according to the protocol
specified for the connection. Typically, applications use the standard amps protocol which uses a JSON
document for headers. The payload, if one is present, is the content of the message, and is in the format
specified by the message type.

Messages received from AMPS have the same format as messages to AMPS. These messages also have
a specific type, with a header formatted according to the protocol and a payload of the specified message
type. For example, AMPS uses ack messages, short for acknowledgement, to report the status of com-
mands. AMPS uses publish messages to deliver messages on a subscription, and so on for other com-
mands and other messages.

For example, when a client subscribes to a topic in AMPS, the client sends a subscribe message to
AMPS that contains the information about the requested subscription and, by default, a request for an

Publish and Subscribe

29

acknowledgement that the subscription has been processed. AMPS returns an ack message when the
subscription is processed that indicates whether the subscription succeeded or failed, and then begins
providing publish messages for new messages on the subscription.

Messages to and from AMPS are described in more detail in the AMPS Command Reference, available
on the 60East website and included in the AMPS client SDKs.

Introduction to AMPS Headers
The AMPS Command Reference contains a full list of headers for each command. The table below lists
some commonly-used headers.

Table 4.6. Basic AMPS Headers

Header Description
Topic The topic that the message applies to. For com-

mands to AMPS, this is the topic that AMPS will
apply the command to. For messages from AMPS,
this is the topic from which the message originated.

Command The command type of message. Each message has a
specific command type. For example, messages that
contain data from a query over a SOW topic have a
command of sow, while messages that contain data
from a publish command have a command of pub-
lish, and messages that acknowledge a command
to AMPS have a command type of ack.

CommandId An identifier used to correlate responses from AM-
PS with an initial command. For example, ack mes-
sages returned by AMPS contain the CommandId
provided with the command they acknowledge, and
subscriptions can be updated or removed using the
CommandId provided with the subscribe com-
mand.

SowKey For messages received from a State of the World (or
SOW) topic, an identifier that AMPS assigns to the
record for this message. SOW topics are described
in Chapter 7. This header is included on messages
from a SOW topic by default. AMPS will omit this
header when the subscription or SOW query in-
cludes the no_sowkeys option.

CorrelationId A user-specified identifier for the message. Publish-
ers can set this identifier on messages. AMPS does
not parse, change, or interpret this identifier in any
way.

Status Set on ack messages to indicate the results of the
command, such as Success or Failure.

Publish and Subscribe

30

Header Description
Reason Set on ack messages to indicate the reason for the

Status acknowledgement.
Timestamp Optionally set on publish messages and sow

messages to indicate the time at which AMPS
processed the message. To receive a timestamp, the
SOW query or subscription must include the time-
stamp option on the command that creates the sub-
scription or runs the query.

This section presents a few of the commonly-used headers. See the AMPS Command Reference for a full
description of AMPS messages.

AMPS does not provide the ability to add custom header fields. However, AMPS composite message types
provide an easy way to add an additional section to a message type that contains metadata for the message.
Because composite message type parts fully support AMPS content filtering, this approach provides more
flexibility and allows for more sophisticated metadata than simply adding a header field. See the section
called “Composite Messages” for details.

31

Chapter 5. Content Filtering
AMPS allows a subscriber to specify a content filter using syntax similar to that of SQL-92's WHERE
clause. Content filters are used to provide a greater level of selectivity in messages sent over a subscription
than provided by topic alone. When using a content filter, only the messages matching the requested topic
and the content filter are delivered to the subscribing client.

5.1. Syntax
AMPS implements content filtering using expressions that combine SQL-92 and XPath syntax. Instead
of table columns, XPath expressions are used to identify values within a message. The syntax of the filter
expression is based on a subset of the SQL-92 search condition syntax.

Each expression compares two values. A value can be either an identifier that specifies a value in a mes-
sage, a literal value, such as 42 or 'IBM', or a regular expression as described in Chapter 6. Comparison
is done with either a logical operator or an arithmatic operator.

For example, the following expression compares the OrderQty value in each message with a number:

/OrderQty > 42

The following expression compares two fields in the message:

/21694 < /14

A content filter is made up of one or more expressions, joined together by logical operators and grouped
using parentheses. For example:

(expression1 OR expression2 AND expression3) OR (expression4 AND
 NOT expression5) ...

A content filter is evaluated left to right in precedence order. So in this example, expression2 will be
evaluated followed by expression3 (since AND has higher precedence than OR), and if they evaluate
to false, then expression1 will be evaluated and so on.

Identifiers
AMPS identifiers use a subset of XPath to specify values in a message. AMPS identifiers specify the value
of an attribute or element in an XML message, and the value of a field in a JSON, FIX or NVFIX message.
Because the identifier syntax is only used to specify values, the subset of XPath does not need to include
relative paths, arrays, predicates, or functions.

For example, when messages are in this XML format:

<Order update="full">

Content Filtering

32

 <ClientID>12345</ClientID>
 <Symbol>IBM</Symbol>
 <OrderQty>1000</OrderQty>
</Order>

The following identifier specifies the Symbol element of an Order message:

/Order/Symbol

The following identifier specifies the update attribute of an Order message:

/Order/@update

For FIX and NVIX, you specify fields using / and the tag name. AMPS interprets FIX and NVFIX
messages as though they were an XML fragment with no root element. For example, to specify the value
of FIX tag 55 (symbol), use the following identifier:

/55

Likewise, for JSON or other types that represent an object, you navigate through the object structure using
the / to indicate each level of nesting.

AMPS checks the syntax of identifiers, but does not try to predict whether an identifier will match mes-
sages within a particular topic. It is not an error to submit an identifier that can never match. For example,
AMPS allows you to use an identifier like /OrderQty with a FIX topic, even though FIX messages
only use numeric tags.

Literals
String literals are indicated with single or double quotes. For example:

/FIXML/Order/Instrmt/@Sym = 'IBM'

AMPS supports the following escape sequences within string literals:

Table 5.1. Escape Sequences

Escape Sequence Definition
\a Alert
\b Backspace
\t Horizontal tab
\n Newline
\f Form feed
\r Carriage return
\xHH Hexadecimal digit where H is (0..9,a..f,A..F)
\OOO Octal Digit (0..7)

Content Filtering

33

Additionally, any character which follows a backslash will be treated as a literal character.

Numeric literals are either integer values or floating-point values. Integer values are all numerals, with no
decimal point, and can have a value in the same range as a 64-bit integer. For example:

 42
 149
 -273

Floating-point literals are all numerals with a decimal point:

 3.1415926535
 98.6
 -273.0

or, in scientific notation:

 31.4e-1
 6.022E23
 2.998e8

Literals can also be the Boolean values true or false.

Logical Operators
The logical operators are NOT, AND, and OR, in order of precedence. These operators have the usual
Boolean logic semantics.

 /FIXML/Order/Instrmt/@Sym = 'IBM' OR /FIXML/Order/Instrmt/@Sym =
 'MSFT'

Arithmetic Operators
AMPS supports the arithmetic operators +, -, *, /, %, and MOD in expressions. The result of arithmetic
operators where one of the operands is NULL is undefined and evaluates to NULL. Examples of filter
expressions using arithmetic operators:

 /6 * /14 < 1000

 /Order/@Qty * /Order/@Prc >= 1000000

Numeric values in AMPS are always typed as either integers or floating point values. AMPS uses the
following rules for type promotion when evaluating expressions:

1. If any of the values in the expression is NaN, the result is NaN.

2. Otherwise, if any of the values in the expression is floating point, the result is floating point.

Content Filtering

34

3. Otherwise, all of the values in the expression are integers, and the result is an integer.

Notice that, for division in particular, the results returned are affected by the type of the values. For ex-
ample, the expression 1 / 5 evaluates to 0 (the result interpreted as an integer), while the expression
1.0 / 5.0 evaluates to 0.2 (the result interpreted as a floating point value).

When using mathematical operators in conjunction with filters, be careful about the placement
of the operator. Some operators are used in the XPath expression as well as for mathematical
operation (for example, the '/' operator in division). Therefore, it is important to separate
mathematical operators with white space, to prevent interpretation as an XPath expression.

Comparison Operators
The comparison operators can be loosely grouped into equality comparisons and range comparisons. The
basic equality comparison operators, in precedence order, are ==, =, >, >=, <, <=, !=, and <>. If these
binary operators are applied to two operands of different types, AMPS attempts to convert strings to
numbers. If conversion succeeds, AMPS uses the numeric values. If conversion fails, strings are always
greater than numbers.

The following table shows some examples of how AMPS compares different types.

Table 5.2. Comparison Operator Examples

Expression Result
1 < 2 TRUE
10 < '2' FALSE, '2' can be converted to a number
'2.000' <> '2.0' TRUE, both are strings
10 < 'Crank It Up' TRUE, strings are greater than numbers

There are also set and range comparison operators. The BETWEEN operator can be used to check the
range values.

The range used in the BETWEEN operator is inclusive of both operands, meaning the expres-
sion /A BETWEEN 0 AND 100 is equivalent to /A >= 0 AND /A <= 100

For example:

 /FIXML/Order/OrdQty/@Qty BETWEEN 0 AND 10000
 /FIXML/Order/@Px NOT BETWEEN 90.0 AND 90.5

The IN operator can be used to perform membership operations on sets of values:

 /Trade/OwnerID NOT IN ('JMB', 'BLH', 'CJB')

Content Filtering

35

 /21964 IN (/14*5, /6*/14, 1000, 2000)

AMPS includes two kinds of string comparison operators. The BEGINS WITH, ENDS WITH, and INSTR
operators do literal matching on the contents of a string.

BEGINS WITH and ENDS WITH test whether a field begins or ends with the literal string provided. The
operators return TRUE or FALSE:

/Department BEGINS WITH ('Engineering')
/path NOT BEGINS WITH ('/public/dropbox')

/filename ENDS WITH ('txt')
/price NOT ENDS WITH ('99')

AMPS allows you to use set comparisons with BEGINS WITH and ENDS WITH:

/Department BEGINS WITH ('Engineering', 'Research', 'Technical')

/filename ENDS WITH ('gif', 'png', 'jpg')

The INSTR operator allows you to check to see if one string occurs within another string. For this operator,
you provide two string values. If the second string occurs within the first string, INSTR returns the position
at which the second string starts, or 0 if the second string does not occur within the first string. Notice
that the first character of the string is 1 (not 0). For example, the expression below tests whether the string
critical occurs within the /eventLevels field.

INSTR(/eventLevels, "critical") != 0

AMPS also provides a more general comparison operator, LIKE, that allows for regular expression match-
ing on string values. A pattern is used for the right side of the LIKE operator. For more on regular expres-
sions and the LIKE comparison operator, please see Chapter 6.

The BEGINS WITH and ENDS WITH operators are usually more efficient than equivalent LIKE expres-
sions, particularly when used to compare multiple patterns.

Conditional Operators

AMPS contains support for a ternary conditional IF operator which allows for a Boolean condition to
be evaluated to true or false, and will return one of the two parameters. The general format of the
IF statement is

 IF (BOOLEAN_CONDITIONAL, VALUE_TRUE, VALUE_FALSE)

In this example, the BOOLEAN_CONDITIONAL will be evaluated, and if the result is true, the
VALUE_TRUE value will be returned otherwise the VALUE_FALSE will be returned.

Content Filtering

36

For example:

 SUM(IF(((/FIXML/Order/OrdQty/@Qty > 500) AND
 (/FIXML/Order/Instrmt/@Sym ='MSFT')), 1, 0))

In the above example, we are looking for the total number of orders that have been placed where the
symbol is MSFT and the order contains a quantity more than 500.

The IF can also be used to evaluate results to determine if results are NULL or NaN.

For example:

 SUM(/FIXML/Order/Instrmt/@Qty * IF(
 /FIXML/Order/Instmt/@Price IS NOT NULL, 1, 0))

NULL, NaN and IS NULL

XPath expressions are considered to be NULL when they evaluate to an empty or nonexistent field refer-
ence. In numeric expressions where the operands or results are not a valid number, the XPath expression
evaluates to NaN (not a number). The rules for applying the AND and OR operators against NULL and NaN
values are outlined in Table 6.2 and Table 6.3.

Table 5.3. Logical AND with NULL/NaN Values

Operand1 Operand2 Result
TRUE NULL NULL
FALSE NULL FALSE
NULL NULL NULL

Table 5.4. Logical OR with NULL/NaN Values

Operand1 Operand2 Result
TRUE NULL TRUE
FALSE NULL NULL
NULL NULL NULL

The NOT operator applied to a NULL value is also NULL, or “Unknown.” The only way to check for
the existence of a NULL value reliably is to use the IS NULL predicate. There also exists an IS NAN
predicate for checking that a value is NaN (not a number.)

To reliably check for existence of a NULL value, you must use the IS NULL predicate such
as the filter: /Order/Comment IS NULL

Content Filtering

37

Working With Substrings
AMPS provides a function, SUBSTR, that can be used for returning a subset of a string. There are two
forms of this function.

The first form takes the source string and the position at which to begin the substring. You can use a
negative number to count backward from the end of the string. AMPS starts at the position specified, and
returns a string that starts at the specified position and goes to the end of the string.

For example, the following expressions are all TRUE:

SUBSTR("fandango", 4) == "dango"

SUBSTR("fandango", 1) == "fandango"

SUBSTR("fandango", -2) == "go"

The second form of SUBSTR takes the source string, the position at which to begin the substring, and the
length of the substring. For example, the following expressions are all TRUE:

SUBSTR("fandango", 1, 3) == "fan"

SUBSTR("fandango", -4, 2) == "an"

SUBSTR("fandango", -8, 8) == "fandango"

Utility Functions
AMPS includes functions that are useful in expressions, but don't neatly fall into the other categories.
Those functions are listed below.

Table 5.5. AMPS Utility functions

Function Parameters Description
UNIX_TIMESTAMP() none Returns the current timestamp as a

double.

38

Chapter 6. Regular Expressions
AMPS supports regular expression matching on topics and within content filters. Regular expressions are
implemented in AMPS using the Perl-Compatible Regular Expressions (PCRE) library. For a complete
definition of the supported regular expression syntax, please refer to:

http://perldoc.perl.org/perlre.html

6.1. Examples
Here is an example of a content filter for messages that will match any message meeting the following
criteria:

• Symbols of 2 or 3 characters starting with “IB”

• Prices starting with “90”

• Prices less than 91

and, the corresponding content filter:

 (/FIXML/Order/Instrmt/@Sym LIKE "^IB.?$") AND (/FIXML/
 Order/@Px LIKE "^90\..*" AND /FIXML/Order/@Px < 91.0)

Example 6.1. Filter Regular Expression Example

The tables below (Table 6.1, Table 6.2, and Table 6.3) contain a brief summary of special characters and
constructs available within regular expressions.

Here are more examples of using regular expressions within AMPS.

Use (?i) to enable case-insensitive searching. For example, the following filter will be true regardless
if /client/country contains “US” or “us”.

 (/client/country LIKE "(?i)ˆus$")

Example 6.2. Case Insensitive Regular Expression

To match messages where tag 55 has a TRADE suffix, use the following filter:

 (/55 LIKE "TRADE$")

Example 6.3. Suffix Matching Regular Expression

http://perldoc.perl.org/perlre.html

Regular Expressions

39

To match messages where tag 109 has a US prefix, but a TRADE suffix with case insensitive comparisons,
use the following filter:

 (/109 LIKE "(?i)ˆUS.*TRADE$")

Example 6.4. Case Insensitive Prefix Regular Expression

Table 6.1. Regular Expression Meta-characters

Characters Meaning
^ Beginning of string
$ End of string
. Any character except a newline
* Match previous 0 or more times
+ Match previous 1 or more times
? Match previous 0 or 1 times
| The previous is an alternative to the following
() Grouping of expression
[] Set of characters
{} Repetition modifier
\ Escape for special characters

Table 6.2. Regular Expression Repetition Constructs

Construct Meaning
a* Zero or more a's
a+ One or more a's
a? Zero or one a's
a{m} Exactly m a's
a{m,} At least m a's
a{m,n} At least m, but no more than n a's

Table 6.3. Regular Expression Behavior Modifiers

Modifier Meaning
i Case insensitive search
m Multi-line search
s Any character (including newlines) can be matched by a . character
x Unescaped white space is ignored in the pattern.
A Constrain the pattern to only match the beginning of a string.
U Make the quantifiers non-greedy by default (the quantifiers are greedy and try to

match as much as possible by default.)

Regular Expressions

40

Raw Strings
AMPS additionally provides support for raw strings which are strings prefixed by an 'r' or 'R' character.
Raw strings use different rules for how a backslash escape sequence is interpreted by the parser.

In the example below, the raw string - noted by the r character in the second operand of the LIKE predicate
(Example 6.5) - will cause the results to parse the same as example which does not implement the raw
string in the “LIKE” predicate (Example 6.6). In this example we are querying for string that contains
the programming language named C++. In the regular string, we are required to escape the '+' character
since it is also used by AMPS as the “match previous 1 or more times” regular expression character. In the
raw string we can use r'C++' to search for the string and not have to escape the special '+' character.

 /FIXML/Language LIKE r'C++'

Example 6.5. Raw String Example

 /FIXML/Language LIKE 'C\+\+'

Example 6.6. Regular String Example

Topic Regular Expressions
As mentioned previously, AMPS supports regular expression filtering for topics, in addition to content fil-
ters. Regular expressions use the same grammar described in content filtering. Regular expression match-
ing for topics is enabled in an AMPS instance by default.

Subscriptions or queries that use a regular expression for the topic name provide all matching records
from AMPS topics where the name of the topic matches the regular expression used for the subscription
or query. For example, if your AMPS configuration has three SOW topics, Topic_A, Topic_B and
Topic_C and you wish to search for all messages in all of your SOW topics for records where the Name
field is equal to “Bob”, then you could use a sow command with a topic of Topic_.* and a filter of
/FIXML/@Name='Bob' to return all matching messages that match the filter in all of the topics that
match the topic regular expression.

Results returned when performing a topic regular expression query will follow “configuration
order” — meaning that the topics will be searched in the order that they appear in your AM-
PS configuration file. Using the above query example ??? with Topic_A, Topic_B and
Topic_C, if the configuration file has these topics in that exact order, the results will be re-
turned first from Topic_A, then from Topic_B and finally the results from Topic_C. As
with other queries, AMPS does not make any guarantees about the ordering of results within
any given topic query.

41

Chapter 7. State of the World (SOW)
One of the core features of AMPS is the ability to persist the most recent update for each message matching
a topic. The State of the World can be thought of as a database where messages published to AMPS are
filtered into topics, and where the topics store the latest update to a message. Since AMPS subscriptions
are based on the combination of topics and filters, the State of the World (SOW) gives subscribers the
ability to quickly resolve any differences between their data and updated data in the SOW by querying the
current state of a topic, or any set of messages inside a topic.

AMPS also provides the ability to keep historical snapshots of the contents of the State of the World,
which allows subscribers to query the contents of the SOW at a particular point in time and replay changes
from that point in time.

7.1. How Does the State of the World Work?
Much like a relational database, AMPS SOW topics contain the ability to persist the most recent update
for each message. AMPS identifies a message by using a unique key for the message. The SOW key for a
message is similar to the primary key in a relational database: each value of the key is a unique message.
The first time a message is received with a particular SOW key, AMPS adds the message to the SOW.
Subsequent messages with the same SOW key value update the message.

AMPS assigns a SOW key based on the content of the message. The fields to use for the key are specified in
the SOW topic definition, and consist of one or more XPath expressions. AMPS finds the specified fields
in the message and computes a SOW key based on the name of the topic and the values in these fields.

The following diagrams demonstrate how the SOW works.

MSFT
IBM

Price

30
120

key=1;symbol=MSFT;price=30

key=2;symbol=IBM;price=120

ORDERS

Symbol1

2

Key

1
2

Figure 7.1. A SOW topic named ORDERS with a key definition of /Key

In Figure 7.1, two messages are published where neither of the messages have matching keys existing in
the ORDERS topic, the messages are both inserted as new messages. Some time after these messages are
processed, an update comes in for the MSFT order changing the price from 30 to 35. Since the MSFT order
update has a key field of 1, this matches an existing record and overwrites the existing message containing
the same key, as seen in Figure 7.2.

State of the World (SOW)

42

MSFT
IBM

Price

30 35
120

key=1;symbol=MSFT;price=35

ORDERS

Symbol3 Key

1
2

Figure 7.2. Updating the MSFT record by matching incoming message keys

By default, state of the world topics are persistent. For persistent topics, AMPS stores the contents of the
state of the world in a dedicated file. This means that the total state of the world does not need to fit into
memory, and that the contents of the state of the world database are maintained across server restarts. You
can also define a transient state of the world topic, which does not store the contents of the SOW to a file.

The state of the world file is separate from the transaction log, and you do not need to configure a trans-
action log to use a SOW. When a transaction log is present that covers the SOW topic, on restart AMPS
uses the transaction log to keep the SOW up to date. When the latest transaction in the SOW is more
recent than the last transaction in the transaction log (for example, if the transaction log has been deleted),
AMPS takes no action. If the transaction log has newer transactions than the SOW, AMPS replays those
transactions into the SOW to bring the SOW file up to date. If the SOW file is missing, AMPS rebuilds
the state of the world by replaying the transaction log from the beginning of the log.

When the state of the world is transient, AMPS does not store the state of the world across restarts. In this
case, AMPS does not synchronize the state of the world with the transaction log when the server starts.
Instead, AMPS tracks the state of the world for messages that occur while the server is running, without
replaying previous messages into the SOW.

7.2. Queries
At any point in time, applications can issue SOW queries to retrieve all of the messages that match a given
topic and content filter. When a query is executed, AMPS will test each message in the SOW against the
content filter specified and all messages matching the filter will be returned to the client. The topic can be
a literal topic name or a regular expression pattern. For more information on issuing queries, please see
the SOW Queries chapter in the AMPS User Guide.

7.3. SOW Keys
This section describes AMPS SOW keys in detail, including information on how AMPS generates SOW
keys and considerations for applications that generate SOW keys. An individual SOW topic may use either
AMPS-generated SOW keys or user-generated SOW keys. Every message in the SOW must use the same
type of key generation.

State of the World (SOW)

43

AMPS-Generated SOW Keys
AMPS-generated SOW keys are often the easiest and most reliable way to define the SOW key for a
message. The advantages of this approach are that AMPS handles all of the mechanics of generating the
key. The key will always match the data in the message, and there is no need for a publisher to be concerned
with how AMPS assigns the key. The publisher simply publishes messages, and AMPS handles all of
the details.

AMPS creates the key based on the key domain (which is the name of the topic by default) and the values
of the fields specified as SOW keys. AMPS concatenates these values together with a unique separator
and then calculates a checksum over the value.

In some cases, you may need AMPS to calculate consistent SOW key values for identical messages even
when the messages are published to different topics. The SOW topic definition allows to you to set an
explicit key domain in the configuation, which AMPS will use instead of the topic name.

User-Generated SOW Keys
AMPS allows applications to explicity generate and assign SOW keys. In this case, the publisher calculates
the SOW key for the message and includes that key on the message when it is published. AMPS does
not interpret the data in the message to decide whether the message is unique: AMPS uses only the value
of the SOW key.

When using a user-generated SOW key, applications should consider the following:

• All publishers should use a consistent method for generating SOW Keys

• SOW Keys must contain only characters that are valid in Base64 encoding

• The application must ensure that messages intended to be logically different do not receive the same
SOW key

User-generated SOW keys are particularly useful for the binary message type. For this message type,
AMPS does not parse the message, so providing an explicit SOW key allows you to create a SOW that
contains only binary messages.

7.4. SOW Indexing

AMPS maintains indexes over SOW topics to improve query efficiency. There are two types of indexes
available:

• Memo indexes are created implicitly when a query uses a particular key. These indexes maintain the
value of a key, and can be used for any type of query, including regular expression queries, range queries,
and comparisons such as less than or greater than.

• Hash indexes are defined by the SOW configuration. These indexes maintain a hash derived from the
values provided for the fields in the key. AMPS automatically creates a hash index that contains the

State of the World (SOW)

44

fields in the SOW Key. The SOW configuration can specify any number of additional hash indexes.
These indexes can only be used for exact matches on the value of the fields, but are significantly faster
than memo indexes.

AMPS uses a hash index for filters wherever possible. If there is no hash index that includes exactly the
keys specified in the filter, or if the filter uses operations other than equality comparison, AMPS uses a
memo index if one is available. If no memo index is available, AMPS creates one during the query.

If your application frequently uses queries for an exact match on a specific set of fields (for example,
retrieving a set of customers by the /address/postalCode field), creating a hash index can signifi-
cantly improve the speed of those queries.

7.5. Configuration
Topics where SOW persistence is desired can be individually configured within the SOW section of the
configuration file. Each topic will be defined with a TopicDefinition section enclosed within SOW.
The AMPS Configuration Reference contains a description of the attributes that can be configured per
topic. TopicMetaData is a synonym for SOW provided for compatibility with previous versions of
AMPS.

Table 7.1. SOW/TopicDefinition

Element Description
FileName The file where the State of the World data will be stored.

This element is required for State of the World topics with a Durability of
persistent (the default) because those topics are persisted to the filesystem.
This is not required for State of the World topics with a durability of tran-
sient.

MessageType Type of messages to be stored. To use AMPS generated SOW keys, the message
type specified must support content filtering so that AMPS can determine the
SOW key for the message. In this release, AMPS loads these message types that
support content filtering: fix, nvfix, json, bson, and xml.

The binary message type does not support content filtering. This message
type does not support content filtering, so this message type can only be used
for a SOW when publishers use explict keys.

Topic The name of the SOW topic - all unique messages (see Key) on this topic will
be stored in a topic-specific SOW database.

Key Specifies an XPath within each message that AMPS will use to determine
whether a message is unique. This element can be specified multiple times to
create a composite key.

A SOW topic can have either a key determined by AMPS, or publishers can
provide the SOW key for a message with each message. 60East recommends
having AMPS determine the key unless your application has specific needs that
make this impractical.

State of the World (SOW)

45

Element Description
AMPS automatically creates a hash index for the SOW key.

HashIndex AMPS provides the ability to do fast lookup for SOW records based on specific
fields.

When one or more HashIndex elements are provided, AMPS creates a hash
index for the fields specified in the element. These indexes are created on startup,
and are kept up to date as records are added, removed, and updated.

The HashIndex element contains a Key element for each field in the hash
index.

AMPS uses a hash index when a query uses exact matching for all of the fields
in the index. AMPS does not use hash indexes for range queries or regular ex-
pressions.

AMPS automatically creates a hash index for the SOW key.

RecoveryPoint For SOW topics that are covered by the transaction log, the point from which to
recover the SOW if the SOW file is removed, or if the SOW topic has tran-
sient duration.

This configuration item allows two values:

• epoch recovers the SOW from the beginning of the transaction log

• now recovers the SOW from the current point in the transaction log

Defaults to epoch.

Index AMPS supports the ability to precreate memo indexes for specific fields using
the Index configuration option.

When one or more Index elements are provided, AMPS creates memo index-
es for any field specified in an Index element on startup, before a query that
uses that field runs. Otherwise, AMPS indexes each field the first time a query
uses the field. Adding one or more Index configurations to a TopicDefin-
ition can improve retrieval performance the first time a query that contains
the indexed fields runs for large SOW topics.

RecordSize Size (in bytes) of a SOW record for this topic.

Default: 512

InitialSize Initial size (in records) of the SOW database file for this topic.

Default: 2048

IncrementSize Number of records to expand the SOW database (for this topic) by when more
space is required.

Default: 1000

State of the World (SOW)

46

Element Description
Expiration Time for how long a record should live in the SOW database for this topic. The

expiration time is stored on each message, so changing the expiration time in
the configuration file will not affect the expiration of messages currently in the
SOW.

AMPS accepts interval values for the Expiration, using the interval format de-
scribed in the AMPS Configuration Guide section on units, or one of the fol-
lowing special values:

• A value of disabled specifies that AMPS will not process SOW expiration
for this topic, regardless of any expiration value set on the message. In this
case, AMPS saves the expiration for the message, but does not process it. The
value must be set to disabled (the default) if History is enabled for this
topic.

• A value of enabled specifies that AMPS will process SOW expiration for
this topic, with no expiration set by default. Instead, AMPS uses the value set
on the individual messages (with no expiration set for messages that do not
contain an expiration value).

Default: disabled (never expire)

KeyDomain The seed value for SowKeys used within the topic. The default is the topic
name, but it can be changed to a string value to unify SowKey values between
different topics.

For example, if your application has a ShippingAddress SOW and a
CreditRating SOW that both use /customerID as the SOW key, you can
use a KeyDomain to ensure that the generated SowKey for a given /cus-
tomerId is identical for both SOW topics. This does not affect how AMPS
processes the SOW topics, but can make correlating information from different
SOW topics easier in your application.

Default: the name of the SOW topic

Durability Defines the data durability of a SOW topic. SOW databases listed as persis-
tent are stored to the file system, and retain their data across instance restarts.
Those listed as transient are not persisted to the file system, and are reset
each time the AMPS instance restarts.

Default: persistent

Valid values: persistent or transient

Synonyms: Duration is also accepted for this parameter for backward com-
patibility with configuration prior to 4.0.0.1

History Enable historical query for this SOW. This element contains a Window and
Granularity element. When the History element is present, historical

State of the World (SOW)

47

Element Description
query is enabled for this sow. Otherwise, AMPS does not enable historical query
and does not store the historical state of the SOW.

Expiration must be disabled when History is enabled.

Window For a historical SOW, the length of time to store history. For example, when the
value is 1w, AMPS will store one week of history for this SOW.

Used within the History element.

Default: By default, AMPS does not expire historical SOW data.

Granularity For a historical SOW, the granularity of the history to store. In many cases, it
is not necessary for AMPS to store all of the updates to the SOW. This para-
meter sets the resolution at which you can query history. For example, with a
granularity of 1m, AMPS will store the state of an updated messages no more
frequently than once a minute.

Used within the History element.

 Even though the RecordSize defined may be smaller than the incoming message, the record
will still be stored. Messages larger than the RecordSize will span multiple records. For
example if the RecordSize is defined to be 128 bytes, and a message comes in that is 266
bytes in size, that record will be stored over 3 records. The maximum size for a single message
is calculated as RecordSize * IncrementSize, or 1MB (whichever is larger). AMPS
reports an error if a single message exceeds this size.

The listing in Example 7.1 is an example of using TopicDefinition to add a SOW topic to the AM-
PS configuration. One topic named ORDERS is defined as having key /invoice, /customerId and
MessageType of json. The persistence file for this topic be saved in the sow/ORDERS.json.sow
file. For every message published to the ORDERS topic, a unique key will be assigned to each record
with a unique combination of the fields invoice and customerId. A second topic named ALERTS
is also defined with a MessageType of xml keyed off of /client/id. The SOW persistence file for
ALERTS is saved in the sow/ALERTS.sow file.

<SOW>
 <TopicDefinition>
 <FileName>sow/%n.sow</FileName>
 <Topic>ORDERS</Topic>
 <Key>/invoice</Key>
 <Key>/customerId</Key>
 <MessageType>json</MessageType>
 <RecordSize>512</RecordSize>
 <HashIndex>
 <Key>/region</Key>
 </HashIndex>
 </TopicDefinition>

State of the World (SOW)

48

 <TopicDefinition>
 <FileName>sow/%n.sow</FileName>
 <Topic>ALERTS</Topic>
 <Key>/alert/id</Key>
 <MessageType>xml</MessageType>
 </TopicDefinition>
</SOW>

Example 7.1. Sample SOW configuration

Topics are scoped by their respective message types and transports.

For example, two topics named Orders can be created one which supports MessageType of
json and another which supports MessageType of xml.

Each of the MessageType entries that are defined for the Orders topic will require a unique
Transport entry in the configuration file.

This means that messages published to the Orders topic must know the type of message they
are sending (fix or xml) and the port defined by the transport.

49

Chapter 8. SOW Queries
When SOW topics are configured inside an AMPS instance, clients can issue SOW queries to AMPS to
retrieve all of the messages matching a given topic and content filter. When a query is executed, AMPS
will test each message in the SOW against the content filter specified and all messages matching the filter
will be returned to the client. The topic can be a straight topic or a regular expression pattern.

8.1. SOW Queries
A client can issue a query by sending AMPS a sow command and specifying an AMPS topic. Optionally a
filter can be used to further refine the query results. AMPS also allows you to restrict the query to a specific
set of messages identified by a set of SowKeys. When AMPS receives the sow command request, it will
validate the filter and start executing the query. When returning a query result back to the client, AMPS
will package the sow results into a sow record group by first sending a group_begin message followed
by the matching SOW records, if any, and finally indicating that all records have been sent by terminating
with a group_end message. The message flow is provided as a sequence diagram in Figure 8.1.

For purposes of correlating a query request to its result, each query command can specify a QueryId.
The QueryId specified will be returned as part of the response that is delivered back to the client. The
group_begin and group_end messages will have the QueryId attribute set to the value provided
by the client. The client specified QueryId is what the client can use to correlate query commands and
responses coming from the AMPS engine.

AMPS does not allow a sow command on topics that do not have a SOW enabled. If a client queries a
topic that does not have a SOW enabled, AMPS returns an error.

The ordering of records returned by a SOW query is undefined by default. You can also include
an OrderBy parameter on the query to specify a particular ordering based on the contents of
the messages.

SOW Queries

50

group_end

matching sow records

group_begin response

sow command

Client AMPS

Figure 8.1. SOW Query Sequence Diagram

8.2. Historical SOW Queries
SOW topics can also be configured to include historical snapshots of messages, which allows subscribers
to retrieve the contents of the SOW that reflect a particular point in time.

As with simple queries, a client can issues a query by sending AMPS a sow command and specifying an
AMPS topic. For a historical query, the client also adds a timestamp that includes the point in time for the
query. A filter can be used to further refine the query results based on the message content.

Window and Granularity
AMPS allows you to control the amount of storage to devote to historical SOW queries through the Win-
dow and Granularity configuration options.

The Window option sets the amount of time that AMPS will retain historical copies of messages. After
the amount of time set by the Window, AMPS may discard copies of the messages.

SOW Queries

51

The Granularity option sets the interval at which AMPS retains a historical copy of a message in the
SOW. For example, if the Granularity is set to 10m, AMPS stores a historical copy of the message no
more frequently than every 10 minutes, regardless of how many times the message is updated in that 10
minute interval. AMPS stores the copies when a new message arrives to update the SOW. This means that
AMPS always returns a valid SOW state that reflects a published message, but -- as with a conflated topic
-- the SOW may not reflect all of the states that a message passes through. This also means that AMPS uses
SOW space efficiently. If no updates have arrived for a message, since the last time a historical message
was saved, AMPS has no need to save another copy of the message.

When a historical SOW and Subscribe query is entered, and the topic is covered by a transaction log,
AMPS returns the state of the SOW adjusted to the next oldest granularity, then replays messages from
that point. In other words, AMPS returns the same results as a historical SOW query, then replays the full
sequence of messages from that point forward.

Message Sequence Flow
The message sequence flow is the same as for a simple SOW query. Once AMPS has transmitted the
messages that were in the SOW as of the timestamp of the query, the query ends. Notice that this replay
includes messages that have been subsequently deleted from the SOW.

8.3. SOW Query-and-Subscribe
AMPS has a special command that will execute a query and place a subscription at the same time to prevent
a gap between the query and subscription where messages can be lost. Without a command like this, it
is difficult to reproduce the SOW state locally on a client without creating complex code to reconcile
incoming messages and state.

For an example, this command is useful for recreating part of the SOW in a local cache and keeping it
up to date. Without a special command to place the query and subscription at the same moment, a client
is left with two options:

1. Issue the query request, process the query results, and then place the subscription, which misses any
records published between the time when the query and subscription were placed; or

2. Place the subscription and then issue the query request, which could send messages placed between
the subscription and query twice.

Instead of requiring every program to work around these options, the AMPS sow_and_subscribe
command allows clients to place a query and get the streaming updates to matching messages in a single
command.

In a sow_and_subscribe command, AMPS behaves as if the SOW command and subscription are
placed at the exact same moment.The SOW query will be sent before any messages from the subscription
are sent to the client. Additionally, any new publishes that come into AMPS that match the sow and
subscribe filtering criteria and come in after the query started will be sent after the query finishes (and the
query will not include those messages.)

SOW Queries

52

AMPS allows a sow_and_subscribe command on topics that do not have a SOW enabled. In this
case, AMPS simply returns no messages between group_begin and group_end.

The message flow as a sequence diagram for sow_and_subscribe commands is contained in Fig-
ure 8.2.

group_end

matching sow records

group_begin response

sow_and_subscribe command

Client AMPS

messages matching subscript ion

Figure 8.2. SOW-And-Subscribe Query Sequence Diagram

Historical SOW Query and Subscribe
AMPS SOW Query and Subscribe also allows you to begin the subscription with a historical SOW query.
For historical SOW queries, the subscripton begins at the point of the query with the results of the SOW
query. The subscription then replays messages from the transaction log. Once messages from the transac-
tion log have been replayed, the subcription then provides messages as AMPS publishes them.

In effect, a SOW Query and Subscribe with a historical query allows you to recreate the client state and
processing as though the client had issued a SOW Query and Subscribe at the point in time of the historical
query.

SOW Queries

53

Replacing Subscriptions with SOW and Subscribe
As described in the section called “Replacing the Content Filter on a Subscription”, AMPS allows you to
replace the filter on an existing subscription. When the subscription is a SOW and Subscribe, AMPS will
re-run the SOW query delivering the messages that are in scope with the new filter. If the subscription re-
quests out-of-focus (OOF) messages, AMPS will deliver out of focus messages for messages that matched
the old filter but no longer match the filter. As with the initial query and subscribe, AMPS guarantees to
deliver any changes to the SOW that occur after the point of the query.

8.4. SOW Query Response Batching
When processing a SOW query, AMPS has the ability to combine messages into batches for more efficient
network usage. The maximum number of messages in a batch is determined by the BatchSize parameter
on the SOW query command. AMPS defaults to a BatchSize value of 1, meaning AMPS sends one
message per batch in the response. The BatchSize is the maximum number of records that will be
returned within a single response payload. Each AMPS response for the query contains a BatchSize
value in its header to indicate the number of messages in the batch. This number will be anywhere from
1 to BatchSize.

Current versions of the AMPS client libraries set a batch size of 10 when using the named convenience
methods (for example, sowAndSubscribe) if no other batch size is specified.

Notice that the format of messages returned from AMPS may be different depending on the message type
requested. However, the information contained in the messages is the same for all message types.

When issuing a sow_and_subscribe command AMPS will return a group_begin and
group_end segment of messages before beginning the live subscription sequence of the
query. This is also true when a sow_and_subscribe command is issued against a non-
SOW topic. In this later case, the group_begin and group_end will contain no messages.

Using a BatchSize greater than 1 can yield greater performance, particularly when querying a large
number of small records.

Using an appropriate BatchSize parameter is critical to achieve the maximum query per-
formance with a large number of small messages.

Each message within the batch will contain id and key values to help identify each message that is returned
as part of the overall response.

For XML, the format of the response is:

<?xml version="1.0" encoding="iso-8859-1"?>
<SOAP-ENV:Envelope>
 <SOAP-ENV:Header>
 <Cmd>sow</Cmd>
 <TxmTm>20080210-17:16:46.066-0500</TxmTm>

SOW Queries

54

 <QId>100</QId>
 <GrpSqNum>1</GrpSqNum>
 <BtchSz>5</BtchSz>
 <Tpc>order</Tpc>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <Msg key="143101935596417" len="120"> ... </Msg>
 <Msg key="86456484160208" len="125"> ... </Msg>
 <Msg key="18307726844082" len="128"> ... </Msg>
 <Msg key="15874572074104" len="118"> ... </Msg>
 <Msg key="61711462299630" len="166"> ... </Msg>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

For FIX, the format has the following form:

{sow header} {message header} {message data} {message
 header} {message data} ...

header separator
message separator

Each message header will contain the SowKey and the MessageLength attributes. The Message-
Length is intended to help clients parse the response with minimal effort. It indicates the length of the
message data contained in the message.

The following is an example FIX message SOW query response message:

20000=sow 20004=20080210-17:16:46.066-0500 20007=fix
20019=100 20060=1 20023=5 20005=order
20059=1 20058=128 fix message data

header separator
header separator
message separator

Care should be taken when issuing queries that return large results. When contemplating the
usage of large queries and how that impacts system reliability and performance, please see the
section called “Slow Clients ” for more information.

For more information on executing queries, please see the Developer Guide for the AMPS client of your
choice.

8.5. Configuring SOW Query Result Sets
AMPS allows you to control the results returned by a SOW query by including the following optional
headers on the query:

SOW Queries

55

Table 8.1. SOW Query Options

Option Result
TopN Limits the results returned to the number of mes-

sages specified.
OrderBy Orders the results returned as specified. Requires a

comma-separated list of identifiers of the form:

/field [ASC | DESC]

For example, to sort in descending order by or-
derDate so that the most recent orders are first,
and ascending order by customerName for orders
with the same date, you might use a specifier such
as:

/orderDate DESC, /customerName ASC

If no sort order is specified for an identifer, AMPS
defaults to ascending order.

For details on how to submit these options with a SOW query, see the documentation for the AMPS client
library your application uses.

56

Chapter 9. SOW Message Expiration
By default, SOW topics stores all distinct records until the record is explicitly deleted. For scenarios where
message persistence needs to be limited in duration, AMPS provides the ability to set a time limit on
the lifespan of SOW topic messages. This limit on duration is known as message expiration and can be
thought of as a “Time to Live” feature for messages stored in a SOW topic.

9.1. Usage
Expiration on SOW topics is disabled by default. For AMPS to expire messages in a SOW topic, you must
explicitly enable expiration on the SOW topic.

There are two ways message expiration time can be set. First, a SOW topic can specify a default lifespan
for all messages stored for that SOW topic. Second, each message can provide an expiration as part of
the message header.

The expiration for a given SOW topic message is first determined based on the message expiration spec-
ified in the message header. If a message has no expiration specified in the header, then the message will
inherit the expiration setting for the topic expiration. If there is no message expiration and no topic expi-
ration, then it is implicit that a SOW topic message will not expire.

Topic Expiration
AMPS configuration supports the ability to specify a default message expiration for all messages in a
single SOW topic. Below is an example of a configuration section for a SOW topic definition with an
expiration. Chapter 7 has more detail on how to configure the SOW topic.

<SOW>
 <TopicDefinition>
 <FileName>sow/%n.sow</FileName>
 <Topic>ORDERS</Topic>
 <Expiration>30s</Expiration>
 <Key>/55</Key>
 <Key>/109</Key>
 <MessageType>fix</MessageType>
 <RecordSize>512</RecordSize>
 </TopicDefinition>
</SOW>

Example 9.1. Topic Expiration

In this case, messages with no lifetime specified on the message have a 30 second lifetime in the SOW.
When a message arrives and that message has an expiration set, the message expiration overrides the
default expiration for the topic.

SOW Message Expiration

57

AMPS also allows you to enable expiration on a SOW topic, but to only expire messages that have mes-
sage-level expiration set:

<SOW>
 <TopicDefinition>
 <FileName>sow/%n.sow</FileName>
 <Topic>ORDERS</Topic>
 <Expiration>enabled</Expiration>
 <Key>/55</Key>
 <Key>/109</Key>
 <MessageType>fix</MessageType>
 <RecordSize>512</RecordSize>
 </TopicDefinition>
</SOW>

Example 9.2. Topic Expiration

With this configuration file, expiration is enabled for the topic. The message lifetime is specified on each
individual message. When expiration is disabled for a SOW topic, AMPS preserves any message expira-
tion set on an individual message but does not expire messages.

AMPS processes expirations during startup when SOW expiration is enabled. This means that any record
in the SOW which needs to be expired will be expired as AMPS starts. Notice that if the expiration period
has changed in the configuration file (or expiration has been enabled or disabled), AMPS processes the
SOW using the current expiration configuration. For messages that were not published with an explicit
expiration, the lifetime defaults to the current expiration period for the topic.

Message Expiration
Individual messages have the ability to specify an expiration for a a published message. Below is an
example of an XML message that is publishing an Order, and has an expiration set for 20 seconds.

<?xml version="1.0" encoding="iso-8859-1"?>
<SOAP-ENV:Envelope>
 <SOAP-ENV:Header>
 <Cmd>publish</Cmd>
 <TxmTm>20061201-17:29:12.000-0500</TxmTm>
 <Expn>20</Expn>
 <Tpc>order</Tpc>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <FIXML>
 <Order Side="2" Px="32.00">
 <Instrmt Sym="MSFT"/>
 <OrdQty Qty="100"/>
 </Order>

SOW Message Expiration

58

 </FIXML>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Example 9.3. Message Expiration

9.2. Example Message Lifecycle
When a message arrives, AMPS calculates the expiration time for the message and stores a timestamp at
which the message expires in the SOW with the message. When the message contains an expiration time,
AMPS use that time to create the timestamp. When the message does not include an expiration time, if
the topic contains an expiration time, AMPS uses the topic expiration for the message. Otherwise, there
is no expiration set on the message, and AMPS records a timestamp value that indicates no expiration.

Messages in the SOW topic can receive updates before expiration. When a message is updated, the
message’s expiration lifespan is reset. For example, a message is first published to a SOW topic with
an expiration of 45 seconds. The message is updated 15 seconds after publication of the initial message,
and the update resets the expiration to a new 45 second lifespan. This process can continue for the entire
lifespan of the message, causing a new 45 second lifespan renewal for the message with every update.

If a message expires, then the message is deleted from the SOW topic. This event will trigger delete
processing to be executed for the message, similar to the process of executing a sow_delete command on
a message stored in a SOW topic.

Recovery and Expiration
When using message expiration, one common scenario is that the message has an expiration set, but the
AMPS instance is shut down during the lifetime of the message.

To handle such a scenario, AMPS calculates and stores a timestamp for the expiration, as described above.
Therefore, if the AMPS instance is shutdown, then upon recovery the engine will check to see which
messages have expired since the occurrence of the shutdown. Any expired messages will be deleted as
soon as possible.

Notice that, because the timestamp is stored with each message, changing the default expiration of a SOW
topic does not affect the lifetime of messages already in the SOW. Those timestamps have already been
calculated, and AMPS does not recalculate them when the instance is restarted or when the defaults on
the SOW topic change.

59

Chapter 10. Out-of-Focus Messages
(OOF)

 One of the more difficult problems in messaging is knowing when a record that previously matched
a subscription has been updated so that the record no longer matches the subscription. AMPS solves
this problem by providing an out-of-focus, or oof, message to let subscribers know that a record they
have previously received no longer matches the subscription. The oof messages help subscribers easily
maintain state and remove records that are no longer relevant.

oof notification is optional. A subscriber must explicitly request that AMPS provide out-of-focus mes-
sages for a subscription.

When oof notification has been requested, AMPS produces an oof message for any record that has
previously been received by the subscription at the point at which:

• The record is deleted,

• The record expires,

• The record no longer matches the filter criteria, or

• The subscriber is no longer entitled to view the new state of the record

AMPS produces an oof message for each record that no longer matches the subscription. The oof mes-
sage is sent as part of processing the update that caused the record to no longer match. Each oof message
contains information the subscriber can use to identify the record that has gone out of focus and the reason
that the record is now out of focus.

Because AMPS must maintain the current state of a record to know when to produce an oof message,
these messages are only supported for SOW topics.

10.1. Usage
Consider the following scenario where AMPS is configured with the following SOW key for the buyer
topic:

<SOW>
 <TopicDefinition>
 <Topic>buyer</Topic>
 <MessageType>xml</MessageType>
 <Key>/buyer/id</Key>
 </TopicDefinition>
</SOW>

Example 10.1. Topic Configuration

Out-of-Focus Messages (OOF)

60

When the following message is published, it is persisted in the SOW topic:

<buyer><id>100</id><loc>NY</loc></buyer>

Example 10.2. First Publish Message

A client issues a sow_and_subscribe request for the topic buyer with the filter /buy-
er/loc="NY" and the oof option set on the request. The client will be sent the messages as part of
the SOW query result.

Subsequently, the following message is published to update the loc tag to LN:

<buyer><id>100</id><loc>LN</loc></buyer>

Example 10.3. Second Publish Message

The original message in the SOW cache is updated. The client does not receive the second publish message,
because that message does not match the filter (/buyer/loc="NY"). This is problematic. The client
has a message that is no longer in the SOW cache and that no longer matches the current state of the
record. Because the oof option was set up the subscription, however, the AMPS engine sends an OOF
message to let these clients know that the message that they hold is no longer in the SOW cache. The
following is an example of what’s returned:

<?xml version="1.0" encoding="iso-8859-1"?>
<SOAP-ENV:Envelope>
 <SOAP-ENV:Header>
 <Reason>match</Reason>
 <Tpc>buyer</Tpc>
 <Cmd>oof</Cmd>
 <MsgTyp>xml</MsgTyp>
 <SowKey>6387219447538349146</SowKey>
 <SubIds>SAMPS-1214725701_1</SubIds>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <client>
 <id>100</id>
 <loc>LN</loc>
 </client>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Example 10.4. oof xml example message

An easy way to think about the situations where AMPS sends an OOF message is to consider what would
happen if the client re-issued the original sow request after the above message was published. The /

Out-of-Focus Messages (OOF)

61

client/loc="NY" expression no longer matches the message in the SOW cache and as a result, this
message would not be returned.

When AMPS returns an OOF message, the data contained in the body of the message represents the up-
dated state of the OOF message. This will allow the client to make a determination as to how to handle the
data, be it to remove the data from the client view or to change their query to broaden the filter thresholds.
This enables a client to take a different action depending on why the message no longer matches. For
example, an application may present a different icon for an order that moves to a status of completed
than it would present for an order that moves to a status of cancelled.

When a delta_publish message causes the SOW record to go out of focus, AMPS returns the merged
record.

When there is no updated message to send, AMPS sends the state of the record before the change that
produced the OOF. This can occur when the message had been deleted, when the message has expired, or
when an update causes the client to no longer have permission to receive the record.

10.2. Example
To help reinforce the concept of OOF messages, and how OOF messaging can be used in AMPS, con-
sider a scenario where there is a GUI application whose requirement is to display all open orders of a
client. There are several possible solutions to ensure that the GUI client data is constantly updated as
information changes, some of which are examined below; however, the goal of this section is to build up
a sow_and_subscribe message to demonstrate the power that OOF notifications add to AMPS.

Client-Side Filtering in a sow_and_subscribe Com-
mand

First, consider an approach that sends a sow_and_subscribe message on the topic orders using
the filter /Client="Adam":

AMPS completes the sow portion of this call by sending all matching messages from the orders SOW
topic. AMPS then places a subscription whereby all future messages that match the filter get sent to the
subscribing GUI client.

Out-of-Focus Messages (OOF)

62

1

2

State

Open
Open

Fulf illed
Pending

Tick

MSFT
ORCL
IBM

AAPL

A:/Client=Adam,/State=Open, /Tick=MSFT
B:/Client=Adam,/State=Open, /Tick=ORCL
C:/Client=Adam,/State=Fulfilled,/Tick=IBM
D:/Client=Adam,/State=Pending, /Tick=AAPL

sow_and_subscribe
Topic: orders

Filter: /Client = Adam

AMPS

SOW

Client

Adam

Adam
Adam

Adam

Figure 10.1. sow_and_subscribe example

As the messages come in, the GUI client will be responsible for determining the state of the order. It
does this by examining the State field and determining if the state is equal to “Open” or not, and then
updating the GUI based on the information returned.

This approach puts the burden of work on the GUI and, in a high volume environment, has the potential
to make the client GUI unresponsive due to the potential load that this filtering can place on a CPU. If a
client GUI becomes unresponsive, AMPS will queue the messages to ensure that the client is given the
opportunity to catch up. The specifics of how AMPS handles slow clients is covered in the section called
“Slow Clients ”.

AMPS Filtering in a sow_and_subscribe command
The next step is to add an additional ’AND’ clause to the filter. In this scenario we can let AMPS do the
filtering work that was previously handled on the client. This is accomplished by modifying our original
sow_and_subscribe to use the following filter:

/Client = "Adam" AND /State = "Open"

Similar to the above case, this sow_and_subscribe will first send all messages from the orders
SOW topic that have a Client field matching “Adam” and a State field matching “Open.” Once all of
the SOW topic messages have been sent to the client, the subscription will ensure that all future messages
matching the filter will be sent to the client.

Out-of-Focus Messages (OOF)

63

1

2

State

Open
Open

Tick

MSFT
ORCL

A:/Client=Adam,/State=Open, /Tick=MSFT
B:/Client=Adam,/State=Open, /Tick=ORCL

sow_and_subscribe
Topic: orders

Filter: /Client = Adam and /State = Open

AMPS

SOW

Client

Adam
Adam

Figure 10.2. State Filter in a sow_and_subscribe

There is a less obvious issue with this approach to maintaining the client state. The problem with this
solution is that, while it initially will yield all open orders for client “Adam”, this scenario is unable to
stay in sync with the server. For example, when the order for Adam is filled, the State changes to
State=Filled. This means that, inside AMPS, the order on the client will no longer match the initial
filter criteria. The client will continue to display and maintain these out-of-sync records. Since the client
is not subscribed to messages with a State of “Filled,” the GUI client would never be updated to reflect
this change.

OOF Processing in a sow_and_subscribe command
The final solution is to implement the same sow_and_subscribe query which was used in the first
scenario. This time, we use the filter requests only the State that we're interested in, but we add the oof
option to the command so the subscriber receives OOF messages.

/Client = "Adam" AND /State = "Open"

AMPS will respond immediately with the query results, in a similar manner to a sow_and_subscribe
(Figure 10.3) command.

Out-of-Focus Messages (OOF)

64

1

2

State

Open
Open

Tick

MSFT
ORCL

A:/Client=Adam,/State=Open, /Tick=MSFT
B:/Client=Adam,/State=Open, /Tick=ORCL

sow_and_subscribe
Topic: orders

Filter: /Client = Adam and /State = Open
SndOOF = true

AMPS

SOW

Client

Adam
Adam

Figure 10.3. sow_and_subscribe with oof enabled

This approach provides the following advantage. For all future messages in which the same Open order
is updated, such that its status is no longer Open, AMPS will send the client an OOF message specifying
that the record which previously matched the filter criteria has fallen out of focus. AMPS will not send
any further information about the message unless another incoming AMPS message causes that message
to come back into focus.

In Figure 10.4 the Publisher publishes a message stating that Adam’s order for MSFT has been fulfilled.
When AMPS processes this message, it will notify the GUI client with an OOF message that the original
record no longer matches the filter criteria. The OOF message will include a Reason field with it in the
message header, defining the reason for the message to lose focus. In this case the Reason field will state
match since the record no longer matches the filter

Out-of-Focus Messages (OOF)

65

1

2

State

Fulf illed
Open

Tick

MSFT
ORCL

OOF
A:/Client=Adam,/State=Fulfilled, /Tick=MSFT

Topic: orders
/Client = Adam;

/State = Fulfilled;
/Tick=MSFT

AMPS

SOW

Client

Adam
Adam

Publisher

Figure 10.4. OOF message

AMPS will also send OOF messages when a message is deleted or has expired from the SOW topic.

We see the power of the OOF message when a client application wants to have a local cache that is a
subset of the SOW. This is best managed by first issuing a query filter sow_and_subscribe which
populates the GUI, and enabling the oof option. AMPS informs our application when those records which
originally matched no longer do, at which time the program can remove them.

66

Chapter 11. Delta Messaging
AMPS delta messaging allows applications to work with only the changed parts of a message in the SOW.
In high-performance messaging, it's important that applications not waste time or bandwidth for messages
that they aren't going to use.

Delta messaging has two distinct aspects:

• delta subscribe allows subscribers to receive just the fields that are updated within a message.

• delta publish allows publishers to update and add fields within a message by publishing only the updates
into the SOW,

While these features are often used together, the features are independent. For example, a subscriber can
request a regular subscription even if a publisher is publishing deltas. Likewise, a subscriber can request
a delta subscription even if a publisher is publishing full messages.

To be able to use delta messages, the message type for the subscription must support delta messages. All
of the included AMPS message types, except for binary, support delta messages. For custom message
types, contact the message type implementer to understand whether delta support is implemented.

11.1. Delta Subscribe
Delta subscribe allows applications to receive only the changed parts of a message when an update is
made to a record in the SOW. When a delta subscription is active, AMPS compares the new state of the
message to the old state of the message, creates a message for the difference, and sends the difference
message to subscribers.

For example, consider a SOW that contains the following messages, with the order field as the key of

the SOW topic:

Now, consider an update that changes the status of order number 3:

{"order":3,"customer":"Patrick","status":"pending","qty":1000,"ticker":"MSFT"}

For a regular subscription, subscribers receive the entire message. With a delta sub-
scription, subscribers receive just the key of the SOW topic and any changed fields:

Delta Messaging

67

This can significantly reduce the amount of network traffic, and can also simplify processing for sub-
scribers, since the only information sent is the information needed by the subscriber to take action on the
message.

Using Delta Subscribe
Because a client must process delta subscriptions using substantially different logic than regular subscrip-
tions, delta subscription is implemented as a separate set of AMPS commands rather than simply as an
option on subscribe commands. AMPS supports two different ways to request a delta subscription:

Table 11.1. Delta subscribe commands

Command Result

delta_subscribe Register a delta subscription, starting with newly re-
ceived messages.

sow_and_delta_subscribe Replay the state of the SOW and atomically register
a delta subscription.

Options for Delta Subscribe
The delta subscribe command accepts several options that control the precise behavior of delta messages:

Table 11.2. Options for delta subscribe

Option Result

no_empties Do not send messages if no data fields have been updated.

no_sowkeys Do not include the AMPS generated SowKey with messages.
By default, AMPS includes this key to help you identify unique
records within the SOW.

send_keys Include the SOW key fields in the message. Because the SOW
key fields indicate which message to update, without this op-
tion, updates to delta messages will never contain the SOW key
fields.

Delta Messaging

68

Option Result
AMPS accepts this option for backward compatibility. As of
AMPS 4.0, this option is included on delta subscriptions by de-
fault.

oof AMPS will deliver out of focus messages on this subscription.

Identifying Changed Records
When an application that uses delta subscriptions receives a message, that message can either be a new
record or an update to an existing record. AMPS offers two strategies for an application to tell whether
the record is a new record or an existing record, and identify which record has changed if the message
is an update to an existing record.

The two basic approaches are as follows:

1. By default, each message delivered through a delta subscription contains a SowKey header field. This
field is the identifier that AMPS assigns to track a distinct record in the SOW. If the application has
previously received a SowKey with that value, then the new message is an update to the record with
that SowKey value. If the application has not previously received a SowKey with that value, then the
new message contains a new record.

2. Delta messages can also contain the key fields from the SOW in the body of the message. This is
controlled by the send_keys option on the subscription, which is always enabled as of AMPS 4.0.
With this approach, the application parses the body of the message to find the key. If the application
has previously received the key, then the message is an update to that existing record. Otherwise, the
message contains a new record.

In either case, AMPS delivers the information the application needs to determine if the record is new or
changed. The application chooses how to interpret that information, and what actions to take based on
the changes to the record.

AMPS also supports out-of-focus notification for delta subscriptions, as described in Chapter 10. If your
application needs to know when a record is deleted, expires, or no longer matches a subscription, you can
use out-of-focus messages to be notified.

Delta Subscribe Support
To produce delta messages, the message type and the topic must both support delta subscribe. When this
is not the case, AMPS accepts the subscription, but provides full messages rather than delta messages.

All of the basic message types provided with AMPS support delta subscribe with the exception of the bi-
nary message type. Composite message types support delta subscribe if they use the composite-lo-
cal definition, as described in the section on composite message types.

All other AMPS topic types that are based on a SOW support delta subscribe. AMPS topics that do not
use a SOW do not support delta subscribe, and instead produce full messages.

Delta Messaging

69

11.2. Delta Publish
Delta publish allows publishers to update a message in the SOW by providing just the key fields for the
SOW and the data to update.

This can be particularly useful in cases where more than one worker acts on a record. For example, an
order fullfillment application may need to check inventory, to ensure that the order is available, and check
credit to be sure that the customer is approved for the order. These checks may be run in parallel, by
different worker processes. With delta publish, each worker process updates the part of the record that the
worker is responsible for, without affecting any other part of the record. Delta publish saves the worker
from having to query the record and construct a full update, and eliminates the possibility of incorrect
updates when two workers try to update the record at the same time.

For example, consider an order published to the SOW:

{"id":735,"customer":"Patrick","item":90123,"qty":1000,"state":"new"}

Using delta publishing, two independent workers can operate on the record in parallel, safely making
updates and preparing the record for a final fulfillment process.

The inventory worker process is responsible for checking inventory. This worker subscribes to messages
where the /state = 'new' AND /inventory IS NULL AND /credit IS NULL. This
process receives the new message and verifies that the inventory system contains 1000 of the item # 90123.
When it verifies this, it uses delta publish to publish the following update:

{"id":735,"inventory":"available"}

The credit worker process verifies that the customer is permitted to bill for the total amount. Like the
inventory worker, this worker subscribes to messages where the /state = 'new' and /inventory
IS NULL and /credit IS NULL. This process receives the new message and verifies that the
customer is allowed to bill the total value of the order. When the check is complete, the credit worker
publishes this message:

{"id":735,"credit":"approved"}

After both of these processes run, the SOW contains the following record:

{"id":735,"credit":"approved","inventory":"available",
 "customer":"Patrick","item":90123,"qty":1000,
 "state":"new"}

The fulfillment worker would subscribe to messages where /state = 'new' AND /inventory
IS NOT NULL AND /credit IS NOT NULL.

Using Delta Publish
Because delta messages must be processed and merged into the existing SOW record, AMPS provides a
distinct command for delta publish.

Delta Messaging

70

Table 11.3. Delta publish command

Command Result

delta_publish Publish a delta message. If no record exists in the
SOW, add the message to the SOW. If a record exists
in the SOW, merge the data from this record into the
existing record.

Delta Publish Support
To accept delta publishes, the message type and the topic must both support delta publish. When this is
not the case, AMPS accepts the publish, but may not produce the expected results.

All of the basic message types provided with AMPS support delta publish with the exception of the bi-
nary message type. Composite message types support delta publish if they use the composite-local
definition, as described in the section on composite message types. The binary message, and types that do
not support delta publish, produce the full, literal message provided with a delta publish command.

All other AMPS topic types that are based on a SOW and accept publish commands support delta publish.
AMPS topics that do not use a SOW do not support delta publish, so publishing a delta message to those
topics produces the full, literal message from the publish command rather than a merged message. Without
a SOW configured for the topic, AMPS does not track the current value of a message, and therefore does
not have a way to merge the publish into an existing message.

71

Chapter 12. Message Acknowledgement
AMPS enables a client which sends commands to AMPS to request the status of those commands at
various check points throughout the message processing sequence. These status updates are handled in
the form of ack messages.

For many applications, it may not be necessary for the application to request message acknowledgements
explicitly. The AMPS clients request a set of acknowledgements by default that balance performance with
error detection.

AMPS supports a variety of ack types, and allows you to request multiple ack types on each command. For
example, the received ack type requests that AMPS acknowledge when the command is received, while
the completed ack type requests that AMPS acknowledge when it has completed the command (or the
portion of the command that runs immediately). Each AMPS command supports a different set of types,
and the precise meaning of the ack returned depends on the command that AMPS is acknowledging.

AMPS commands are inherently asynchronous, and AMPS does not provide acknowledgement messages
by default. A client must both explicitly request an acknowledgement and then receive and process that
acknowledgement to know the results of a command. It is normal for time to elapse between the request and
the acknowledgement, and so AMPS acknowledgements provide ways to correlate the acknowledgement
with the command that produced it. This is typically done with an identifier that the client assigns to a
command, which is then returned in the acknowledgement for the command.

Acknowledgements for different commands may not arrive in the order that commands were submitted to
AMPS. For example, a publish command to a topic that uses synchronous replication will not return a
persisted acknowledgment until the synchronous replication destinations have persisted the message.
If the client issues a subscribe command in the meantime, the processed acknowledgement for the
subscribe command -- indicating that AMPS has processed the subscription request -- may well return
before the persisted acknowledgement.

To see more information about the different commands and their supported acknowledgment types, please
refer to the AMPS Command Reference, provided with 4.0 and greater versions of the AMPS clients and
available on the 60East web site.

72

Chapter 13. Conflated Topics
To further reduce network bandwidth consumption, AMPS supports a feature called “conflated topics.”
A conflated topic is a copy of one SOW topic into another with the ability to control the update interval.

To better see the value in a conflated topic, imagine a SOW topic called ORDER_STATE exists in an
AMPS instance. ORDER_STATE messages are published frequently to the topic. Meanwhile, there are
several subscribing clients that are watching updates to this topic and displaying the latest state in a GUI
front-end.

If this GUI front-end only needs updates in five second intervals from the ORDER_STATE topic, then more
frequent updates would be wasteful of network and client-side processing resources. To reduce network
congestion, a conflated topic for the ORDER_STATE topic can be created which will contain a copy of
ORDER_STATE updated in five second intervals. Only the changed records from ORDER_STATE will be
copied to the conflated topic and then sent to the subscribing clients. Those records with multiple updates
within the time interval will have their latest updated values copied to the conflated topic, and only those
conflated values are sent to the clients. This results in substantial savings in bandwidth for records with
high update rates. This can also result in substantial savings in processing overhead for a client.

13.1. Configuration
Configuration of a conflated topic involves creation of a ConflatedTopic section in the AMPS con-
figuration file. Here is an example of a regular SOW topic named FastPublishTopic and a conflated
topic definition, conflated_FastPublishTopic. In this example, the conflation interval is set at
5s (five seconds). For more information about how units work in AMPS configuration, see the AMPS
Configuration Reference.

<SOW>
 <TopicDefinition>
 <Topic>FastPublishTopic</Topic>
 <FileName>./sow/%n.sow</FileName>
 <MessageType>json</MessageType>
 <Key>/updateId</Key>
 </TopicDefinition>

 <ConflatedTopic>
 <Topic>conflated_FastPublishTopic</Topic>
 <MessageType>json</MessageType>
 <UnderlyingTopic>FastPublishTopic</UnderlyingTopic>
 <Interval>5s</Interval>
 <Filter>/region = 'A'</Filter>
 </ConflatedTopic>
</SOW>

Conflated Topics require underlying SOW topics. See Chapter 7 for more information on cre-
ating and configuring SOW topics.

Conflated Topics

73

The configuration parameters available when defining a conflating topic replica are included in Table 13.1.
Each parameter should be included within a ConflatedTopic section.

Table 13.1. Conflated Topic Configuration Parameters

Parameter Description
Topic String used to define the name for the conflated topic.
UnderlyingTopic String used to define the SOW topic which provides updates to the

conflated topic.
MessageType The message format of the underlying topic.

Interval Default of 5 second interval between replication event. See the Using
Units in Configuration section in the AMPS Configuration Reference
Guide for more information on the time units associated with inter-
vals.

Filter Filter to be applied to the UnderlyingTopic to determine which
messages are preserved in the conflated topic. Only messages that
match the filter are preserved.

A conflated topic can only be created on a SOW topic that has been defined in the AMPS
configuration. Non-SOW topics can not have replicas.

It is a good idea to name your conflated topic something similar to the underlying topic. For
example, if the underlying topic is named ORDER_STATE then a good name for the conflated
topic is something like ORDER_STATE-CONFLATED or ORDER_STATE:5s.

Messages cannot be published directly to a conflated topic. Messages published to the under-
lying topic will be published to subscribers of the conflated topic at the specified interval.

In previous releases of AMPS, conflated topics were known as topic replicas. For backward compatibility,
AMPS accepts the TopicReplica element as a synonym for ConflatedTopic.

74

Chapter 14. Aggregating Data with View
Topics

AMPS contains a high-performance aggregation engine, which can be used to project one SOW topic onto
another, similar to the CREATE VIEW functionality found in most RDBMS software.

14.1. Understanding Views
Views allow you to aggregate messages from one or more SOW topics in AMPS and present the aggre-
gation as a new SOW topic. AMPS stores the contents of the view in a user-configured file, similar to a
materialized view in RDBMS software.

Views are often used to simplify subscriber implementation and can reduce the network traffic to sub-
scribers. For example, if some clients will only process orders where the total cost of the order exceeds
a certain value, you can both simplify subscriber code and reduce network traffic by creating a view that
contains a calculated field for the total cost. Rather than receiving all messages and calculating the cost,
subscribers can filter on the calculated field. You can also combine information from multiple topics. For
example, you could create a view that contains orders from high-priority customers that exceed a certain
dollar amount.

AMPS sends messages to view topics the same way that AMPS sends messages to SOW topics: when
a message arrives that updates the value of a message in the view, AMPS sends a message on the view
topic. Likewise, you can query a view the same way that you query a SOW topic.

Defining a view is straightforward. You set the name of the view, the SOW topic or topics from which
messages originate and describe how you want to aggregate, or project, the messages. AMPS creates a
topic and projects the messages as requested.

All message types that you specify in a view must support view creation. The AMPS default
message types all support views.

Because AMPS uses the SOW topics of the underlying messages to determine when to update the view,
the underlying topics used in a view must have a SOW configured. In addition, the topics must be defined
in the AMPS configuration file before the view is defined.

AMPS persists the contents of views in a SOW file for the view. AMPS updates the file when a new
message is published. This means that, like a SOW, AMPS makes small incremental changes to the file
rather than calculating aggregates when a query arrives.

14.2. Creating Views and Aggregations
Multiple topic aggregation creates a view using more than one topic as a data source. This allows you to
enrich messages as they are processed by AMPS, to do aggregate calculations using information published
to more than one topic. You can combine messages from multiple topics and use filtered subscriptions to

Aggregating Data with View Topics

75

determine which messages are of interest. For example, you can set up a topic that contains orders from
high-priority customers.

You can join topics of different message types, and you can project messages of a different type than the
underlying topic.

To create an aggregate using multiple topics, each topic needs to maintain a SOW. Since views maintain
an underlying SOW, you can create views from views.

To define an aggregate, you decide:

• The topic, or topics, that contain the source for the aggregation

• If the aggregation uses more than one topic, how those topics relate to each other

• What messages to publish, or project, from the aggregation

• The message type of the aggregation

All of the message types included with AMPS fully support aggregation. If you are using a custom message
type, check with the message type developer as to whether that message type supports aggregation.

Single Topic Aggregation: UnderlyingTopic
For aggregations based on a single topic, use the UnderlyingTopic element to tell AMPS which topic
to use. All messages from the UnderlyingTopic will appear in the aggregation.

<UnderlyingTopic>MyOriginalTopic</UnderlyingTopic>

Multiple Topic Aggregation: Join
Join expressions tell AMPS how to relate underlying topics to each other. You use a separate Join
element for each relationship in the view. Most often,the join expression describes a relationship between
topics:

[topic].[field]=[topic].[field]

The topics specified must be previously defined in the AMPS configuration file. The square brackets []
are optional. If they are omitted, AMPS uses the first / in the expression as the start of the field definition.
You can use any number of join expressions to define a multiple topic aggregation.

If your aggregation will join messages of different types, or produce messages of a different type than the
underlying topics, you add message type specifiers to the join:

[messagetype].[topic].[field]=[messagetype].[topic].[field]

AMPS creates a projection in the aggregation that combines the messages from each topic where the
expression is true. In other words, for the expression:

<Join>[Orders].[/CustomerID]=[Addresses].[/CustomerID]</Join>

Aggregating Data with View Topics

76

AMPS projects every message where the same CustomerID appears in both the Addresses topic
and the Orders topic. If a CustomerID value appears in only the Addresses topic, AMPS does not
create a projection for the message. If a CustomerID value appears in only the Orders topic, AMPS
projects the message with NULL values for the Addresses topic. In database terms, this is equivalent
to a LEFT OUTER JOIN.

You can use any number of Join expressions in an underlying topic:

<Join>[nvfix].[Orders].[/CustomerID]=[json].[Addresses].[/
CustomerID]</Join>
<Join>[nvfix].[Orders].[/ItemID]=[nvfix].[Catalog].[/ItemID]</Join>

In this case, AMPS creates a projection that combines messages from the Orders, Addresses, and
Catalog topics for any published message where matching messages are present in all three topics.
Where there are no matching messages in the Catalog and Addresses topics, AMPS projects those
values as NULL.

A Join element can also contain only one topic. In this case, all messages from that topic
are included in the view.

Setting the Message Type
The MessageType element of the definition sets the type of the outgoing messages. The message type
of the aggregation does not need to be the same as the message type of the topics used to create the
aggregation. However, if the MessageType differs from the type of the topics used to produce the
aggregation, you must explicitly specify the message type of the underlying topics.

For example, to produce JSON messages regardless of the types of the topics in the aggregation, you
would use the following element:

<MessageType>json</MessageType>

Defining Projections
AMPS makes available all fields from matching messages in the join specification. You specify the fields
that you want to AMPS to project and how to project them.

To tell AMPS how to project a message, you specify each field to include in the projection. The specifi-
cation provides a name for the projected field and one or more source field to use for the projected field.
The data can be projected as-is, or aggregated using one of the AMPS aggregation functions, as described
in Section 14.3 .

You refer to source fields using the XPath-like expression for the field. You name projected fields by
creating an XPath-like expression for the new field. AMPS uses this expression to name the new field.

<Projection>

Aggregating Data with View Topics

77

 <Field>[Orders].[/CustomerID]</Field>
 <Field>[Addresses].[/ShippingAddress] AS /DestinationAddress</
Field>
 <Field>SUM([Orders].[/TotalPrice]) AS /AccountTotal</Field>
</Projection>

The sample above uses the CustomerID from the orders topic and the shipping address for that cus-
tomer from the Addresses topic. The sample calculates the sum of all of the orders for that customer
as the AccountTotal. The sample also renames the ShippingAddress field as Destination-
Address in the projected message.

Grouping
Use grouping statements to tell AMPS how to aggregate data across messages and generate projected
messages.

For example, an Orders topic that contains messages for incoming orders could be used to calculate
aggregates for each customer, or aggregates for each symbol ordered. The grouping statement tells AMPS
which way to group messages for aggregation.

<Grouping>
 <Field>[Orders].[/CustomerID]</Field>
</Grouping>

The sample above groups and aggregates the projected messages by CustomerId. Because this state-
ment tells AMPS to group by CustomerId, AMPS projects a message for each distinct CustomerId
value. A message to the Orders topic will create an outgoing message with data aggregated over the Cus-
tomerId.

If your projection uses aggregation functions and specifies a Grouping clause, each field in the projec-
tion should either be an aggregate or be specified in the Grouping element. Otherwise, AMPS returns
the last processed value for the field.

14.3. Functions
AMPS provides functions that you can use in your projections.

Aggregation Functions
These functions operate over groups of messages. They return a single value for each unique group.

Table 14.1. AMPS Aggregation Functions

Function Description
AVG Average over an expression. Returns the mean value of the values specified by

the expression.

Aggregating Data with View Topics

78

Function Description
COUNT Count of values in an expression. Returns the number of values specified by

the expression.
MIN Minimum value. Returns the minimum out of the values specified by the ex-

pression.
MAX Maximum value. Returns the maximum out of the values specified by the ex-

pression.
SUM Summation over an expression. Returns the total value of the values specified

by the expression.

 Null values are not included in aggregate expressions with AMPS, nor in ANSI SQL. COUNT will
count only non-null values; SUM will add only non-null values; AVG will average only non-null values;
and MIN and MAX ignore NULL values.

MIN and MAX can operate on either numbers or strings, or a combination of the two. AMPS compares
values using the principles described for comparison operators. For MIN and MAX, determines order
based on these rules:

• Numbers sort in numeric order.

• String values sort in ASCII order.

• When comparing a number to a string, convert the string to a number, and use a numeric comparison.
If that is not successful, the value of the string is higher than the value of the number.

For example, given a field that has the following values across a set of messages:

24, 020, 'cat', 75, 1.3, 200, '75', '42'

MIN will return 1.3, MAX will return 'cat'. Notice that different message types may have different
support for converting strings to numeric values: AMPS relies on the parsing done by the message type
to determine the numeric value of a string.

14.4. Examples

Simple Aggregate View Example
For a potential usage scenario, imagine the topic ORDERS which includes the following NVFIX message
schema:

Table 14.2. ORDERSTable Identifiers

NVFIX Tag Description
OrderID unique order identifier
Tick symbol
ClientId unique client identifier

Aggregating Data with View Topics

79

NVFIX Tag Description
Shares currently executed shares for the chain of orders
Price average price for the chain of orders

This topic includes information on the current state of executed orders, but may not include all the infor-
mation we want updated in real-time. For example, we may want to monitor the total value of all orders
executed by a client at any moment. If ORDERS was a SQL Table within an RDBMS, the “view” we
would want to create would be similar to:

CREATE VIEW TOTAL_VALUE AS
SELECT ClientId, SUM(Shares * Price) AS TotalCost
FROM ORDERS
GROUP BY ClientId

As defined above, the TOTAL_VALUE view would only have two fields:

1. ClientId: the client identifier

2. TotalCost: the summation of current order values by client

Views in AMPS are specified in the AMPS configuration file in ViewDefinition section, which itself
must be defined in the SOW section. The example above would be defined as:

<SOW>
 <TopicDefinition>
 <Topic>ORDERS</Topic>
 <MessageType>nvfix</MessageType>
 <Key>/OrderID</Key>
 </TopicDefinition>
 <ViewDefinition>
 <Topic>TOTAL_VALUE</Topic>
 <UnderlyingTopic>ORDERS</UnderlyingTopic>
 <FileName>./views/totalValue.view</FileName>
 <MessageType>nvfix</MessageType>
 <Projection>
 <Field>/ClientId</Field>
 <Field>SUM(/Shares * /Price) AS /TotalCost</Field>
 </Projection>
 <Grouping>
 <Field>/ClientId</Field>
 </Grouping>
 </ViewDefinition>
</SOW>

Views require an underlying SOW topic. See Chapter 7 for more information on creating and
configuring SOW topics.

Aggregating Data with View Topics

80

The Topic element is the name of the new topic that is being defined. This Topic value will be the
topic that can be used by clients to subscribe for future updates or perform SOW queries against.

The UnderlyingTopic is the SOW topic or topics that the view operates on. That is, the Underly-
ingTopic is where the view gets its data from. All XPath references within the Projection fields
are references to values within this underlying SOW topic (unless they appear on the right-hand side of
the AS keyword.)

The Projection section is a list of 1 or more Fields that define what the view will contain. The
expressions can contain either a raw XPath value, as in “/ClientId” above, which is a straight copy of the
value found in the underlying topic into the view topic using the same target XPath. If we had wanted to
translate the ClientId tag into a different tag, such as CID, then we could have used the AS keyword
to do the translation as in /ClientId AS /CID.

Unlike ANSI SQL, AMPS allows you to include fields in the projection that are not included
in the Grouping or used within the aggregate functions. In this case, AMPS uses the last
value processed for the value of these fields. AMPS enforces a consistent order of updates to
ensure that the value of the field is consistent across recovery and restart.

An unexpected 0 (zero) in an aggregate field within a view usually means that the value is
either zero or NaN. AMPS defaults to using 0 instead of NaN. However, any numeric aggregate
function will result in a NaN if the aggregation includes a field that is not a number.

Finally, the Grouping section is a list of one or more Fields that define how the records in the under-
lying topic will be grouped. In this example, we grouped by the tag holding the client identifier. However,
we could have easily made this the “Symbol” tag /Tick.

In the below example, we want to count the number of orders by client that have a value greater than
1,000,000:

<SOW>
 <ViewDefinition>
 <Topic>NUMBER_OF_ORDERS_OVER_ONEMILL</Topic>
 <UnderlyingTopic>ORDERS</UnderlyingTopic>
 <Projection>
 <Field>/ClientId</Field>
 <Field><![CDATA[SUM(IF(/Shares * /Price > 1000000, /Shares * /
Price, NULL)) AS /AggregateValue]]> </Field>
 <Field>SUM(IF(/Shares * /Price > 1000000, /Shares * /Price,
 NULL)) AS /AggregateValue2</Field>
 </Projection>
 <Grouping>
 <Field>/ClientId</Field>
 </Grouping>
 <FileName>
 ./views/numOfOrdersOverOneMil.view
 </FileName>
 <MessageType>nvfix</MessageType>
 </ViewDefinition>

Aggregating Data with View Topics

81

</SOW>

Notice that the /AggregateValue and /AggregateValue_2 will contain the same value; howev-
er /AggregateValue was defined using an XML CDATA block, and /AggregateValue_2 was
defined using the XML > entity reference.

Since the AMPS configuration is XML, special characters in projection expressions must either
be escaped with XML entity references or wrapped in a CDATA section.

Updates to underlying topics can potentially cause many more updates to downstream views, which can
create stress on downstream clients subscribed to the view. If any underlying topic has frequent updates
to the same records and/or a real-time view is not required, as in a GUI, then a replica of the topic may
be a good solution to reduce the frequency of the updates and conserve bandwidth. For more on topic
replicas, please see Chapter 13.

Multiple Topic Aggregate Example
This example demonstrates how to create an aggregate view that uses more than one topic as a data
source. For a potential usage scenario, imagine that another publisher provides a COMPANIES topic which
includes the following NVFIX message schema:

Table 14.3. COMPANIESTable Identifiers

NVFIX Tag Description
CompanyId unique identifier for the company
Tick symbol
Name company name

This topic includes the name of the company, and an identifier used for internal record keeping in the
trading system. Using this information, we want to provide a running total of orders for that company,
including the company name.

If ORDERS and COMPANIES were a SQL Table within an RDBMS, the “view” we would want to create
would be similar to:

CREATE VIEW TOTAL_COMPANY_VOLUME AS
SELECT COMPANIES.CompanyId, COMPANIES.Tick, COMPANIES.Name,
 SUM(ORDERS.Shares) AS TotalVolume
FROM COMPANIES LEFT OUTER JOIN ORDERS
 ON COMPANIES.Tick = ORDERS.Tick
GROUP BY ORDERS.Tick

As defined above, the TOTAL_COMPANY_VOLUME table would have four columns:

1. CompanyId: the identifier for the company

2. Tick: The ticker symbol for the company

Aggregating Data with View Topics

82

3. Name: The name of the company

4. TotalVolume: The total number of shares involved in orders

To create this view, use the following definition in the AMPS configuration file:

<SOW>
 <TopicDefinition>
 <Topic>ORDERS</Topic>
 <MessageType>nvfix</MessageType>
 <Key>/OrderID</Key>
 <FileName>./sow/%n.sow</FileName>
 </TopicDefinition>
 <TopicDefinition>
 <Topic>COMPANIES</Topic>
 <MessageType>nvfix</MessageType>
 <Key>/CompanyId</Key>
 <FileName>./sow/%n.sow</FileName>
 </TopicDefinition>
 <ViewDefinition>
 <Topic>TOTAL_COMPANY_VOLUME</Topic>
 <UnderlyingTopic>
 <Join>[ORDERS]./Tick = [COMPANIES]./Tick</Join>
 </UnderlyingTopic>
 <FileName>./views/totalVolume.view</FileName>
 <MessageType>nvfix</MessageType>
 <Projection>
 <Field>[COMPANIES]./CompanyId</Field>
 <Field>[COMPANIES]./Tick</Field>
 <Field>[COMPANIES]./Name</Field>
 <Field>SUM([ORDERS]./Shares) AS /TotalVolume</Field>
 </Projection>
 <Grouping>
 <Field>[ORDERS]./Tick</Field>
 </Grouping>
 </ViewDefinition>
</SOW>

As with the single topic example, first specify the underlying topics and ensure that they maintain a SOW
database. Next, the view defines the underlying topic that is the source of the data. In this case, the under-
lying topic is a join between two topics in the instance. The definition next declares the file name where
the view will be saved, and the message type of the projected messages. The message types that you join
can be different types, and the projected messages can be a different type than the underlying message
types. The projection uses three fields from the COMPANIES topic and one field that is aggregated from
messages in the ORDERS topic. The projection groups results by the Tick symbols that appear in mes-
sages in the ORDERS topic.

83

Chapter 15. Transactional Messaging and
Bookmark Subscriptions

AMPS includes support for transactional messaging, which includes persistence, consistency across
restarts, and message replay. Transactional messaging is also the basis for replication, a key component
of the high-availability capability in AMPS. All of these capabilities rely on the AMPS transaction log.
The transaction log maintains a record of messages. You can choose which messages are included in the
transaction log, filtering by content, topic, or both.

The AMPS transaction log differs from transaction logging in a conventional relational database system.
Unlike transaction logs that are intended solely to maintain the consistency of data in the system, the
AMPS transaction log is fully queryable through the AMPS client APIs. For applications that need access
to historical information, or applications that need to be able to recover state in the event of a client restart,
the transaction log allows you to do this, relying on AMPS as the definitive single version of the state
of the application. There is no need for complex logic to handle reconciliation or state restoration in the
client. AMPS handles the difficult parts of this process, and the transaction log guarantees consistency.

Topics covered by a transaction log are able to provide reliable messaging with strict consistency guar-
antees.

When a transaction log is enabled, topics covered by the transaction log provide atomic broadcast from
that instance. This means that the instance enforces a repeatable ordering on the messages, and guarantees
that all subscribers receive messages reliably, in a consistent order, and with no gaps or duplicates.

15.1. Transaction Log
The transaction log in AMPS contains a sequential, historical record of messages. The transaction log can
record messages for a topic, a set of topics, or for filtered content on one or more topics. The transaction log
allows clients to query and replay messages, with topic and content filtering equivalent to SOW queries.
Like SOW queries, a client can query the transaction log and subscribe to updates with a single, atomic
operation that guarantees no messages are lost.

When a client is recovering from a restart or failure, this ability to replay allows a client to fill gaps in
received messages and resume subscriptions without missing a message. This feature also allows new
clients to receive an exact replay of a message stream. Replay from the transaction log is also useful for
auditing, quality assurance, and backtesting.

Additionally, the transaction log is used in AMPS replication to ensure that all servers in a replication
group are continually synchronized should one of them experience an interruption in service. For example,
say an AMPS instance, as a member of a replication group, goes down. When it comes back up, it can
query another AMPS instance for all of the messages it did not receive, thereby catching up to a point of
synchronization with the other instances. This feature, when coupled with AMPS replication, ensures that
message subscriptions are always available and up-to-date.

The AMPS transaction log records messages that are received from a publisher and events that affect those
messages such as sow_delete commands. AMPS does not record messages that are created through a
view, out-of-focus messages, or event status messages created by AMPS.

Transactional Messaging and Bookmark Subscriptions

84

Understanding Message Persistence
To take advantage of transactional messaging, the publisher and the AMPS instance work together to
ensure that messages are written to persistent storage. AMPS lets the publisher know when the message
is persisted, so that the publisher knows that it no longer needs to track the message.

When a publisher publishes a message to AMPS, the publisher assigns each message a unique sequence
number. Once the message has been written to persistent storage, AMPS uses the sequence number to
acknowledge the message and let the publisher know that the message is persisted. Once AMPS has
acknowledged the message, the publisher considers the message published. For safety, AMPS always
writes a message to the local transaction log before acknowledging that the message is persisted. If the
topic is configured for synchronous replication, all replication destinations have to persist the message
before AMPS will acknowledge that the message is persisted.

For efficiency, AMPS may not acknowledge each individual message. Instead, AMPS acknowledges the
most recent persisted message to indicate that all previous messages have also been persisted. Publishers
that need transactional messaging do not wait for acknowledgment to publish more messages. Instead,
publishers retain messages that haven't been acknowledged, and republish messages that haven't been
acknowledged if failover occurs. The AMPS client libraries include this functionality for persistent mes-
saging.

Configuring a Transaction Log
Before demonstrating the power of the transaction log, we will first show how to configure the transaction
log in the AMPS configuration file.

 <TransactionLog>
 <JournalDirectory>./amps/journal/</JournalDirectory>
 <JournalArchiveDirectory>
 /mnt/somedev0/amps/journal
 </JournalArchiveDirectory>
 <PreallocatedJournalFiles>1</PreallocatedJournalFiles>
 <MinJournalSize>10MB</MinJournalSize>
 <Topic>
 <Name>orders</Name>
 <MessageType>nvfix</MessageType>
 <Filter>/price > 5</Filter>
 </Topic>
 <FlushInterval>40ms</FlushInterval>
 </TransactionLog>

All transaction log definitions are contained within the TransactionLog block. The follow-
ing global settings apply to all Topic blocks defined within the TransactionLog: Jour-
nalDirectory, PreallocatedJournalFiles, and MinJournalSize.
The JournalDirectory is the filesystem location where journal files and journal index files
will be stored.

Transactional Messaging and Bookmark Subscriptions

85

The JournalArchiveDirectory is the filesystem location to which AMPS will archive jour-
nals. Notice that AMPS does not archive files by default. You configure an action to archive journal
files, as described in Section 21.6.
PreAllocatedJournalFiles defines the number of journal files AMPS will create as part of
the server startup. Default: 2 Minimum: 1
The MinJournalSize is the smallest journal size that AMPS will create. Default: 1GB Minimum:
10M
When a Topic is specified, then all messages which match exactly the specified topic or regular
expression will be included in the transaction log. Otherwise, AMPS initializes the transaction log-
ging, but does not record any messages to the transaction log.

The Topic section can be specified multiple times to allow for multiple topics to be published to
the transaction log.
The FlushInterval is the interval at which messages will be flushed the journal file during
periods of slow activity. Default: 100ms Maximum: 100ms Minimum: 30us

Bookmark Subscription

One of the most useful and powerful features in AMPS is bookmark subscription, which is enabled by the
transaction log. With bookmark subscription, an application requests a subscription that starts at a specific
point in the transaction log. AMPS begins the subscription at the specified point, and provides messages
from the transaction log.

Each message in the transaction log has a bookmark. A bookmark is an opaque, unique identifier that is
added by AMPS to each message recorded in the transaction log. For messages provided from a transaction
log, the field is included in the Bookmark header of the message. AMPS guarantees that bookmarks for
the instance are monotonically increasing, which enables AMPS to rapidly find an individual bookmark
within the transaction log.

A bookmark subscription simply requests that AMPS begin the subscription with the first message fol-
lowing the bookmark provided with the subscription. AMPS locates the bookmark in the transaction log,
and begins the subscription at that point in time.

One way to think about a bookmark subscription is that AMPS publishes to the subscribing client only
those messages that:

1. have bookmarks after the provided bookmark,

2. match the subscription's Topic and Filter, and

3. have been written to the transaction log

Because a bookmark subscription requires a transaction log, when a client requests a bookmark subscrip-
tion for a topic that is not being recorded in the transaction log, AMPS returns an error.

Bookmark subscriptions are provided from the transaction log rather than the live publish
stream. This lets AMPS adapt the pace of replay to the pace at which the subscriber is con-
suming replayed messages without triggering slow client offlining.

Transactional Messaging and Bookmark Subscriptions

86

There are four different ways that a client can request a bookmark replay from the transaction log. Each of
these bookmark types meets a different need and enables a different recovery strategy that an application
can use. The sections below describe the recovery types, the cases in which they can be used, and how
the 60East clients implement them.

While there are similarities between a bookmark subscription used for replay and a SOW query,
the transaction log and SOW are independent features that can be used separately. The SOW
gives a snapshot of the current view of the latest data, while the journal is capable of playback
of previous messages. Historical SOW queries provide a snapshot of the SOW at a defined
point in the past, and are provided by the SOW database rather than the transaction log.

Recovery With an Epoch Bookmark
The epoch bookmark, when requested on a subscription, will replay the transaction log back to the sub-
scribing client from the very beginning. Once the transaction log has been replayed in its entirety, then
the subscriber will begin receiving messages on the live incoming stream of messages. A subscriber does
this by requesting a 0 in the bookmark header field of their subscription. The AMPS clients provide a
constant for epoch, typically represented as EPOCH.

This type of bookmark can be used in a case where the subscriber has begun after the start of an event,
and needs to catch up on all of the messages that have been published to the topic.

To ensure that no messages from the subscription are lost during the replay, all message replay from the
live subscription stream will be queued in AMPS until the client has consumed all of the messages from
the replay stream. Once all of the messages from the replay stream have been consumed, AMPS will cut
over to the live subscription stream and begin sending messages to the subscriber from that stream.

Bookmark Replay From NOW
The NOW bookmark, when requested on a subscription, declines to replay any messages from the trans-
action log, and instead begins streaming messages from the live stream - returning any messages that
would be published to the transaction log that match the subscription's Topic and Filter.

This type of bookmark is used when a client is concerned with messages that will be published to the
transaction log, but is unconcerned with replaying the historical messages in the transaction log. This
strategy is often used for applications that want to ensure that they do not miss messages, even if the
application temporarily loses connectivity, but are not concerned with older messages. For this case, the
application subscribes with NOW when the application starts, and then re-establishes the subscription
with the most recently-processed bookmark if connectivity is lost.

The NOW bookmark is performed using a subscribe query with "0|1|" as the bookmark field. The AMPS
clients provide a constant for this value, typically represented as NOW.

Bookmark Replay With a Bookmark
Clients that store the bookmarks from published messages can use those bookmarks to recover from an
interruption in service. By placing a subscribe query with the last bookmark recorded, a client will get a

Transactional Messaging and Bookmark Subscriptions

87

replay of all messages persisted to the transaction log after that bookmark. Once the replay has completed,
the subscription will then cut over to the live stream of messages.

To perform a bookmark replay, the client places a bookmark subscription with the bookmark at which
to start the subscription.

Developer Note: the MOST_RECENT value

The AMPS client libraries provide a special constant value that requests that the library look up the book-
mark for the most recently processed message in the bookmark store and then provide that bookmark in
the subscription request. This special value is typically represented as MOST_RECENT. When the appli-
cation requests a bookmark subscription with a bookmark of MOST_RECENT, the client library looks for
the most recent bookmark processed by the application, then provides that bookmark for the subscription.
This ensures that the subscription begins at last processed message, and the application receives the next
unprocessed message for the subscription. If there is no record of a subscription, the AMPS clients will
start with EPOCH.

It's important to remember that the AMPS server has no knowledge of the MOST_RECENT value.
MOST_RECENT is never sent to AMPS and never appears in the AMPS log. MOST_RECENT is simply a
request to the AMPS client library to look up the exact bookmark to provide to AMPS. The AMPS client
libraries always translate a request for MOST_RECENT into either a specific bookmark value or EPOCH.

Bookmark Replay From a Moment in Time
The final type of bookmark supported is the ASCII-formatted timestamp. When using a timestamp as the
bookmark value, the transaction log replays all messages that occurred after the timestamp, and then cuts
over to the live subscription once the replay stream has been consumed.

This bookmark has the format of YYYYmmddTHHMMSS[Z] where:

• YYYY is the four digit year.

• mm is the two digit month.

• dd is the two digit day.

• T the character separator between the date and time.

• HH the two digit hour.

• MM the minutes of the time.

• SS the two digit second.

• Z is an optional timezone specifier. AMPS timestamps are always in UTC, regardless of whether the
timezone is included. AMPS only accepts a literal value of Z for a timezone specifier.

For example, a timestamp for January 2nd, 2015, at 12:35:

Transactional Messaging and Bookmark Subscriptions

88

20150102T123500Z

Content Filtering

Similar to regular subscriptions, bookmark subscriptions support content filtering in cases where the Fil-
ter specified in the subscription query header can query an exact value, a range of values, or a regu-
lar expression. Bookmark subscriptions implement filtering on messages matching those that would be
published to the transaction log. This means that AMPS will first check that the message matches the
configuration's Topic, next it will match the Filter configured in the topic, after that it will attempt
to match the subscription's topic, and finally, the content filter specified for the subscription.

Content filtering is covered in greater detail in Chapter 5.

Using the 'live' Option for a Subscription
Once replay from the transaction log is finished, AMPS sends messages to subscribers as the messages
are processed. By default, AMPS waits until a message is persisted to the transaction log before sending
the message to subscribers. Because each message delivered is persisted, this approach ensures that the
sequence of messages is consistent across client and server restarts, and that no messages will be missed
or duplicated during failover.

In some cases, reducing latency may be more important than consistency. To support these cases, AMPS
provides a live option on bookmark subscriptions. For bookmark subscriptions that use the live option,
AMPS will send messages to subscribers before the message has been persisted. This can reduce latency
somewhat at the expense of increasing the risk of inconsistency upon failover. For example, if a publisher
does not republish a message after failover, your application may receive a message that is not stored in
the transaction log and that other applications have not received.

The live option increases the risk of inconsistent data between your program and AMPS in
the event of a failover. 60East recommends using this option only if the risk is acceptable and
if your application requires the small latency reduction this option provides.

Because the live option does not wait for messages to be peristed, subscriptions that use this option are
subject to slow client offlining after replay from the transaction log is complete.

Managing Journal Files
The design of the journal files for the transaction log are such that AMPS can archive, compress and
remove these files while AMPS is running. AMPS actions provide integrated adminstration for journal
files, as described in Chapter 21.

Archiving a file copies the file to an archival directory, typically located on higher-capacity but higher-la-
tency storage. Compressing a file compresses the file in place. Archived and compressed journal files are
still accessible to clients for replay and for AMPS to use in rebuilding any SOW files that are damaged
or removed.

Transactional Messaging and Bookmark Subscriptions

89

When defining a policy for archiving, compressing or removing files, keep in mind the amount of time
for which clients will need to replay data. Once journal files have been deleted, the messages in those files
are no longer available for clients to replay or for AMPS to use in recreating a SOW file.

To determine how best to manage your journal files, consider your application's access pattern to the
recorded messages. Most applications have a period of time (often a day or a week) where historical data
is in heavy use, and a period of time (often a week, or a month) where data is infrequently used. One
common strategy is to create the journal files on high-throughput storage. The files are archived to slower,
higher-capacity storage after a short period of time, compressed, and then to removed after a longer period
of time. This strategy preserves space on high-throughput storage, while still allowing the journals to be
used. For example, if your applications frequently replay data for the last day, occasionally replay data
older than the last week, and never request data older than one month, a management strategy that meets
these needs would be to archive files after one day, compress them after a week, and remove them after
one month.

If you remove journal files when AMPS is shut down, keep in mind that the removal of journal
files must be sequential and can not leave gaps in the remaining files. For example, say there
are three journal files, 001, 002 and 003. If only 002 is removed, then the next AMPS restart
could potentially overwrite the journal file 003, causing an unrecoverable problem.

When using AMPS actions to manage journal files, AMPS ensures that all replays from a journal file are
complete and all messages from a journal file have been successfully replicated before removing the file.

Part III. Deployment,
Monitoring, and Administration

91

Chapter 16. Running AMPS as a Linux
Service

AMPS is designed to be able to easily integrate into your existing infrastructure: AMPS includes all of the
dependencies it needs to run, and is configured easily with a single configuration file. Some deployments
integrate AMPS into a third-party service management infrastructure: for those deployments, the needs
of that infrastructure determine how to install AMPS.

More typically, AMPS runs as a Linux service. This chapter describes how to install AMPS as a service.

16.1. Installing the Service
AMPS includes a shell script that installs the service. The shell script is included in the bin directory of
your AMPS installation. Run the script with root permission, as follows:

$ sudo ./install-amps-daemon.sh

This script does the following installation work:

• Installs the AMPS distribution into /opt/amps

• Installs the service management script for AMPS to /etc/init.d/amps

• Runs update-rc.d to install the appropriate script links

In addition, you must copy the AMPS configuration file for the instance to /var/run/amps/
config.xml.

You can only run one instance of AMPS as a service on a system at a given time using this script. AMPS
does not enforce any restriction on how many instances can be run on the system at the same time through
other means, but this script is designed to manage a single instance running as a service.

16.2. Configuring the Service
When running as a service, the following considerations apply to the configuration file:

AMPS Logging
60East recommends logging the most important AMPS messages to syslog when running as a service.
For example, the following configuration file snippet logs messages of warning level and above to the
system log:

 <Logging>

Running AMPS as a Linux Service

92

 <Target>
 <Protocol>syslog</Protocol>
 <Level>warning</Level>
 <Ident>amps</Ident>
 <Options>LOG_CONS,LOG_NDELAY,LOG_PID</Options>
 <Facility>LOG_USER</Facility>
 </Target>
 </Logging>

60East does not recommend logging a level lower than warning to syslog, since an active AMPS instance
can produce a large volume of messages.

File Paths
When running as a service, file paths in the configuration file also require attention. In particular:

• For simplicity, use absolute paths for all file paths in the configuration file.

• Consider startup order, and ensure that any devices that AMPS uses are mounted before AMPS starts.

As with any other AMPS installation, it's also important to estimate the amount of storage space AMPS
requires, and ensure that the device where AMPS stores files has the needed capacity.

Configuration File Location
The AMPS service scripts require the configuration file to be located at /var/run/amps/
config.xml.

16.3. Managing the Service
The scripts that AMPS installs provide management functions for the AMPS service. The scripts are used
in the same way scripts for other Linux services are used.

Starting the AMPS Service
To start the AMPS service, use the following command:

sudo /etc/init.d/amps start

Stopping the AMPS Service
To stop the AMPS service, use the following command:

Running AMPS as a Linux Service

93

sudo /etc/init.d/amps stop

Restarting the AMPS Service
To restart the AMPS service, use the following command:

sudo /etc/init.d/amps restart

View status for the AMPS Service
To see the status of the AMPS service, use the following command:

sudo /etc/init.d/amps status

16.4. Uninstalling the Service
AMPS includes a script that uninstalls AMPS as a service. The script reverses the changes that the install
script makes to your system. Run the script with root permission, as follows:

$ sudo ./uninstall-amps-daemon.sh

The uninstall script does not remove any files or data that AMPS creates at runtime.

16.5. Upgrading the Service
To upgrade the service to a new version of AMPS, follow these steps:

1. Stop the service.

2. Uninstall the previous version of the service using the uninstall script included with that version.

3. If necessary, upgrade any data files or configuration files that you want to retain.

4. Install the new version of the service using the install script included with the new version.

5. Start the service.

For AMPS instances that participate in failover, you must coordinate your upgrades as you would for a
standalone AMPS instance.

94

Chapter 17. Logging
AMPS supports logging to many different targets including the console, syslog, and files. Every error
message within AMPS is uniquely identified and can be filtered out or explicitly included in the logger
output. This chapter of the AMPS User Guide describes the AMPS logger configuration and the unique
settings for each logging target.

17.1. Configuration
Logging within AMPS is enabled by adding a Logging section to the configuration. For example, the
following would log all messages with an 'info' level or higher to the console:

<AMPSConfig>
 ...
 <Logging>
 <Target>
 <Protocol>stdout</Protocol>
 <Level>info</Level>
 </Target>
 </Logging>
 ...
</AMPSConfig>

The Logging section defines a single Target, which is used to log all messages to the stdout
output.
States that only messages with a log level of info or greater will be output to the screen.

17.2. Log Messages
An AMPS log message is composed of the following:

• Timestamp (eg: 2010-04-28T21:52:03.4766640-07:00)

• AMPS thread identifier

• Log Level (eg: info)

• Error identifier (eg: 15-0008)

• Log message

An example of a log line (it will appear on a single line within the log):

Logging

95

2011-11-23T14:49:38.3442510-08:00 [1] info: 00-0015 AMPS
 initialization completed (0 seconds).

Each log message has a unique identifier of the form TT-NNNN where TT is the component within AMPS
which is reporting the message and NNNN the number that uniquely identifies that message within the
module. Each logging target allows the direct exclusion and/or inclusion of error messages by identifier.
For example, a log file which would include all messages from module 00 except for 00-0001 and
00-0004 would use the following configuration:

<Logging>
 <Target>
 <Protocol>stdout</Protocol>
 <IncludeErrors>00-0002</IncludeErrors>
 <ExcludeErrors>00-0001,00-0004,12-1.*</ExcludeErrors>
 </Target>
</Logging>

The above Logging configuration example, all log messages which are at or above the default log lev-
el of info will be emitted to the logging target of stdout. The configuration explicitly wants to see
configuration messages where the error identifier matches 00-0002. Additionally, the messages which
match 00-0001, 00-0004 will be excluded, along with any message which match the regular expres-
sion of 12-1.*.

17.3. Log Levels
AMPS has nine log levels of escalating severity. When configuring a logging target to capture messages
for a specific log level, all log levels at or above that level are sent to the logging target. For example, if
a logging target is configured to capture at the “error” level, then all messages at the “error”, “critical”,
and “emergency” levels will be captured because “critical” and “emergency” are of a higher level. The
following table Table 17.1 contains a list of all the log levels within AMPS.

Table 17.1. Log Levels

Level Description
none no logging
trace all inbound/outbound data
debug debugging statements
stats statistics messages
info general information messages
warning problems that AMPS tries to correct that are often harmless
error events in which processing had to be aborted
critical events impacting major components of AMPS that if left uncorrected may cause

a fatal event or message loss

Logging

96

Level Description
emergency a fatal event

Each logging target allows the specification of a Level attribute that will log all messages at the specified
log level or with higher severity. The default Level is none which would log nothing. Optionally, each
target also allows the selection of specific log levels with the Levels attribute. Within Levels, a comma
separated list of levels will be additionally included.

For example, having a log of only trace messages may be useful for later playback, but since trace
is at the lowest level in the severity hierarchy it would normally include all log messages. To only enable
trace level, specify trace in the Levels setting as below:

<AMPSConfig>
 ...
 <Logging>
 <Target>
 <Protocol>gzip</Protocol>
 <FileName>traces.log.gz</FileName>
 <Levels>trace</Levels>
 </Target>
 </Logging>
 ...
</AMPSConfig>

Logging only trace and info messages to a file is demonstrated below:

<AMPSConfig>
 ...
 <Logging>
 <Target>
 <Protocol>file</Protocol>
 <FileName>traces-info.log</FileName>
 <Levels>trace,info</Levels>
 </Target>
 </Logging>
 ...
</AMPSConfig>

Logging trace, info messages in addition to levels of error and above (error, critical and
emergency) is demonstrated below:

<Target>
 <Protocol>file</Protocol>
 <FileName>traces-error-info.log</FileName>
 <Level>error</Level>
 <Levels>trace,info</Levels>

Logging

97

</Target>

17.4. Logging to a File
To log to a file, declare a logging target with a protocol value of file. Beyond the standard Level,
Levels, IncludeErrors, and ExcludeErrors settings available on every logging target, file tar-
gets also permit the selection of a FileName mask and RotationThreshold.

Selecting a Filename
The FileName attribute is a mask which is used to construct a directory and file name location for the
log file. AMPS will resolve the file name mask using the symbols in Table 17.2. For example, if a file
name is masked as:

%Y-%m-%dT%H:%M:%S.log

...then AMPS would create a log file in the current working directory with a timestamp of the form:
2012-02-23T12:59:59.log.

If a RotationThreshold is specified in the configuration of the same log file, the the next log file
created will be named based on the current system time, not on the time that the previous log file was
generated. Using the previous log file as an example, if the first rotation was to occur 10 minutes after the
creation of the log file, then that file would be named 2012-02-23T13:09:59.log.

Log files which need a monotonically increasing counter when log rotation is enabled can use the %n
mask to provide this functionality. If a file is masked as:

localhost-amps-%n.log

Then the first instance of that file would be created in the current working directory with a name of
localhost-amps-00000.log. After the first log rotation, a log file would be created in the same
directory named localhost-amps-00001.log.

Log file rotation is discussed in greater detail in the section called “Log File Rotation”.
Table 17.2. Log Filename Masks

Mask Definition
%Y Year

%m Month

%d Day

%H Hour

%M Minute

Logging

98

Mask Definition
%S Second

%n Iterator which starts at 00000 when AMPS is first started and increments each time a
RotationThreshold size is reached on the log file.

Log File Rotation
Log files can be “rotated” by specifying a valid threshold in the RotationThreshold attribute. Values
for this attribute have units of bytes unless another unit is specified as a suffix to the number. The valid
unit suffixes are:
Table 17.3. Log File Rotation Units

Unit Suffix Base Unit Examples
no suffix bytes “1000000” is 1 million bytes
k or K thousands of bytes “50k” is 50 thousand bytes
m or M millions of bytes “10M” is 10 million bytes
g or G billions of bytes “2G” is 2 billion bytes
t or T trillions of bytes “0.5T” is 500 billion bytes

When using log rotation, if the next filename is the same as an existing file, the file will be
truncated before logging continues. For example, if “amps.log” is used as the FileName mask
and a RotationThreshold is specified, then the second rotation of the file will overwrite
the first rotation. If it is desirable to keep all logging history, then it is recommended that either
a timestamp or the %n rotation count be used within the FileName mask when enabling log
rotation.

Examples
The following logging target definition would place a log file with a name constructed from the timestamp
and current log rotation number in the ./logs subdirectory. The first log would have a name similar
to ./logs/20121223125959-00000.log and would store up to 2GB before creating the next log
file named./logs/201212240232-00001.log.

<AMPSConfig>
 ...
 <Logging>
 <Target>
 <Protocol>file</Protocol>
 <Level>info</Level>
 <FileName>./logs/%Y%m%d%H%M%S-%n.log</FileName>
 <RotationThreshold>2G</RotationThreshold>
 </Target>
 </Logging>

Logging

99

 ...
</AMPSConfig>

This next example will create a single log named amps.log which will be appended to during each
logging event. If amps.log contains data when AMPS starts, that data will be preserved and new log
messages will be appended to the file.

<AMPSConfig>
 ...
 <Logging>
 <Target>
 <Protocol>file</Protocol>
 <Level>info</Level>
 <FileName>amps.log</FileName>
 </Target>
 </Logging>
 ...
</AMPSConfig>

17.5. Logging to a Compressed File
AMPS supports logging to compressed files as well. This is useful when trying to maintain a smaller log-
ging footprint. Compressed file logging targets are the same as regular file targets except for the following:

• the Protocol value is gzip instead of file;

• the log file is written with gzip compression;

• the RotationThreshold is metered off of the uncompressed log messages;

• makes a trade off between a small increase in CPU utilization for a potentially large savings in logging
footprint.

Example
The following logging target definition would place a log file with a name constructed from the timestamp
and current log rotation number in the ./logs subdirectory. The first log would have a name similar to
./logs/20121223125959-0.log.gz and would store up to 2GB of uncompressed log messages
before creating the next log file named ./logs/201212240232-1.log.gz.

<AMPSConfig>
 ...
 <Logging>

Logging

100

 <Target>
 <Protocol>gzip</Protocol>
 <Level>info</Level>
 <FileName>./logs/%Y%m%d%H%M%S-%n.log.gz</FileName>
 <RotationThreshold>2G</RotationThreshold>
 </Target>
 </Logging>
 ...
</AMPSConfig>

17.6. Logging to the Console
The console logging target instructs AMPS to log certain messages to the console. Both the standard output
and standard error streams are supported. To select standard out use a Protocol setting of stdout.
Likewise, for standard error use a Protocol of stderr.

Example
Below is an example of a console logger that logs all messages at the info or warning level to standard
out and all messages at the error level or higher to standard error (which includes error, critical
and emergency levels).

<AMPSConfig>
 ...
 <Logging>
 <Target>
 <Protocol>stdout</Protocol>
 <Levels>info,warning</Levels>
 </Target>
 <Target>
 <Protocol>stderr</Protocol>
 <Level>error</Level>
 </Target>
 </Logging>
 ...
</AMPSConfig>

17.7. Logging to Syslog
AMPS can also log messages to the host’s syslog mechanism. To use the syslog logging target, use a
Protocol of syslog in the logging target definition.

Logging

101

The host’s syslog mechanism allows a logger to specify an identifier on the message. This identifier is set
through the Ident property and defaults to the AMPS instance name (see AMPS Configuration Reference
Guide for configuration of the AMPS instance name.)

The syslog logging target can be further configured by setting the Options parameter to a comma-de-
limited list of syslog flags. The recognized syslog flags are:

Table 17.4. Logging Options Available for SYSLOG Configuration

Level Description
LOG_CONS Write directly to system console if there is an error while sending to system

logger.

LOG_NDELAY Open the connection immediately (normally, the connection is opened when
the first message is logged).

LOG_NOWAIT No effect on Linux platforms.

LOG_ODELAY The converse of LOG_NDELAY; opening of the connection is delayed until
syslog() is called. (This is the default, and need not be specified.)

LOG_PERROR Print to standard error as well.

LOG_PID Include PID with each message.

AMPS already includes the process identifier (PID) with every message it logs, however, it is
a good practice to set the LOG_PID flag so that downstream syslog analysis tools will find
the PID where they expect it.

The Facility parameter can be used to set the syslog “facility”. Valid options are: LOG_USER (the de-
fault), LOG_LOCAL0, LOG_LOCAL1, LOG_LOCAL2, LOG_LOCAL3, LOG_LOCAL4, LOG_LOCAL5,
LOG_LOCAL6, or LOG_LOCAL7.

Finally, AMPS and the syslog do not have a perfect mapping between their respective log severity levels.
AMPS uses the following table to convert the AMPS log level into one appropriate for the syslog:

Table 17.5. Comparison of AMPS Log Severity to Syslog Severity

AMPS Severity Syslog Severity
none LOG_DEBUG
trace LOG_DEBUG
debug LOG_DEBUG
stats LOG_INFO
info LOG_INFO
warning LOG_WARNING
error LOG_ERR
critical LOG_CRIT
emergency LOG_EMERG

Logging

102

Example
Below is an example of a syslog logging target that logs all messages at the critical severity level or
higher and additionally the log messages matching 30-0001 to the syslog.

<AMPSConfig>
 ...
 <Logging>
 <Target>
 <Protocol>syslog</Protocol>
 <Level>critical</Level>
 <IncludeErrors>30-0000</IncludeErrors>
 <Ident>\amps dma</Ident>
 <Options>LOG_CONS,LOG_NDELAY,LOG_PID</Options>
 <Facility>LOG_USER</Facility>
 </Target>
 </Logging>
 ...
</AMPSConfig

17.8. Error Categories
In the AMPS log messages, the error identifier consists of an error category, followed by a hyphen, fol-
lowed by an error identifier. The error categories cover the different modules and features of AMPS, and
can be helpful in diagnostics and troubleshooting by providing some context about where a message is
being logged from. A list of the error categories found in AMPS are listed in Table 17.6.
Table 17.6. AMPS Error Categories

AMPS Code Component
00 AMPS Startup
01 General
02 Message Processing
03 Expiration
04 Publish Engine
05 Statistics
06 Metadata
07 Client
08 Regex
09 ID Generator
0A Diff Merge
0B Out of Focus processing

Logging

103

AMPS Code Component
0C View
0D Message Data Cache
0E Conflated Topic
0F Message Processor Manager
11 Connectivity
12 Trace In - for inbound messages
13 Datasource
14 Subscription Manager
15 SOW
16 Query
17 Trace Out - for outbound messages
18 Parser
19 Administration Console
1A Evaluation Engine
1B SQLite
1C Meta Data Manager
1D Transaction Log Monitor
1E Replication
1F Client Session
20 Global Heartbeat
21 Transaction Replay
22 TX Completion
23 Bookmark Subscription
24 Thread Monitor
25 Authorization
26 SOW cache
28 Memory cache
29 Authorization & entitlement plugins
2A Message pipeline
2B Module manager
2C File management
2D NUMA module
2F SOW update broadcaster
30 AMPS internal utilities
70 AMPS networking
FF Shutdown

Logging

104

17.9. Looking Up Errors with ampserr

In the $AMPSDIR/bin directory is the ampserr utility. Running this utility is useful for getting detailed
information and messages about specific AMPS errors observed in the log files.

The AMPS Utilities User Guide contains more information on using the ampserr utility and other de-
bugging tools.

105

Chapter 18. Event Topics
AMPS publishes specific events to internal topics that begin with the /AMPS/ prefix, which is reserved
for AMPS only. For example, all client connectivity events are published to the internal /AMPS/Clien-
tStatus topic. This allows all clients to monitor for events that may be of interest.

Event topic messages can be subscribed with content filters like any other topic within AMPS.

A client may subscribe to event topics on any connection with a message type that supports views. This
includes all of the default message types and bson, but does not include the binary message type.

Messages are delivered as the message type for the connection. For example, if the connection uses JSON
messages, the event topic messages with be JSON. A connection that uses FIX will receive FIX messages
from an event topic.

18.1. Client Status
The AMPS engine will publish client status events to the internal /AMPS/ClientStatus topic when-
ever a client issues a logon command, disconnects, enters or removes a subscription, queries a SOW,
or issues a sow_delete. AMPS sends a message if a client fails authentication. In addition, upon a
disconnect, a client status message will be published for each subscription that the client had registered at
the time of the disconnect. This mechanism allows any client to monitor what other clients are doing and
is especially useful for publishers to determine when clients subscribe to a topic of interest.

To help identify clients, it is recommended that clients send a logon command to the AMPS engine and
specify a meaningful client name. This client name is used to identify the client within client status event
messages, logging output, and information on clients within the monitoring console. The client name must
be unique if a transaction log is configured for the AMPS instance.

Each message published to the client status topic will contain an Event and a ClientName. For sub-
scribe and unsubscribe events, the message will contain Topic, Filter and SubId.

When the connection uses the xml message type, the client status message published to the /AM-
PS/ClientStatus will contain a SOAP body with a ClientStatus section as follows:

<?xml version="1.0" encoding="iso-8859-1"?>
<SOAP-ENV:Envelope>
 <SOAP-ENV:Header>
 <Cmd>publish</Cmd>
 <TxmTm>20090106-23:24:40-0500</TxmTm>
 <Tpc>/AMPS/ClientStatus</Tpc>
 <MsgId>MAMPS-55</MsgId>
 <SubId>SAMPS-1233578540_1</SubId>

Event Topics

106

 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <ClientStatus>
 <Event>subscribe</Event>
 <ClientName>test_client</ClientName>
 <Topic>order</Topic>
 <Filter>(/FIXML/Order/Instrmt/@Sym = 'IBM')</Filter>
 <SubId>SAMPS-1233578540_10</SubId>
 </ClientStatus>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Table 18.1 defines the header fields which may be returned as part of the subscription messages to the /
AMPS/ClientStatus topic.

Table 18.1. /AMPS/ClientStatus Event Message Fields

FIX XML JSON / BSON Definition
20065 Timestamp timestamp Timestamp at which AMPS processed the mes-

sage
20066 Event event Command executed by the client

20067 ClientName client_name Client Name

20068 Tpc topic Topic for the event (if applicable)

20069 Filter filter Filter (if applicable)

20070 SubId sub_id Subscription ID (if applicable)

20071 ConnName connection_name Internal AMPS connection name

20072 Options options The options for the subscription (if applicable)

20073 QId query_id The identifier for the query (if applicable)

18.2. SOW Statistics
AMPS can publish SOW statistics for each SOW topic which has been configured. To enable this func-
tionality, specify the SOWStatsInterval in the configuration file. The value provided in SOWStat-
sInterval is the time between updates to the /AMPS/SOWStats topic.

For example, the following would be a configuration that would publish /AMPS/SOWStats event mes-
sages every 5 seconds.

<AMPSConfig>
 ...
 <SOWStatsInterval>5s</SOWStatsInterval>
 ...

Event Topics

107

</AMPSConfig>

When receiving from the AMPS engine using the xml protocol, the SOW status message published to the
/AMPS/SOWStats topic will contain a SOAP body with a SOWStats section as follows:

<?xml version="1.0" encoding="iso-8859-1"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/
envelope/">
 <SOAP-ENV:Header>
 <Cmd>publish</Cmd>
 <TxmTm>2010-09-08T17:49:06.9439120Z</TxmTm>
 <Tpc>/AMPS/SOWStats</Tpc>
 <SowKey>18446744073709551615</SowKey>
 <MsgId>AMPS-10548998</MsgId>
 <SubIds>SAMPS-1283968028_2</SubIds>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <SOWStats>
 <Timestamp>2010-09-08T17:49:06.9439120Z</Timestamp>
 <Topic>MyTopic</Topic>
 <Records>10485760</Records>
 </SOWStats>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

In the SOWStats message, the Timestamp field includes the time the event was generated, Topic
includes the topic, and Records includes the number of records.

Table 18.2 defines the header fields which may be returned as part of the subscription messages to the /
AMPS/SOWStats topic.

Table 18.2. /AMPS/SOWStats Event Message Fields

FIX XML JSON/BSON Definition
20065 Time-

stamp
timestamp Timestamp in which AMPS sent the message

20066 Topic topic Topic that statistics are being reported on

20067 Records record_count Number of records in the SOW topic

18.3. Persisting Event Topic Data

By default, AMPS event topics are not persisted to the SOW. However, because AMPS event topic mes-
sages are treated the same as all other messages, the event topics can be persisted to the SOW. Providing a

Event Topics

108

topic definition with the appropriate Key definition can resolve that issue by instructing AMPS to persist
the messages.

The Key definition you specify must match the field name used for the message type specified in the
SOW topic. That is, to track distinct records by client name for a SOW that uses json, you would use
the following key:

<Key>/client_name</Key>

While to track distinct records by client name for a SOW that uses fix, you would use the following key:

<Key>/20067</Key>

For example, to persist the last /AMPS/SOWStats message for each topic in fix, xml and json
format, the following TopicDefinition sections could be added to the AMPS configuration file:

<SOW>

 <!-- Persist /AMPS/SOWStats in FIX format -->
 <TopicDefinition>
 <FileName>./sow/sowstats.fix.sow</FileName>
 <Topic>/AMPS/SOWStats</Topic>
 <MessageType>fix</MessageType>
 <!-- use FIX field for the key -->
 <Key>/20066</Key>
 </TopicDefinition>

 <!-- Persist /AMPS/SOWStats in JSON format -->
 <TopicDefinition>
 <FileName>./sow/sowstats.json.sow</FileName>
 <Topic>/AMPS/SOWStats</Topic>
 <MessageType>json</MessageType>
 <!-- use the JSON field for the key -->
 <Key>/topic</Key>
 </TopicDefinition>

 <!-- Persist /AMPS/SOWStats in XML format -->
 <TopicDefinition>
 <FileName>./sow/sowstats.xml.sow
 <Topic>/AMPS/SOWStats</Topic>
 <MessageType>xml</MessageType>
 <!-- use the XML field for the key -->
 <Key>/Topic</Key>
 </TopicDefinition>
</SOW>

Every time an update occurs, AMPS will persist the /AMPS/SOWStats message and it will be stored
three times, once to the fix SOW topic, once to the xml SOW topic, and once to the json SOW topic.

Event Topics

109

Each update to the respective SOW topic will overwrite the record with the same Topic, topic or
20066 tag value. Doing this allows clients to now query the SOWStats topic instead of actively listening
to live updates.

110

Chapter 19. Utilities
AMPS provides several utilities that are not essential to message processing, but can be helpful in trou-
bleshooting or tuning an AMPS instance. Each of the following utilities is covered in greater detail in the
AMPS Utilities Guide:

• amps_sow_dump is used to inspect the contents of a SOW topic store.

• amps_journal_dump is used to examine the contents of an AMPS journal file during debugging
and program tuning.

• ampserr is used to expand and examine error messages that may be observed in the logs. This utility
allows a user to input a specific error code, or a class of error codes, examine the error message in more
detail, and where applicable, view known solutions to similar issues.

• AMPS provides a command-line Spark client as a useful tool for checking the status of the AMPS
engine. The Spark client can also be used to run queries, place subscriptions, and publish data.

• amps_upgrade upgrades data files for existing AMPS instances to the current release of AMPS.

111

Chapter 20. Monitoring Interface
AMPS includes a monitoring interface which is useful for examining many important aspects about an
AMPS instance. This includes health and monitoring information for the AMPS engine as well as the
host AMPS is running on. All of this information is designed to be easily accessible to make gathering
performance and availability information from AMPS easy.

For a reference regarding the fields and their data types available in the AMPS monitoring interface, see
the AMPS Monitoring Reference

20.1. Configuration
The AMPS monitoring interface is defined in the configuration file used on AMPS start up. Below is an
example configuration of the Admin tag.

 <!-- Configure the admin/stats HTTP server -->
 <Admin>
 <FileName>stats.db</FileName>
 <InetAddr>localhost:8085</InetAddr>
 <Interval>10s</Interval>
 </Admin>

In this example localhost is the hostname and 8085 is the port assigned to the monitoring interface.
This chapter will assume that

http://localhost:8085/

is configured as the monitoring interface URL.

The Interval tag is used to set the update interval for the AMPS monitoring interface. In this example,
statistics will be updated every 10 seconds.

It is important to note that by default AMPS will store the monitoring interface database in-
formation in system memory. If the AMPS instance is going to be up for a long time, or the
monitoring interface statistics interval will be updated frequently, it is strongly recommended
that the FileName setting be specified to allow persistence of the data to a local file. See the
AMPS Configuration Reference Guide for more information.

The administrative console is accessible through a web browser, but also follows a Representational State
Transfer (RESTful) URI style for programmatic traversal of the directory structure of the monitoring
interface.

The root of the AMPS monitoring interface URI contains two child resources—the host URI and the
instance URI —each of which is discussed in greater detail below. The host URI exposes information

Monitoring Interface

112

about the current operating system devices, while the instance URI contains statistics about a specific
AMPS deployment.

20.2. Time Range Selection
AMPS keeps a history of the monitoring interface statistics, and allows that data to be queried. By selecting
a leaf node of the monitoring interface resources, a time-based query can be constructed to view a historical
report of the information. For example, if an administrator wanted to see the number of messages per
second consumed by all processors from midnight UTC on October 12, 2011 until 23:25:00 UTC on
October 10, 2011, then pointing a browser to

http://localhost:8085/amps/instance/processors/all/messages_received
per_sec?t0=20111129T0&t1=20111129T232500

will generate the report and output it in the following plain text format (note: entire dataset is not presented,
but is truncated).

20111130T033400,0
20111130T033410,0
20111130T033420,0
20111130T033430,94244
20111130T033440.000992,304661
20111130T033450.000992,301078
20111130T033500,302755
20111130T033510,308922
20111130T033520.000992,306177
20111130T033530.000992,302140
20111130T033540.000992,302390
20111130T033550,307637
20111130T033600.000992,310109
20111130T033610,309888
20111130T033620,299993
20111130T033630,310002
20111130T033640.000992,300612
20111130T033650,299387

All times used for the report generation and presentation are ISO- 8601 formatted. ISO-8601
formatting is of the following form: YYYYMMDDThhmmss, where YYYY is the year, MM is the
month, DD is the year, T is a separator between the date and time, hh is the hours, mm is the
minutes and ss is the seconds. Decimals are permitted after the ss units.

As discussed in the following sections, the date-time range can be used with plain text (html),
comma-separated values (csv), and XML formats.

Monitoring Interface

113

20.3. Output Formatting
The AMPS monitoring interface offers several possible output formats to ease the consumption of mon-
itoring reporting data. The possible options are XML, CSV and RNC output formats, each of which is
discussed in more detail below.

XML Document Output
All monitoring interface resources can have the current node, along with all child nodes list its output as an
XML document by appending the .xml file extension to the end of the resource name. For example, if an
administrator would like to have an XML document of all of the currently running processors—including
all the relevant statistics about those processors—then the following URI will generate that information:

http://localhost:8085/amps/instance/processors/all.xml

The document that is returned will be similar to the following:

 <amps>
 <instance>
 <processors>
 <processor id='all'>
 <denied_reads>0</denied_reads>
 <denied_writes>0</denied_writes>
 <description>AMPS Aggregate Processor Stats</description>
 <last_active>1855</last_active>
 <matches_found>0</matches_found>
 <matches_found_per_sec>0</matches_found_per_sec>
 <messages_received>0</messages_received>
 <messages_received_per_sec>0</messages_received_per_sec>
 <throttle_count>0</throttle_count>
 </processor>
 </processors>
 </instance>
 </amps>

Appending the .xml file extension to any AMPS monitoring interface resource will generate the corre-
sponding XML document.

CSV Document Output
Similar to the XML document output discussed above, the .csv file extension can be appended to any
of the leaf node resources to have a CSV file generated to examine those values. This can also be coupled
with the time range selection to generate reports. See Section 20.2 for more details on time range selection.

Below is a sample of the .csv output from the monitoring interface from the following URL:

Monitoring Interface

114

http://localhost:8085/amps/instance/processors/all/
matches_found_per_sec.csv?t0=20111129T0

This resource will create a file with the following contents:

20111130T033400,0
20111130T033410,0
20111130T033420,0
20111130T033430,94244
20111130T033440.000992,304661
20111130T033450.000992,301078
20111130T033500,302755
20111130T033510,308922
20111130T033520.000992,306177
20111130T033530.000992,302140
20111130T033540.000992,302390
20111130T033550,307637
20111130T033600.000992,310109
20111130T033610,309888
20111130T033620,299993
20111130T033630,310002
20111130T033640.000992,300612
20111130T033650,299387
20111130T033700.000992,304548

JSON Document Output

All monitoring interface resources can have the current node, along with all child nodes list its output as
an JSON document by appending the .json file extension to the end of the resource name. For example,
if an administrator would like to have an JSON document of all of the CPUs on the server—including all
the relevant statistics about those CPUs—then the following URI will generate that information:

http://localhost:8085/amps/host/cpus.json

The document that is returned will be similar to the following:

{
 "amps":{
 "host":{
 "cpus":[
 {"id":"all"
 ,"idle_percent":"62.452316076294"
 ,"iowait_percent":"0.490463215259"
 ,"system_percent":"10.681198910082"
 ,"user_percent":"26.376021798365"

Monitoring Interface

115

 }
 ,{"id":"cpu0"
 ,"idle_percent":"75.417130144605"
 ,"iowait_percent":"0.333704115684"
 ,"system_percent":"7.563959955506"
 ,"user_percent":"16.685205784205"
 }
 ,{"id":"cpu1"
 ,"idle_percent":"50.000000000000"
 ,"iowait_percent":"0.642398286938"
 ,"system_percent":"13.597430406852"
 ,"user_percent":"35.760171306210"
 }
]
 }
 }
}

Appending the .json file extension to any AMPS monitoring interface resource will generate the cor-
responding JSON document.

RNC Document Output
AMPS supports generation of an XML schema via the Relax NG Compact (RNC) specification lan-
guage. To generate an RNC file, enter the following URL in a browser http://localhost:port/
amps.rnc and AMPS will display the RNC schema.

To convert the RNC schema into an XML schema, first save the RNC output to a file:

 %> wget http://localhost:9090/amps.rnc

The output can then be converted to an xml schema using Trang (available at http://code.google.com/p/
jing-trang/) with

trang -I rnc -O xsd amps.rnc amps.xsd

http://code.google.com/p/jing-trang/
http://code.google.com/p/jing-trang/

116

Chapter 21. Automating Administration
With Actions

AMPS provides the ability to run scheduled tasks or respond to events, such as Linux signals, using the
Actions interface.

To create an action, you add an Actions section to the AMPS configuration file. Each Action contains
one or more On statement, which specifies when the action occurs, and one or more Do statements, which
specify what the AMPS server does for the action. Within an action, AMPS performs each Do statement
in the order in which they appear in the file.

AMPS actions are implemented as AMPS modules. AMPS provides the modules described in the follow-
ing sections by default.

21.1. Running an Action on a Schedule
AMPS provides the amps-action-on-schedule module for running actions on a specified sched-
ule.

The options provided to the module define the schedule on which AMPS will run the actions in the Do
element.

Table 21.1. Parameters for Scheduling Actions

Parameter Description
Every Specifies a recurring action that runs whenever the time matches the provided speci-

fication. Specifications can take three forms:

• Timer action. A specification that is simply a duration, such as 4h or 1d, creates
a timer action. AMPS starts the timer when the instance starts. When the timer
expires, AMPS runs the action and resets the timer.

• Daily action. A specification that is a time of day, such as 00:30 or 17:45, creates
a daily action. AMPS runs the action every day at the specified time. AMPS uses
a 24 hour notation for daily actions.

• Weekly action. A specification that includes a day of the week and a time, such as
Saturday at 11:00 or Wednesday at 03:30 creates a weekly action.
AMPS runs the action each week on the day specified, at the time specified. AMPS
uses a 24 hour notation for weekly actions.

AMPS accepts both local time and UTC for time specifications. To use UTC, append
a Z to the time specifier. For example, the time specification 11:30 is 11:30 AM
local time. The time specification 11:30Z is 11:30 AM UTC.

Name The name of the schedule. This name appears in log messages related to this schedule.

Automating Administration With Actions

117

Parameter Description
Default: unknown

21.2. Running an Action in Response to a
Signal

AMPS provides the amps-action-on-signal module for running actions when AMPS receives a
specified signal.

The module requires the Signal parameter:

Table 21.2. Parameters for Responding to Signals

Parameter Description
Signal Specifies the signal to respond to. This module supports the standard Linux signals.

Configuring an action uses the standard name of the signal.

For example, to configure an action to SIGUSR1, the value for the Signal element
is SIGUSR1. To configure an action for SIGHUP, the value for the Signal element
is SIGHUP and so on.

AMPS reserves SIGQUIT for producing minidumps, and does not allow this module
to override SIGQUIT. AMPS registers actions for several signals by default. See the
section called “Default Signal Actions” for details.

Actions can be used to override the default signal behavior for AMPS.

Default Signal Actions
By default, AMPS registers the following actions for signals.

Table 21.3. Default Actions

On Event Action

SIGUSR1 amps-action-do-disable-authentication

SIGUSR1 amps-action-do-disable-entititlement

SIGUSR2 amps-action-do-enable-authentication

SIGUSR2 amps-action-do-enable-entitlement

SIGINT amps-action-do-shutdown

SIGTERM amps-action-do-shutdown

Automating Administration With Actions

118

On Event Action

SIGHUP amps-action-do-shutdown

The actions in the table above can be be overriden by creating an explicit action in the configuration file.

Notice that AMPS also reserves SIQUIT to perform the action amps-action-do-minidump. This
behavior is reserved, and cannot be overriden.

21.3. Running an Action on Startup or Shut-
down

AMPS includes modules to run actions when AMPS starts up or shuts down.

The amps-action-on-startup module runs actions as the last step in the startup sequence. The
amps-action-on-shutdown module runs actions as the first step in the AMPS shutdown sequence.

In both cases, actions run in the order that the actions appear in the configuration file.

21.4. Rotate Log Files
AMPS provides the following module for rotating log files. AMPS loads this module by default:

Table 21.4. Managing Logs

Module Name Does

amps-action-do-
rotate-logs

Rotates logs that are older than a specified age, for log types that sup-
port log rotation. Rotating a log involves closing the log and opening
the next log in sequence.

AMPS will use the name specifier provided in the AMPS configura-
tion for the new log file. This may overwrite the current log file if
the specifier results in the same name as the current log file.

This module requires an Age parameter that specifies the age of the log files to process, as determined
by the last message written to the file.

Table 21.5. Parameters for Rotating Log Files

Parameter Description
Age Specifies the age of files to process. The module processes any file older

than the specified Age. For example, when the Age is 5d, only files that
have been unused for longer than 5 days will be processed by the module.
AMPS does not process the current log file, even if it has been inactive for
longer than the Age parameter.

Automating Administration With Actions

119

Parameter Description
There is no default for this parameter.

21.5. Manage Statistics Files
AMPS provides the following modules for managing statistics. As a maintenance strategy, 60East recom-
mends truncating statistics on a regular basis. This frees space in the statistics file, which will be reused
as new statistics are generated. It is generally not necessary to vacuum statistics unless you have changed
your retention policy so that less data is retained between truncation operations. With regular truncation,
the statistics file will usually stabilize at the correct size to hold the amount of data your application gen-
erates between truncation operations.

AMPS loads these modules by default.

Table 21.6. Managing Logs

Module Name Does

amps-action-do-truncate-statistics Removes statistics that are older than a specified
age. This frees space in the statistics file, but does
not reduce the size of the file.

amps-action-do-vacuum-statistics Remove unused space in the statistics file to re-
duce the size of the file.

In general, it is not necessary to remove unused
space in the statistics file. This operation can be
expensive, and query access to the statistics data-
base can be unavailable for an extended period of
time if the file is large. If storage space is in high
demand, and the interval at which the file is vacu-
umed has been reduced, removing space from the
file can sometimes reduce the space needs.

60East recommends using this action only in long-
running AMPS environments where space is at a
premium, and scheduling the action during times
when it is acceptable for monitoring of the system
to be unavailable while the file is processed.

The amps-action-do-truncate-statistics module requires an Age parameter that specifies
the age of the statistics to process.

Table 21.7. Parameters for Managing Statistics

Parameter Description
Age Specifies the age of the statistics to remove. The module processes any file

older than the specified Age. For example, when the Age is 5d, the module
removes statistics that are older than 5d.

Automating Administration With Actions

120

Parameter Description
There is no default for this parameter.

21.6. Manage Journal Files
AMPS provides the following modules for managing journal files. AMPS loads these modules by default:

Table 21.8. Managing Journals

Module Name Does

amps-action-do-archive-journal Archives journal files that are older than a specified age
to the JournalArchiveDirectory specified for
the transaction log.

amps-action-do-compress-journal Compresses journal files that are older than a specified
age.

amps-action-do-remove-journal Deletes journal files that are older than a specified age.

Each of these modules requires an Age parameter that specifies the age of the journal files to process.

Table 21.9. Parameters for Managing Journals

Parameter Description
Age Specifies the age of files to process. The module processes any file older

than the specified Age. For example, when the Age is 5d, only files that
have been unused for longer than 5 days will be processed by the module.
AMPS does not process the current log file, or files that are being used for
replay or replication, even if the file has been inactive for longer than the
Age parameter.

There is no default for this parameter.

21.7. Removing Files
AMPS provides the following module for removing files. Use this action to remove error log files that
are no longer needed. AMPS loads this module by default. This action cannot be used to safely remove
journal files (also known as transaction log files). For those files, use the journal management actions
described in Section 21.6.

This action removes files that match an arbitrary pattern. If the pattern is not specified carefully,
this action can remove files that contain important data, are required for AMPS, or are required
by the operating system.

This action cannot be used to safely remove journal files. Use the actions in Section 21.6 to
manage journal files.

Automating Administration With Actions

121

Table 21.10. Removing Files

Module Name Does

amps-action-do-
remove-files

Removes files that match the specified pattern that are older than the
specified age. This action accepts an arbitrary pattern, and removes
files that match that pattern. While AMPS attempts to protect against
deleting journal files, using a pattern that removes files that are crit-
ical for AMPS, for the application, or for the operating system may
result in loss of data.

The module does not recurse into directories. It skips open files. The
module does not remove AMPS journals (that is, files that end with
a .journal extension), and reports an error if a file with that ex-
tension matches the specified Pattern.

The commands to remove files are executed with the current permis-
sions of the AMPS process.

This module requires an Age parameter that specifies the age of the files to remove, as determined by the
update to the file. This module also requires a Pattern parameter that specifies a pattern for locating
files to remove.

Table 21.11. Parameters for Removing Files

Parameter Description
Age Specifies the age of files to process. The module removes any file older than

the specified Age that matches the specified Pattern. For example, when
the Age is 5d, only files that have not modified within 5 days and that match
the pattern will be processed by the module.

There is no default for this parameter.
Pattern Specifies the pattern for files to remove. The module removes any files that

match the specified Pattern that have not been modified more recently
than the specified Age.

This parameter is interpreted as a Unix shell globbing pattern. It is not inter-
preted as a regular expression.

As with other parameters that use the file system, when the pattern specified
is a relative path the parameter is interpreted relative to the current working
directory of the AMPS process. When the pattern specified is an absolute
path, AMPS uses the absolute path.

There is no default for this parameter.

21.8. Manage SOW Contents
The amps-do-delete-sow module deletes messages from SOW topics. The module accepts the fol-
lowing options:

Automating Administration With Actions

122

Table 21.12. Parameters for Deleting SOW Messages

Parameter Description
MessageType The MessageType for the SOW topic.

There is no default for this parameter.
Topic The name of the SOW topic from which to delete messages.

There is no default for this parameter

Filter Set the filter to apply. If a Filter is present, only messages matching that
filter will be deleted.

21.9. Create Mini-Dump
AMPS minidumps provide a way for the 60East Technologies engineering team to inspect the state of a
running AMPS system.

The amps-do-minidump module creates a minidump. This module is typically used with the amps-
action-on-signal module to provide a way for a developer or administrator to easily create a
minidump for diagnostic purposes.

21.10. Manage Security
AMPS provides modules for managing the security features of an instance.

Authentication and entitlement can be enabled or disabled, which is useful for debugging or auditing
purposes. You can also reset security and authentication, which clears the AMPS internal caches and gives
security and authentication modules the opportunity to reinitialize themselves, for example, by re-parsing
an entitlements file.

AMPS loads the following modules by default:

Table 21.13. Security Modules

Module Name Does

amps-action-do-
disable-authentication

Disables authentication for the instance.

amps-action-do-
disable-entitlement

Disables entitlement for the instance.

amps-action-do-
enable-authentication

Enables authentication for the instance.

amps-action-do-enable-entitlement Enables entitlement for the instance.

amps-action-do-
reset-authentication

Resets authentication by clearing AMPS caches and
reinitializing authentication

Automating Administration With Actions

123

Module Name Does

amps-action-do-reset-entitlement Resets entitlement by clearing AMPS caches and
reinitializing entitlement

These modules require no parameters.

21.11. Manage Transports
AMPS provides modules that can enable and disable specific transports.

Table 21.14. Transport Action Modules

Module Name Does

amps-action-do-
enable-transport

Enables a specific transport.

amps-action-do-
disable-transport

Disables a specific transport.

These modules accept the following options:

Table 21.15. Parameters for Managing Transports

Parameter Description

Transport The Name of the transport to enable or disable.

If no Name is provided, the module affects all transports.

21.12. Manage Replication
AMPS provides modules for downgrading replication destinations that fall behind and upgrading them
again when they catch up.

Table 21.16. Replication Modules

Module Name Does

amps-action-do-
downgrade-replication

Downgrades replication connections from synchronous
to asynchronous if the age of the last acknowledged mes-
sage is older than a specified time period.

amps-action-do-
upgrade-replication

Upgrades previously-downgraded replication connec-
tions from asynchronous to synchronous if the age of the
last acknowledged message is more recent than a speci-
fied time period.

The modules determine when to downgrade and upgrade based on the age of the oldest message that a
destination has not yet acknowledged. When using these modules, it is important that the thresholds for
the modules are not set too close together. Otherwise, AMPS may repeatedly upgrade and downgrade the
connection when the destination is consistently acknowledging messages at a rate close to the threshold

Automating Administration With Actions

124

values. To avoid this, 60East recommends that the Age set for the upgrade module is 1/2 of the age used
for the downgrade module.

The amps-action-do-downgrade-replication module accepts the following options:

Table 21.17. Parameters for Downgrading Replication

Parameter Description
Age Specifies the maximum message age at which AMPS downgrades a replica-

tion destination to async. When this action runs, AMPS downgrades any
destination for which the oldest unacknowledge message is older than the
specified Age.

For example, when the Age is 5m, AMPS will downgrade any destination
where a message older than 5 minutes has not been acknowledged.

There is no default for this parameter.

GracePeriod The approximate time to wait after start up before beginning to check
whether to downgrade links. The GracePeriod allows time for other AM-
PS instances to start up, and for connections to be established between AM-
PS instances.

The amps-action-do-upgrade-replication module only applies to destinations configured as
sync that have been previously downgraded. The module accepts the following options:

Table 21.18. Parameters for Upgrading Replication

Parameter Description
Age Specifies the maximum message age at which a previously-downgraded des-

tination will be upgraded to sync mode. When this action runs, AMPS up-
grades any destination that has been previously downgraded where the oldest
unacknowledged message to AMPS is more recent than time value specified
in the Age parameter.

For example, if a destination has been downgraded to async mode and the
Age is 2m, AMPS will upgrade the destination when the oldest unacknowl-
edged message to that destination is less than 2 minutes old.

There is no default for this parameter.

GracePeriod The approximate time to wait after start up before beginning to check
whether to upgrade links. The GracePeriod allows time for other AMPS
instances to start up, and for connections to be established between AMPS
instances.

21.13. Shut Down AMPS
The amps-action-do-shutdown module shuts down AMPS. This module is registered as the default
action for several Linux signals, as described in the section called “Default Signal Actions”.

Automating Administration With Actions

125

Table 21.19. Do Nothing Module

Module Name Does

amps-action-do-
shutdown

Shuts down AMPS.

21.14. Do Nothing
The amps-action-do-nothing module does not modify the state of AMPS in any way. The module simply
logs that it was called.

The module provides a convenient way of testing schedule specifications or signal handling without re-
quiring further configuration.

Table 21.20. Do Nothing Module

Module Name Does

amps-action-do-
nothing

Takes no action.

21.15. Action Configuration Examples

Archive Files Older Than One Week, Every Saturday
The listing below asks AMPS to archive files older than 1 week, every Saturday at 12:30 AM:

<Actions>
 <Action>
 <On>
 <Module>amps-action-on-schedule</Module>
 <Options>
 <Every>Saturday at 00:30</Every>
 <Name>Saturday Night Fever</Name>
 </Options>
 </On>
 <Do>
 <Module>amps-action-do-archive-journal</Module>
 <Options>
 <Age>7d</Age>
 </Options>
 </Do>
 </Action>

Automating Administration With Actions

126

 </Actions>

Disable and Re-enable Security on Signal
The listing below disables authentication and entitlement when AMPS receives on the USR1 signal. When
AMPS receives the USR2 signal, AMPS re-enables authentication and entitlement. This configuration is,
in effect, the configuration that AMPS installs by default for these signals:

<Actions>
 <Action>
 <On>
 <Module>amps-action-on-signal</Module>
 <Options>
 <Signal>SIGUSR1</Signal>
 </Options>
 </On>
 <Do>
 <Module>amps-action-do-disable-authentication</Module>
 </Do>
 <Do>
 <Module>amps-action-do-disable-entitlement</Module>
 </Do>
 </Action>
 <Action>
 <On>
 <Module>amps-action-on-signal</Module>
 <Options>
 <Signal>SIGUSR2</Signal>
 </Options>
 </On>
 <Do>
 <Module>amps-action-do-enable-authentication</Module>
 </Do>
 <Do>
 <Module>amps-action-do-enable-entitlement</Module>
 </Do>
 </Action>
 </Actions>

127

Chapter 22. Replication and High
Availability

This chapter discusses the support that AMPS provides for replication, and how AMPS features help to
build systems that provide high availability.

22.1. Overview of AMPS High Availability
AMPS is designed for high performance, mission-critical applications. Those systems typically need to
meet availability guarantees. To reach those availability guarantees, systems need to be fault tolerant. It's
not realistic to expect that networks will never fail, components will never need to be replaced, or that
servers will never need maintenance. For high availability, you build applications that are fault tolerant:
that keep working as designed even when part of the system fails or is taken offline for maintenance.
AMPS is designed with this approach in mind. It assumes that components will occasionally fail or need
maintenance, and helps you to build systems that meet their guarantees even when part of the system is
offline.

When you plan for high availability, the first step is to ensure that each part of your system has the ability
to continue running and deliverying correct results if any other part of the system fails. You also ensure
that each part of your system can be independently restarted without affecting the other parts of the system.

The AMPS server includes the following features that help ensure high availability:

• Transaction logging writes messages to persistent storage. In AMPS, the transaction log is not only
the definitive record of what messages have been processed, it is also fully queryable by clients. Highly
available systems make use of this capability to keep a consistent view of messages for all subscribers
and publishers. The AMPS transaction log is described in detail in Chapter 15.

• Replication allows AMPS instances to copy messages between instances. AMPS replication is peer-to-
peer, and any number of AMPS instances can replicate to any number of AMPS instances. Replication
can be filtered by topic. An AMPS instance can also replicate messages received from another instance
using passthrough replication: the ability for instances to pass replication messages to other AMPS
instances.

• Heartbeat monitoring to actively detect when a connection is lost. Each client configures the heartbeat
interval for that connection.

The AMPS client libraries include the following features to help ensure high availability:

• Heartbeat monitoring to actively detect when a connection is lost. As mentioned above, the interval
for the heatbeat is configurable on a connection-by-connection basis. The interval for heartbeat can be
set by the client, allowing you to configure a longer timeout on higher latency connections or less critical
operations, and a lower timeout on fast connections or for clients that must detect failover quickly.

• Automatic reconnection and failover allows clients to automatically reconnect when disconnection
occurs, and to locate and connect to an active instance.

Replication and High Availability

128

• Guaranteed publication from clients, including an optional persistent message store. This allows mes-
sage publication to survive client restarts as well as server failover.

• Subscription recovery and transaction log playback allows clients to recover the state of their mes-
saging after restarts. These features guarantee that clients recieve all messages published in the order
published, including messages received while the clients were offline. These features are provided by
the transaction log, as described in Chapter 15.

For details on each client library, see the developer's guide for that library. Further samples can
be found in the evaluation kit for the client, available from the 60East website at http://
www.crankuptheamps.com/evaluate.

22.2. High Availability Scenarios
You design your high availability strategy to meet the needs of your application, your business, and your
network. This section describes commonly-deployed scenarios for high availability.

Failover Scenario
One of the most common scenarios is for two AMPS instances to replicate to each other. This replication
is synchronous, so that both instances persist a message before AMPS acknowledges the message to the
publisher. This makes a hot-hot pair. In the figure below, any messages published to important_topic
are replicated across instances, so both instances have the messages for important_topic.

Notice that, because AMPS replication is peer-to-peer, clients can connect to either instance of AMPS
when both are running. Further, messages can be published to either instance of AMPS and be replicated
to the other instance. In this case, clients are configured with the addresses of both AMPS instances.

In this case, clients are configured with Instance 1 and Instance 2 as equivalent server addresses. If a client
cannot connect to one instance, it tries the other. Because both instances contain the same messages for
important_topic, there is no functional difference in which instance a client connects to.

Replication and High Availability

129

Geographic Replication
AMPS is well suited for replicating messages to different regions, so clients in those regions are able to
quickly receive and publish messages to a local instance. In this case, each region replicates all messages
on the topic of interest to the other two regions. A variation on this strategy is to use a region tag in the
content, and use content filtering so that each replicates messages intended for use in the other regions
or worldwide.

For this scenario, an AMPS instance in each region replicates to an instance in the two other regions. For
the best performance, replication between the regions is asynchronous, so that once an instance in one
region has persisted the message, the message is acknowledged back to the publisher.

In this case, clients in each region connect to the AMPS instance in that region. Bandwidth within regions
is conserved, because each message is replicated once to the region, regardless of how many subscribers
in that region will receive the message. Further, publishers are able to publish the message once to a local
instance over a relatively fast network connection rather than having to publish messages multiple times
to multiple regions.

To configure this scenario, the AMPS instances in each region are configured to forward messages to
known instances in the other two regions.

Replication and High Availability

130

Geographic Replication with High Availability
Combining the first two scenarios allows your application to distribute messages as required and to have
high availability in each region. This involves having two or more servers in each region, as shown in
the figure below.

Each region is configured as a group. Within each group, the instances replicate to each other synchro-
nously, and replicate to the remote instances asynchronously. The figure below shows the expanded detail
of the configuration for these servers.

Replication and High Availability

131

The instances in each region are configured to be part of a group for that region. Within a region, the
instances synchronously replicate to each other, and asynchronously replicate to instances at each remote
site. The instances use the replication downgrade action to ensure that message publishing continues in
the event that one of the instances goes offline.

Each instance at a site provides passthrough replication from the other sites to local instances, so that once
a message arrives at the site, it is replicated to the other instances at the local site. The remote sites are
configured in the same way. This configuration balances fault-tolerance and performance.

In this case, publishers at each site publish to the primary local AMPS instance, and subscribers subscribe
to messages from their local AMPS instances. Both publishers and subscribers use the high availability
features of the AMPS client libraries to ensure that if the primary local instance AMPS fails, they auto-
matically failover to the other instance. Replication is used to deliver both high availability and disaster
recovery.

22.3. AMPS Replication
Messages stored to a transaction log can be replicated to downstream AMPS instances. AMPS supports
two forms of replication links: synchronous and asynchronous; these control when publishers of messages
are sent persisted acknowledgments.

Replication in AMPS involves the configuration of two or more instances designed to share some or all
of the published messages. Replication is an efficient way to split and share message streams between
multiple sites where each downstream site may only want a subset of the messages from the upstream
instances. Additionally, replication can be used to improve the availability of a set of AMPS instances by
creating redundant instances for fail-over cases.

Replication and High Availability

132

To replicate between two instances, both instances must have the same major and minor version
number of AMPS. For example, an instance running 3.5.0.5 can replicate to an instance running
3.5.0.6, but could not replicate to an instance running 3.8.0.0. .

Configuration
Replication configuration involves the configuration of two or more instances of AMPS. For testing pur-
poses both instances of AMPS can reside on the same physical host before deployment into a production
environment. When running both instances on one machine, the performance characteristics will differ
from production, so running both instances on one machine is more useful for testing configuration cor-
rectness than testing overall performance.

It's important to make sure that when running multiple AMPS instances on the same host that
there are no conflicting ports. AMPS will emit an error message and will not start properly if
it detects that a port is already in use.

For the purposes of explaining this example, we're going to assume a simple primary-secondary replication
case where we have two instances of AMPS - the first host is named amps-1 and the second host is
named amps-2. Each of the instances are configured to replicate data to the other —that is to say, all
messages published to amps-1 are replicated to amps-2 and vice versa. This configuration ensures that
the data on our two instances are always synchronized in case of a failover.

We will first show the relevant portion of the configuration used in amps-1, and then we will show the
relevant configuration for amps-2.

All replication topics must also have a Transaction Log defined. The examples below omit the
Transaction Log configuration for brevity. Please reference the Transaction Log chapter for
information on how to configure a transaction log for a topic.

<AMPSConfig>
 <Name>amps-1</Name>

...

 <Transports>
 <Transport>
 <Name>amps-replication</Name>
 <Type>amps-replication</Type>
 <InetAddr>localhost:10004</InetAddr>
 <ReuseAddr>true</ReuseAddr>
 </Transport>
 <Transport>
 <Name>tcp-fix</Name>
 <MessageType>fix</MessageType>
 <Type>tcp</Type>
 <InetAddr>localhost:9004</InetAddr>

Replication and High Availability

133

 <Protocol>fix</Protocol>
 <ReuseAddr>true</ReuseAddr>
 </Transport>
 </Transports>

...

 <Replication>
 <Destination>
 <Topic>
 <MessageType>fix</MessageType>
 <Name>orders</Name>
 <Filter>/55='IBM'</Filter>
 </Topic>
 <Name>amps-2</Name>
 <SyncType>sync</SyncType>
 <Transport>
 <InetAddr>amps-2-server.example.com:10005</InetAddr>
 <Type>amps-replication</Type>
 </Transport>
 </Destination>
 </Replication>

...

</AMPSConfig>

Example 22.1. Configuration used for amps-1

The amps-replication transport is required. This is a proprietary message format used by AM-
PS to replicate messages between instances. This AMPS instance will receive replication messages
on this transport. The instance can receive messages from any number of upstream instances on this
transport.
The fix transport defines the message transport on port 9004 to use the FIX message type. All
messages sent to this port will be parsed as FIX messages.
All replication destinations are defined inside the Replication block.
Each individual replication destination requires a Destination block.
The replicated topics and their respective message types are defined here. AMPS allows any number
of Topic definitions in a Destination.
The Name definition specifies the name of the topic or topics to be replicated. The Name option can
be either a specific topic name or a regular expression that matches a set of topic names.

When a specific topic is specified, that topic must be recorded in a transaction log. When a regular
expression is specified, only topics of the same message type that are recorded in a transaction log
are replicated.
This Topic definition uses a filter that matches only when the FIX tag 55 matches the string 'IBM'.
This means that messages that match only messages in topic orders with ticker symbol (tag 55)
of IBM will be sent to the downstream replica amps-2.

Replication and High Availability

134

The Topic/Filter option supports any valid AMPS filter expression. This filtering provides for
greater control over the flow of messages to replicated instances.
Replication SyncType can be either sync or async.
The Transport definition defines the location to which this AMPS instance will replicate messages.
The InetAddr points to the hostname and port of the downstream replication instance. The Type
for a replication instance should always be amps-replication.
The address, or list of addresses, for the replication destination.

For the configuration amps-2, we will use the following in Example 22.2. While this example is similar,
only the differences between the amps-1 configuration will be called out.

 <AMPSConfig>
 <Name>amps-2</Name>

...

 <Transports>
 <Transport>
 <Name>amps-replication</Name>
 <Type>amps-replication</Type>
 <InetAddr>10005</InetAddr>
 <ReuseAddr>true</ReuseAddr>
 </Transport>
 <Transport>
 <Name>tcp-fix</Name>
 <Type>fix</Type>
 <InetAddr>localhost:9005</InetAddr>
 <ReuseAddr>true</ReuseAddr>
 </Transport>
 </Transports>

...

 <Replication>
 <Destination>
 <Topic>
 <MessageType>fix</MessageType>
 <Name>topic</Name>
 </Topic>
 <Name>amps-1</Name>
 <SyncType>async</SyncType>
 <Transport>
 <InetAddr>amps-1-server.example.com:10004</InetAddr>
 <Type>amps-replication</Type>
 </Transport>
 </Destination>
 </Replication>

Replication and High Availability

135

...

 </AMPSConfig>

Example 22.2. Configuration used for amps-2

The port where amps-2 listens for replication messages matches the port where amps-1 is con-
figured to send its replication messages. This AMPS instance will receive replication messages on
this transport. The instance can receive messages from any number of upstream instances on this
transport.
The amps-2 instance is configured to use a async for the replication destination's SyncType.
A detailed explanation of the difference between the sync and async options for the SyncType
can be found here: the section called “Sync vs Async”.
The replication destination port for amps-2 is configured to send replication messages to the same
port on which amps-1 is configured to listen for them.

Benefits of Replication
Replication can serve two purposes in AMPS. First, it can increase the fault-tolerance of AMPS by creating
a spare instance to cut over to when the primary instance fails. Second, replication can be used in message
delivery to a remote site.

In order to provide fault tolerance and reliable remote site message delivery, for the best possible mes-
saging experience, there are some guarantees and features that AMPS has implemented. Those features
are discussed below.

Replication in AMPS supports filtering by both topic and by message content. This granularity in filtering
allows replication sources to have complete control over what messages are sent to their downstream
replication instances.

Additionally, replication can improve availability of AMPS by creating a redundant instance of an AMPS
server. Using replication, all of the messages which flow into a primary instance of AMPS can be replicated
to a secondary spare instance. This way, if the primary instance should become unresponsive for any
reason, then the secondary AMPS instance can be swapped in to begin processing message streams and
requests.

Sync vs Async

When publishing to AMPS, it is recommended that publishers request a persisted acknowledgment
message response. The persisted acknowledgement message is one of the ways in which AMPS guar-
antees that a message received by AMPS is stored in accordance with the configuration.

Depending on how AMPS is configured, that persisted acknowledgment message will be delivered to
the publisher at different times in the replication process. There are two options: synchronous or asynchro-
nous. These two SyncType configurations control when publishers of messages are sent persisted
acknowledgments.

Replication and High Availability

136

In synchronous replication, AMPS will not return a persisted acknowledgment to the publisher for a
message until the message has been stored to the local transaction log, to the SOW, and to all downstream
synchronous replication destinations. Figure 22.1 shows the cycle of a message being published in a repli-
cated instance, and the persisted acknowledgment message being returned back to the publisher.

PUBLISHER AMPS- A AMPS- B

Publish command

replicate

persis
ted ack

persis
ted ack

Persist to
Transaction Log

Persist to
Transaction Log

Figure 22.1. Synchronous Persistence Acknowledgment

In asynchronous replication, the primary AMPS instance sends the persisted acknowledgment mes-
sage back to the publisher as soon as the message is stored in the local transaction log and SOW stores.
The primary AMPS instance then sends the message to downstream replica instances. Figure 22.2 shows
the cycle of a message being published with a SyncType configuration set to asynchronous.

PUBLISHER AMPS- A AMPS- B

Publish command

replicatepersis
ted ack

Persist to
Transaction Log

Persist to
Transaction Log

Figure 22.2. Asynchronous Persistence Acknowledgment

Replication Compression

AMPS provides the ability to compress the replication connnection. In typical use, using replication com-
pression can greatly reduce the bandwidth required between AMPS instances.

Replication and High Availability

137

The precise amount of compression that AMPS can achieve depends on the content of the replicated
messages. Compression is configured at the replication source, and does not need to be enabled in the
transport configuration at the instance receiving the replicated messages.

For AMPS instances that are receiving replicated messages, no additional configuration is necessary. AM-
PS automatically recognizes when an incoming replication connection uses compression.

Destination Server Failover
Your replication plan may include replication to a server that is part of a highly-available group. There
are two common approaches to destination server failover.

Wide IP AMPS replication works transparently with wide IP, and many installations use wide IP for
destination server failover. The advantage of this approach is that it requires no additional configuration in
AMPS, and redundant servers can be added or removed from the wide IP group without reconfiguring the
instances that replicate to the group. A disadvantage to this approach is that failover can require several
seconds, and messages are not replicated during the time that it takes for failover to occur.

AMPS failover AMPS allows you to specify multiple downstream servers in the InetAddr element
of a destination. In this case, AMPS treats the set list of servers as a list of equivalent servers, listed in
order of priority.

When multiple addresses are specified for a destination, each time AMPS needs to make a connection to
a destination, AMPS starts at the beginning of the list and attempts to connect to each address in the list.
If AMPS is unable to connect to any address in the list, AMPS waits for a timeout period, then begins
again with the first server on the list. Each time AMPS reaches the end of the list without establishing a
connection, AMPS increases the timeout period.

This capability allows you to easily set up replication to a highly-available group. If the server you are
replicating to fails over, AMPS uses the prioritized list of servers to re-establish a connection.

Back Replication
Back Replication is a term used to describe a replication scenario where there are two instances of AMPS—
termed AMPS-A and AMPS-B for this example—in a special replication configuration. AMPS-A will be
considered the primary replication instance, while AMPS-B will be the backup instance.

In a back replication, messages that are published to AMPS-A are replicated to AMPS-B. Likewise, all
messages which are published to AMPS-B are replicated to AMPS-A. This replication scheme is used
when both instances of AMPS need to be in sync with each other to handle a failover scenario with no loss
of messages between them. This way, if AMPS-A should fail at any point, the AMPS-B instance can be
brought in as the primary instance. All publishers and subscribers can quickly be migrated to the AMPS-B
instance, allowing message flow to resume with as little downtime as possible.

In back replication, you need to decide if replication is synchronous in both directions, or synchronous
from the primary, AMPS-A, to the secondary, AMPS-B, and asychronous from the secondary to the prima-

Replication and High Availability

138

ry. If clients are actively connecting to both instances, synchronous replication in both directions provides
the most consistent view of message state. If AMPS-B is only used for failover, then asynchronous repli-
cation from AMPS-B to AMPS-A is recommended. For any synchronous replication, consider configuring
automatic replication downgrade, described below.

Passthrough Replication
Passthrough Replication is a term used to describe the ability of an AMPS instance to pass along replicated
messages to a another AMPS instance. This allows you to easily keep multiple failover or DR destinations
in sync from a single AMPS instance. Unless passthrough replication is configured, an AMPS instance
only replicates messages published to that instance.

Passthrough replication uses the name of the originating AMPS group to indicate that messages that arrive
from that group are to be replicated to the specified destination. Passthrough replication supports regex
server groups, and allows multiple server groups per destination. Notice that if no group is specified, the
name of the server is the name of the group.

<Replication>
 <Destination>
 <Name>AMPS2-HKG</Name>
 <Transport>
 <Name>amps-replication</Name>
 <Type>amps-replication</Type>
 <InetAddr>secondaryhost:10010</InetAddr>
 <ReuseAddr>true</ReuseAddr>
 </Transport>
 <Topic>
 <Name>/rep_topic</Name>
 <MessageType>fix</MessageType>
 </Topic>
 <Topic>
 <Name>/rep_topic2</Name>
 <MessageType>fix</MessageType>
 </Topic>
 <SyncType>sync</SyncType>
 <PassThrough>NYC</PassThrough>
 </Destination>
</Replication>

The server group from which messages will be passed through. This example passes along messages
from AMPS instances from the group name NYC. Messages from instances that are not in this group
are not passed through to this destination. While the Passthrough element supports regular ex-
pressions for group names, in most cases all instances for a passthrough rule will be in the same
group.

When a message is eligible for passthrough replication, topic and content filters in the replication desti-
nation still apply. The passthrough directive means that the message is eligible for replication from this
instance if it comes from the specified instance.

Replication and High Availability

139

AMPS protects against loops in passthrough replication by tracking the instance names that a message
has passed through. A message cannot travel through the same instance more than once.

Guarantees on ordering
Ordering of messages in AMPS is guaranteed to deliver messages to subscribers in the same order that
the messages were published by the original publisher. This guarantee holds true regardless of how many
publishers or how many subscribers are connected to AMPS at any one time.

This guarantee means that subscribers will not spend unnecessary CPU cycles checking timestamps or
other message content to verify which message is the most recent, freeing up subscriber resources to do
more important work.

Downgrading an AMPS instance
The AMPS administrative console provides the ability to downgrade a replication link from synchronous
to asynchronous. This feature is useful should a downstream AMPS instance prove unstable, unresponsive,
or introduce additional latency.

Downgrading a replication link to asynchronous means that any persisted acknowledgment message
that a publisher may be waiting on will no longer wait for the downstream instance to confirm that it has
committed the message to its downstream Transaction Log or SOW store.

AMPS can be configured to automatically downgrade a replication link to asychronous if the remote
side of the link cannot keep up with persisting messages or becomes unresponsive. This option prevents
unreliable links from holding up publishers, but increases the chances of a single instance failure resulting
in message loss, as described above.

Automatic downgrade is implemented as an AMPS action. To configure automatic downgrade, add the
appropriate action to the configuration file as shown below:

 <AMPSConfig>
 ...
 <Actions>
 <Action>
 <On>
 <Module>amps-action-on-schedule</Module>
 <Options>
 <Every>15s</Every>
 </Options>
 </On>
 <Do>
 <Module>amps-action-do-downgrade-replication</Module>
 <Options>
 <Age>30s</Age>
 </Options>
 </Do>

Replication and High Availability

140

 </Action>
 </Actions>
 ...
</AMPSConfig>

This option determines how often AMPS checks whether destinations have fallen behind. In this
example, AMPS checks destinations every 15 seconds. In most cases, 60East recommends setting
this to half of the Interval setting.
The maximum amount of time for a destination to fall behind. If AMPS has been waiting for an ac-
knowledgement from the destination for longer than the Interval, AMPS downgrades the desti-
nation. In this example, AMPS downgrades any destination for which an acknowledgment has taken
longer than 30 seconds.

In this configuration file, AMPS checks every 15 seconds to see if a destination has fallen behind by 30
seconds. This helps to guarantee that a destination will never exceed the Interval, even in situations
where the destination begins falling behind exactly at the time AMPS checks for the destination keeping
up.

Replication Security
AMPS allows authorization and entitlement to be configured on replication destinations. For the instance
that receives connections, you simply configure Authentication and Entitlement for the transport definition
for the destination, as shown below:

<Transports>
 <Transport>
 <Name>amps-replication</Name>
 <Type>amps-replication</Type>
 <InetAddr>10005</InetAddr>
 <ReuseAddr>true</ReuseAddr>
 <Entitlement>
 <Module>amps-default-entitlement-module</Module>
 </Entitlement>
 <Authentication>
 <Module>amps-default-authentication-module</Module>
 </Authentication>
 </Transport>
 ...
</Transports>

Specifies the entitlement module to use to check permissions for incoming connections. The module
specified must be defined in the Modules section of the config file, or be one of the default modules
provided by AMPS. This snippet uses the default module provided by AMPS for example purposes.
Specifies the authorization module to use to verify identity for incoming connections. The module
specified must be defined in the Modules section of the config file, or be one of the default modules
provided by AMPS. This snippet uses the default module provided by AMPS for example purposes.

For incoming connections, configuration is the same as for other types of transports.

Replication and High Availability

141

For connections from AMPS to replication destinations, you can configure an Authenticator module for the
destination transport. Authenticator modules provide credentials for outgoing connections from AMPS.
For authentication protocols that require a challenge and response, the Authenticator module handles the
responses for the instance requesting access.

<Replication>
 <Destination>
 <Topic>
 <MessageType>fix</MessageType>
 <Name>topic</Name>
 </Topic>
 <Name>amps-1</Name>
 <SyncType>async</SyncType>
 <Transport>
 <InetAddr>amps-1-server.example.com:10004</InetAddr>
 <Type>amps-replication</Type>
 <Authenticator>
 <Module>amps-default-authenticator-module</Module>
 </Authenticator>
 </Transport>
 </Destination>
 </Replication>

Specifies the authenticator module to use to provide credentials for the outgoing connection. The
module specified must be defined in the Modules section of the config file, or be one of the default
modules provided by AMPS. This snippet uses the default module provided by AMPS for example
purposes.

Maximum downstream destinations
AMPS has support for up to 64 synchronous downstream replication instances and unlimited asynchronous
destinations.

22.4. High Availability
AMPS High Availability, which includes multi-site replication and the transaction log, is designed to
provide long uptimes and speedy recovery from disasters. Replication allows deployments to improve
upon the already rock-solid stability of AMPS. Additionally, AMPS journaling provides the persisted state
necessary to make sure that client recovery is fast, painless, and error free.

Guaranteed Publishing
An interruption in service while publishing messages could be disastrous if the publisher doesn't know
which message was last persisted to AMPS. To prevent this from happening, AMPS has support for guar-
anteed publishing.

Replication and High Availability

142

The logon command supports a processed acknowledgment message, which will return the Se-
quence of the last record that AMPS has persisted. When the processed acknowledgment message is
returned to the publisher, the Sequence corresponds to the last message persisted by AMPS. The pub-
lisher can then use that sequence to determine if it needs to 1) re-publish messages that were not persisted
by AMPS, or 2) continue publishing messages from where it left off. Acknowledging persisted messages
across logon sessions allows AMPS to guarantee publishing.

It is recommended as a best practice that all publishers request a processed acknowledg-
ment message with every logon command. This ensures that the Sequence returned in the
acknowledgement message matches the publisher's last published message.

In addition to the acknowledgment messages, AMPS also keeps track of the published messages from
a client based on the client's name. When sending a logon command, the client should also set the
ClntName field during the logon.

All publishers must set a unique ClntName field as part of their logon. This allows AMPS to
correlate SeqId fields and acknowledgment messages with a specific client in the event that
they should nee to reconnect. In the event that multiple publishers have the same ClntName,
AMPS can no longer reliably correlate messages using the SeqId and ClntName.

Durable Publication and Subscriptions
The AMPS client libraries include features to enable durable subscription and durable publication. In this
chapter we've covered how publishing messages to a transaction log persists them. We've also covered
how the transaction log can be queried (subscribed) with a bookmark for replay. Now, putting these two
features together yields durable subscriptions.

A durable subscriber is one that receives all messages published to a topic (including a regular expression
topic), even when the subscriber is offline. In AMPS this is accomplished through the use of the bookmark
subscription on a client.

Implementation of a durable subscription in AMPS is accomplished on the client by persisting the last
observed bookmark field received from a subscription. This enables a client to recover and resubscribe
from the exact point in the transaction log where it left off.

A durable publisher maintains a persistent record of messages published until AMPS acknowledges that
the message has been persisted. Implementation of a durable publisher in AMPS is accomplished on the
client by persisting outgoing messages until AMPS sends a persisted acknowledgement that says that
this message, or a later message, has been persisted. At that point, the publishers can remove the message
from the persistent store. Should the publisher restart, or should AMPS fail over, the publisher can re-
send messages from the persistent store. AMPS uses the sequence number in the message to discard any
duplicates. This helps ensure that no messages are lost, and provides fault-tolerance for publishers.

The AMPS C++, Java, C# and Python clients each provide different implementation of persistent sub-
scriptions and persistent publication. Please refer to the High Availability chapter of the Client Develop-
ment Guide for the language of your choice to see how this feature is implemented.

Replication and High Availability

143

Heartbeat in High Availability
Use of the heartbeat feature allows your application to quickly recover from detected connection failures.
By default, connection failure detection occurs when AMPS receives an operating system error on the
connection. This system may result in unpredictable delays in detecting a connection failure on the client,
particularly when failures in network routing hardware occur, and the client primarily acts as a subscriber.

The heartbeat feature of the AMPS server and the AMPS clients allows connection failure to be detect-
ed quickly. Heartbeats ensure that regular messages are sent between the AMPS client and server on a
predictable schedule. The AMPS server assumes disconnection has occurred if these regular heartbeats
cease, ensuring disconnection is detected in a timely manner.

Heartbeats are initialized by the AMPS client by sending a heartbeat message to the AMPS server.
To enable heartbeats in your application, refer to the High Availability chapter in the Developer Guide
for your specific client language.

Slow Client Management
Sometimes, AMPS can publish messages faster than an individual client can consume messages, particu-
larly in applications where the pattern of messages includes "bursts" of mesages. Clients that are unable
to consume messages faster or equal to the rate messages are being sent to them are ”slow clients”. By
default, AMPS queues messages for a slow client in memory to grant the slow client the opportunity to
catch up. However, scenarios may arise where a client can be “over-subscribed” to the point it cannot
consume messages as fast as messages are being sent to it.

There are two methods that AMPS uses for managing slow clients to minimize the effect of slow clients
on the AMPS instance:

• Client offlining. When client offlining is enabled, AMPS begins writing messages to disk when the
amount of memory consumed by messages for a given client exceeds the ClientBufferThresh-
old. To enable client offlining for a transport, set the ClientOffline option in the transport con-
figuration to true, and provide a ClientOfflineDirectory with the path that AMPS will use to
store messages.

• Disconnection. AMPS disconnects clients when the messages that the client has not consumed exceed
a configurable limit. AMPS uses a different measurement for disconnection depending on whether
client offlining is enabled. When offlining is enabled, AMPS disconnects a client when the number of
messages offlined for that client exceeds the limit set in the ClientOfflineThreshold.

Whether or not offlining is enabled, AMPS disconnects a client when the total amount of space con-
sumed by messages for that client exceeds the limit set in the ClientMaxBufferThreshold.

By default, AMPS enables slow client disconnection, and does not enable client offlining.

Client offlining can require careful configuration, particularly in situations where applications retrieve
large result sets from SOW queries when the application starts up. More information on tuning slow client
offlining for AMPS is available in the section called “Slow Client Offlining for Large Result Sets”.

Replication and High Availability

144

Message Ordering and Replication
AMPS uses the name of the publisher and the sequence number assigned by the publisher to ensure that
messages from each publisher are published in order. However, AMPS does not enforce order across pub-
lishers. This means that, in a failover situation, that messages from different publishers may be interleaved
in a different order on different servers, even though the message stream from each publisher is preserved
in order.

145

Chapter 23. Operation and Deployment
This chapter contains guidelines and best-practices to help plan and prepare an environment to meet the
demands that AMPS is expected to manage.

23.1. Capacity Planning
Sizing an AMPS deployment can be a complicated process that includes many factors including config-
uration parameters used for AMPS, the data used within the deployment, and how the deployment will
be used. This section presents guidelines that you can use in sizing your host environment for an AMPS
deployment given what needs to be considered along every dimension: Memory, Storage, CPU, and Net-
work.

Memory
Beyond storing its own binary images in system memory, AMPS also tries to store its SOW and indexing
state in memory to maximize the performance of record updates and SOW queries.

AMPS needs less than 1GB for its own binary image and initial start up state for most configurations. In
the worst-case, because of indexing for queries, AMPS may need up to twice the size of messages stored
in the SOW. And, finally AMPS needs some amount of memory reserved for the clients connected to it.
While the per connection overhead is a tunable parameter based on the Slow Client Disconnect settings
(see the best practices later in this chapter) it is advised to use 50MB per connected client.

This puts the worst-case memory consumption estimate at:

Equation 23.1. Memory estimation equation

where:

Equation 23.2. Example memory estimation equation

where:

Operation and Deployment

146

An AMPS deployment expected to hold 20 million messages with an average message size of 1KB and
200 connected clients would consume 52GB. Therefore, this AMPS deployment would fit within a host
containing 64GB with enough headroom for the OS under most configurations.

Storage
AMPS needs enough space to store its own binary images, configuration files, SOW persistence files, log
files, transaction log journals, and slow client offline storage, if any. Not every deployment configures a
SOW or transaction log, so the storage requirements are largely driven by the configuration.

AMPS log files. Log file sizes vary depending on the log level and how the engine is used. For example,
in the worst-case, trace logging, AMPS will need at least enough storage for every message published
into AMPS and every message sent out of AMPS plus 20%.

For info level logging, a good estimate of AMPS log file sizes would be 2MB per 10 million messages
published.

Logging space overhead can be capped by implementing a log rotation strategy which uses the same file
name for each rotation. This strategy effectively truncates the file when it reaches the log rotation threshold
to prevent it from growing larger.

SOW . When calculating the SOW storage, there are a couple of factors to keep in mind. The first
is the average size of messages stored in the SOW, the number of messages stored in the SOW and the
RecordSize defined in the configuration file. Using these values, it is possible to estimate the minimum
and maximum storage requirements for the SOW:

Equation 23.3. Minimum SOW Size

where

Equation 23.4. Maximum SOW Size

where

Operation and Deployment

147

The storage requirements should be between the two values above, however it is still possible for the
SOW to consume additional storage based on the unused capacity configured for each SOW topic. Further,
notice that AMPS reserves the initial size for each processor core in the system.

For example, in an AMPS configuration file which has the InitialSize is set to 1000 messages and
the RecordSize is set to 1024, the SOW for this topic will consume 1MB per processor core with no
messages stored in the SOW. Pre-allocating SOW capacity in chunks is more efficient for the operating
system, storage devices, and helps amortize the SOW extension costs over more messages.

It is also important to be aware of the maximum message size that AMPS can hold in the SOW. The
maximum message size is calculated in the following manner:

Equation 23.5. Maximum Message Size allowed in SOW

where

This calculation says that the maximum message size that can be stored in the sow in a single message
storage is the RecordSize multiplied by the IncrementSize minus 64 bytes for the record header
information. AMPS enforces a lower limit of approximately 1MB: if the maximum size works out to less
than 1MB, AMPS will use 1MB as the maximum size for the topic.

Transaction logs. Transaction logs are used for message replay, replication, and to ensure consistency
in environments where each message is critical. Transaction logs are optional in AMPS, and transaction
logs can be configured for individual topics or filters. When planning for transaction logs, there are three
main considerations:

• The total size needed for the transaction log

• The size to allow for each file that makes up the transaction log

• How many files to preallocate

You can calculate the approximate total size of the transaction log as follows:

Equation 23.6. Transaction Log Sizing Approximation

where

Operation and Deployment

148

Size your files to match the aging policy for the transaction log data. To remove data from the transaction
log, you simply archive or delete files that are no longer needed. You can size your files to make this
easier. For example, if your application typically generates 100GB a day of transaction log, you could size
your files in 10GB units to make it easier to remove 100GB increments.

AMPS allows you to preallocate files for the transaction log. For applications that are very latency-sensi-
tive, preallocation can help provide consistent latency. We recommend that those applications preallocate
files, if storage capacity and retention policy permit. For example, an application that sees heavy through-
put during a working day might preallocate enough files so that there is no need for additional allocation
within the working day.

Other Storage Considerations. The previous sections discuss the scope of sizing the storage, however
scenarios exist where the performance of the storage devices must also be taken into consideration.

One such scenario is the following use case in which the AMPS transaction log is expected to be heavily
used. If performance greater than 50MB/second is required out of the AMPS transaction log, experience
has demonstrated that flash storage (or better) would be recommended. Magnetic hard disks lack the
performance to produce results greater than this with a consistent latency profile.

CPU
 SOW queries with content filtering make heavy use of CPU-based operations and, as such, CPU perfor-
mance directly impacts the content filtering performance and rates at which AMPS processes messages.
The number of cores within a CPU largely determines how quickly SOW queries execute.

AMPS contains optimizations which are only enabled on recent 64-bit x86 CPUs. To achieve the highest
level performance, consider deploying on a CPU which includes support for the SSE 4.2 instruction set.

To give an idea of AMPS performance, repeated testing has demonstrated that a moderate query filter
with 5 predicates can be executed against 1KB messages at more than 1,000,000 messages per second, per
core on an Intel i7 3GHz CPU. This applies to both subscription based content filtering and SOW queries.
Actual messaging rates will vary based on matching ratios and network utilization.

Network
When capacity planning a network for AMPS, the requirements are largely dependent on the following
factors:

• average message size

• the rate at which publishers will publish messages to AMPS

• the number of publishers and the number of subscribers.

AMPS requires sufficient network capacity to service inbound publishing as well as outbound messaging
requirements. In most deployments, outbound messaging to subscribers and query clients has the highest

Operation and Deployment

149

bandwidth requirements due to the increased likeliness for a “one to many” relationship of a single pub-
lished message matching subscriptions/queries for many clients.

Estimating network capacity requires knowledge about several factors, including but not limited to: the
average message size published to the AMPS instance, the number of messages published per second, the
average expected match ratio per subscription, the number of subscriptions, and the background query
load. Once these key metrics are known, then the necessary network capacity can be calculated:

Equation 23.7. Network capacity formula

where

where “Query Load” is defined as:

where

In a deployment required to process published messages at a rate of 5000 messages per second, with each
message having an average message size of 600 bytes, the expected match rate per subscription is 2% (or
0.02) with 100 subscriptions. The deployment is also expected to process 5 queries per 1 minute (or 12
queries per second), with each query expected to return 1000 messages.

Based on these requirements, this deployment would need at least 72Mb/s of network capacity to achieve
the desired goals. This analysis demonstrates AMPS by it self would fall into a 100Mb/s class network. It
is important to note, this analysis does not examine any other network based activity which may exist on
the host, and as such a larger capacity networking infrastructure than 100Mb/s would likely be required.

NUMA Considerations
AMPS is designed to take advantage of non-uniform memory access (NUMA). For the lowest latency in
networking, we recommend that you install your NIC in the slot closest to NUMA node 0. AMPS runs

Operation and Deployment

150

critical threads on node 0, so positioning the NIC closest to that node provides the shortest path from
processor to NIC.

23.2. Linux Operating System Configuration
This section covers some settings which are specific to running AMPS on a Linux Operating System.

ulimit
The ulimit command is used by a Linux administrator to get and set user limits on various system
resources.

ulimit -c. It is common for an AMPS instance to be configured to consume gigabytes of memory for
large SOW caches. If a failure were to occur in a large deployment it could take seconds (maybe even
hours, depending on storage performance and process size!) to dump the core file. AMPS has a minidump
reporting mechanism built in that collects information important to debugging an instance before exiting.
This minidump is much faster than dumping a core file to disk. For this reason, it is recommended that
the per user core file size limit is set to 0 to prevent a large process image from being dumped to storage.

ulimit -n. The number of file descriptors allowed for a user running AMPS needs to be at least double
the sum of counts for the following: connected clients, SOW topics and pre-allocated journal files. Min-
imum: 4096. Recommended: 16834

/proc/sys/fs/aio-max-nr
Each AMPS instance requires AIO in the kernel to support at least 16384 plus 8192 for each SOW topic in
simultaneous I/O operations. The setting aio-max-nr is global to the host and impacts all applications.
As such this value needs to be set high enough to service all applications using AIO on the host. Minimum:
65536. Recommended: 1048576

To view the value of this setting, as root you can enter the following command:

 cat /proc/sys/fs/aio-max-nr

To edit this value, as root you can enter the following command:

 sysctl -w fs.aio-max-nr = 1048576

This command will update the value for /proc/sys/fs/aio-max-nr and allow 1,048,576 simulta-
neous I/O operations, but will only do so until the next time the machine is rebooted. To make a permanent
change to this setting, as a root user, edit the /etc/sysctl.conf file and either edit or append the
following setting:

Operation and Deployment

151

 fs.aio-max-nr = 1048576

/proc/sys/fs/file-max
Each AMPS instance needs file descriptors to service connections and maintain file handles for open files.
This number needs to be at least double the sum of counts for the following: connected clients, SOW topics
and pre-allocated journal files. This file-max setting is global to the host and impacts all applications, so
this needs to be set high enough to service all applications on the host. Minimum: 262144 Recommended:
6815744

To view the value of this setting, as root you can enter the following command:

 cat /proc/sys/fs/file-max

To edit this value, as root you can enter the following command:

 sysctl -w fs.file-max = 6815744

This command will update the value for /proc/sys/fs/file-max and allow 6,815,744 concurrent
files to be opened, but will only do so until the next time the machine is rebooted. To make a permanent
change to this setting, as a root user, edit the /etc/sysctl.conf file and either edit or append the
following setting:

 fs.file-max = 6815744

23.3. Upgrading an AMPS Installation
Upgrading an AMPS installation involves the following steps:

1. Stop the running instance

2. If necessary, upgrade any data files or configuration files that you want to retain

3. Install the new AMPS binaries

4. Restart the service

When the AMPS instance participates in replication, you must coordinate the instance upgrades when
upgrading across AMPS versions. AMPS replication works between instances with the same major and

Operation and Deployment

152

minor version number (for example, all AMPS 3.9 releases use the same version of replication, but the
4.0 releases use a different version of replication.)

Upgrading AMPS Data Files
AMPS may change the format and content of data files when upgrading across versions, as specified by
the major and minor version number. This most commonly occurs when new features are added to AMPS
that require different or additional information in the persisted files. The HISTORY file for the AMPS
release lists when changes have been made that require data file changes.

In general, 60East recommends upgrading the data files whenever moving to a new major/minor version
and whenever a data file change is mentioned in the HISTORY file.

The AMPS distribution includes the amps_upgrade utility to process and upgrade data files. The ver-
sion included with each release of AMPS upgrades previous versions of the data files to the version of
AMPS that includes the utility. For example, the version of amps_upgrade included in version 4.1 of
AMPS upgrades files to the 4.1 version the data files.

AMPS versions may upgrade any of the following types of files:

• journals - these files contain the transaction logs for the instance

• clients.ack - this file contains a cache of the last sequence number processed for a publisher

• sow files - these files contain the persisted state of the durable SOW topics for the instance

The amps_upgrade utility handles upgrades for each of these types of files. Full details on
amps_upgrade are available in the AMPS Utilities Guide.

23.4. Best Practices
This section covers a selection of best practices for deploying AMPS.

Monitoring
AMPS exposes the statistics available for monitoring via a RESTful interface, known as the Monitoring
Interface, which is configured as the administration port. This interface allows developers and adminis-
trators to easily inspect various aspects of AMPS performance and resource consumption using standard
monitoring tools.

At times AMPS will emit log messages notifying that a thread has encountered a deadlock or stressful
operation. These messages will repeat with the word “stuck” in them. AMPS will attempt to resolve these
issues, however after 60 seconds of a single thread being stuck, AMPS will automatically emit a minidump
to the previously configured minidump directory. This minidump can be used by 60East support to assist
in troubleshooting the location of the stuck thread or the stressful process.

Operation and Deployment

153

Another area to examine when monitoring AMPS is the last_active monitor for the processors. This
can be found in the /amps/instance/processors/all/last_active url in the monitoring
interface. If the last_active value continually increases for more than one minute and there is a
noticeable decline in the quality of service, then it may be best to fail-over and restart the AMPS instance.

SOW Parameters
Choosing the ideal InitialSize, IncrementSize, and RecordSize for your SOW topic is a
balance between the frequency of SOW expansion and storage space efficiency. A large InitialSize
will preallocate space for records on start up, however this value may end up being too large, which would
result in wasted space.

An IncrementSize that is too small results in frequent extensions of your SOW topic to occur. These
frequent extensions can have a negative impact on the rate at which AMPS is able to process messages.

If the IncrementSize is large, then the risk of the SOW resize impacting performance is reduced;
however this has a trade-off of reduced space utilization efficiency.

A good starting point for the InitialSize setting is 20% of the total messages a topic is expected to
have, with IncrementSize being set to 10% of the total messages. This will minimize the number
SOW size extensions while converging to a storage efficiency greater than 90%.

The RecordSize trade-offs are unique to the InitialSize and IncrementSize configuration
discussed previously. A RecordSize that is too large results in space which will be wasted in each
record. A RecordSize value which is too small and will result in AMPS using more CPU cycles man-
aging space within the SOW.

AMPS can split large messages across records. However, AMPS restricts the size of messages in the SOW
to a maximum of RecordSize * IncrementSize. The product of these values must be at least as
large as the largest message you will need to store.

If performance is critical and space utilization is a lesser concern, then consider using a RecordSize
which is 2 standard deviations above your average message size. If storage space is a greater limiting
factor, then look at the sizing histogram feature of the amps_sow_dump utility for guidance when sizing
(see the amps_sow_dump section in the AMPS Utilities Guide for more information).

Slow Clients
As described in the section called “Slow Client Management ”, AMPS provides capacity limits for slow
clients to reduce the memory resources consumed by slow clients. This section discusses tuning slow
client handling to achieve your availability goals.

There are two top-level parameters that control slow client mitigation: SlowClientOffline specifies
whether AMPS will buffer messages to disk if the client consumes too much memory. SlowClient-
Disconnect configuration specifies whether or not AMPS will disconnect clients that fall too far be-
hind (based on the number of messages spooled to disk). Both parameters default to enabled.

Operation and Deployment

154

AMPS provides tunable parameters to tune the thresholds at which slow client mitigation occurs. The first
tunable parameter for slow clients is the ClientBufferThreshold, which determines the number
of bytes that can queue up for a client before AMPS will start queueing or “off-lining” the additional
messages to disk. This setting should be sufficiently large to hold any query that a client could issue.
Typically when AMPS prepares the messages for a client, it is common for query results to be queued in
memory but immediately dequeued when the messages are sent to the client.

To prevent potential unbounded memory growth, by default SlowClientDisconnect and
ClientOffline are enabled with ClientBufferThreshold set to 50MB. AMPS has
an offline file size limit of 1G.

For example, if a client is expected to have a maximum query size of 30,000 messages and the average
message size is 1KB, then having ClientBufferThreshold set to 40MB would be a good initial
configuration. This would cap the memory consumption per client at approximately 50MB (assuming a
standard 10MB of additional client-specific overhead such as filters and subscription information.)

Once AMPS exceeds the ClientBufferThreshold of queued messages for a client, AMPS will
start enqueueing the messages to disk. AMPS writing the messages to disk has now changed a potential
unbounded memory-growth problem into a potentially unbounded storage-growth problem. To deal with
the potential problem of a client not responding while AMPS has started enqueueing its messages to
disk, AMPS provides the ClientOfflineThreshold configuration parameter. This allows an AMPS
administrator to tune the message threshold which AMPS will store on disk before disconnecting a slow
client. For example, if we want to store at most 200MB of offlined data for a slow client, then we would
set the ClientOfflineThreshold to a number of messages that will consume 200MB.

When using AMPS within a development environment where a client consumer could be
paused during debugging, it is often helpful to set the Offlining and SlowClientDis-
connect thresholds larger than would normally exist in a production environment, or even
turning the slow client disconnect feature off. This will reduce or prevent AMPS from discon-
necting a client while it is in the process of testing or debugging a feature.

Example 23.1 shows a configuration of a Transport with SlowClientDisconnect enabled
(true). In this example, a slow client will first start to offline messages when the client falls behind
by 4MB, as determined by the ClientBufferThreshold limit which is set to 4194304. AMPS
will offline messages until the client falls behind by 10,000 messages as determined by the ClientOf-
flineThreshold setting. If the client falls behind by more than 10,000 messages, AMPS will discon-
nect the client.

<Transports>
 <Transport>
 <Name>fix-tcp</Name>
 <Type>tcp</Type>
 <InetAddr>10200</InetAddr>
 <ReuseAddr>true</ReuseAddr>
 <MessageType>nvfix</MessageType>
 <ClientBufferThreshold>4194304</ClientBufferThreshold>

Operation and Deployment

155

 <ClientOffline>enabled</ClientOffline>
 <ClientOfflineThreshold>10000</ClientOfflineThreshold>
 <SlowClientDisconnect>true</SlowClientDisconnect>
 </Transport>
</Transports>

Example 23.1. Example of FIX Transport with Slow Client Configuration

When monitoring for slow clients, a good place to look is in the queue_depth_out or in the
queue_bytes_out parameters which are tracked for each client in the monitoring interface. These
parameters are located in /amps/instance/clients/*/queue_depth_out or in /amps/
instance/clients/*/queued_bytes_out where the * is the client being monitored. If the
queued_bytes_out or queue_depth_out values continually increase and a client notices that
they have fallen behind, then that client should be disconnected. Additionally, if this happens repeatedly,
then you should investigate proper usage of the SlowClientDisconnect functionality within AMPS
using the guidelines listed previously, or examine the selectivity of the filters to improve consumption
and performance of the client.

Slow Client Offlining for Large Result Sets

The default settings for AMPS work well in a wide variety of applications with minimal tuning.

If you have particularly large SOW topics, and your application is disconnecting clients due to exceeding
the offlining threshold when the clients retrieving large SOW query result sets, 60East recommends the
following settings as a baseline for further tuning:

Table 23.1. Client Offline Settings for Large Result Sets

Parameter Recommendation

ClientBufferThreshold This controls the maximum memory consumed by
each connected client. 60East recommends keeping
this below 100MB, unless your application has a
large amount of memory or is unable to create of-
fline files.

Recommended starting point for tuning large result
sets: 50MB

ClientOfflineThreshold The maximum number of messages to write to the
offline file. 60East recommends that this be set large
enough to contain the largest result set you expect
to return to a client.

Recommended starting point for tuning large result
sets: Maximum # of records allowed for a query

ClientMaxBufferThreshold The total amount of space a client is allowed to use,
which includes AMPS header information as well
as query data.

Operation and Deployment

156

Parameter Recommendation
Recommended starting point for tuning large result
sets:

60East recommends that you use these settings as a baseline for further tuning, bearing in mind the needs
and expected messaging patterns of your application.

Minidump
AMPS includes the ability to generate a minidump file which can be used in support scenarios to attempt to
troubleshoot a problematic instance. The minidump captures information prior to AMPS exiting and can
be obtained much faster than a standard core dump (see the section called “ulimit” for more configuration
options). By default the minidump is configured to write to /tmp, but this can be changed in the AMPS
configuration by modifying the MiniDumpDirectory.

Minidumps contain thread state information that provides the location of each running thread and register
information for the thread. The minidump also contains basic information about the system that AMPS was
running on, such as the processor type and number of sockets. Minidumps do not contain the full internal
state of AMPS or the full contents of application memory. Instead, minidumps identify the point of failure
to help 60East quickly narrow down the issue without generating large files or potentially compromising
sensitive data.

Generation of a minidump file occurs in the following ways:

1. When AMPS detects a crash internally, a minidump file will automatically be generated.

2. When a user clicks on the minidump link in the amps/instance/administrator link from
the administrator console (see the AMPS Monitoring Reference for more information).

3. By sending the running AMPS process the SIGQUIT signal.

4. If AMPS observes a single stuck thread for 60 seconds, a minidump will automatically be generated.
This should be sent to AMPS support for evaluation along with a description of the operations taking
place at the time.

157

Chapter 24. Securing AMPS
One of the most important considerations when using AMPS in production is keeping your data safe.
This means both ensuring that subscribers only have access to the data that they are allowed to have and
that only authorized publishers are allowed to publish messages into the system. This chapter describes
the mechanisms within AMPS to protect access to AMPS resources through client, administrative, and
replication connections.

In this chapter, we describe the AMPS security infrastructure and present general information about se-
curing an AMPS installation. AMPS uses a plugin model for providing authentication and entitlement,
and allows a great deal of freedom in how the a given module implements security checks. This chapter
discusses the concepts, principles, and guarantees that AMPS provides. The specific steps and configura-
tion you use to secure an installation of AMPS depend on the plugin you use to secure AMPS.

There are three aspects to securing connections to AMPS:

• Authentication assigns an identity to a connection and verifies that identity

• Entitlement enforces permission to read or write AMPS resources based on the identity assigned to a
connection

• The AMPS process may also need to provide credentials to another system (for example, to secure
outgoing replication)

24.1. Authentication
The first part of securing AMPS is developing a strategy to verify the identity of connected clients. AMPS
maintains an identity for each client connection, and uses that identity for entitlement requests. Once an
identity is assigned to a connection, that identity stays the same for the lifetime of the connection. If an
application needs to use different identities to work with AMPS, that application needs to make a separate
connection for each identity.

There are two ways that AMPS assigns an identity to a client:

1. When an application explicitly sends a logon command, AMPS uses the credentials in the message
for the authentication process. If authentication is successful, AMPS associates the user name provided
in the initial logon with the connection. If authentication fails, AMPS closes the connection.

2. When an application issues any other command after connecting but before sending a logon com-
mand, AMPS begins the authentication process with an empty user name and password. If authentica-
tion is successful, AMPS associates an empty user name with the connection. If authentication fails,
AMPS closes the connection.

In both cases, authentication occurs through the AMPS security infrastructure.

When authenticating a client, AMPS locates the authentication module in use for client's transport. If
there is an authentication module specified for that Transport, AMPS uses that module. Otherwise, the
transport uses an instance of the authentication module specified for the instance. When the configuration
for the instance doesn't include an instance level authentication module, the default module for the trans-

Securing AMPS

158

port is amps-default-authentication-module, which accepts any user name and password
provided and sets the authenticated user name to an empty string.

Once AMPS has located the module instance, AMPS provides the user name and the password to that
instance of the module. The module can accept the credentials, reject the credentials, or return a chal-
lenge that the application must respond to. When the module returns a challenge, the connection remains
unauthenticated until the application requesting authentication responds to the challenge and the module
accepts the response.

For most production systems, AMPS security is integrated with the overall security fabric of the orga-
nization. 60East provides the AMPS Server SDK to help developers create authentication modules that
implement the unique policies and procedures required by a particular organization.

24.2. Entitlement

The AMPS entitlement system controls access to individual resources in AMPS. Each entitlement request
consists of a user, a specific action, and, where applicable, the type of resource and the resource name.
For example, an entitlement request might arrive for the user Janice to write (that is, publish) to the
topic named /orders/northamerica. Another entitlement request might be for the user Phil to
logon to the instance. A third request might be for the user Jill to read (that is, subscribe or run a
SOW query) from the topic named /orders/pacific/palau.

When checking entitlements, AMPS locates the entitlement module in use for the Transport that the client
is connecting on. If there is an entitlement module specified for the Transport, AMPS uses that module.
Otherwise, AMPS uses an instance of the entitlement module specified for the instance. When the config-
uration file for the instance doesn't specify an instance-level entitlement module, the default module for
the transport is amps-default-entitlement-module, which allows all permissions for any user.

AMPS caches the results of the entitlement check. You can clear the entitlement cache for all users using
the AMPS Administrative Actions. You can clear the entitlement cache for a single user using the AMPS
external API. When the entitlement cache is cleared, AMPS disconnects the user. This ensures that, when
the user reconnects, the user only has access to resources that match the current set of entitlements.

AMPS checks entitlements for a command when processing the command, and does not recheck per-
missions after the command is processed. For example, when Jill subscribes to /orders/pacif-
ic/palau, AMPS checks entitlements when creating the subscription. If the entitlement check returns
an entitlement content filter, AMPS includes that entitlement filter on the subscription. Once the subscrip-
tion has been created, AMPS applies the filter as a part of the standard filtering process, but AMPS does
not check entitlements for the subscription as further messages arrive.

The following table lists the resource types that AMPS provides:

Table 24.1. AMPS Entitlement Resource Types

Resource Type Description

logon Permission to log on to the AMPS instance

replication_logon Permission to log on to the AMPS instance as a replica-
tion source

Securing AMPS

159

Resource Type Description

topic Permission to receive from or publish to a specific topic

admin Permission to read admin statistics or peform admin func-
tions from the web interface

For the topic and admin resource types, AMPS also provides the name of the resource and whether
the request is to read the resource or write to the resource.

The table below shows how AMPS commands translate to entitlement types:

Table 24.2. Entitment Types for Commands

AMPS Command Entitlement Type

delta_subscribe,

sow, sow_and_subscribe,

subscribe, sow_and_delta_subscribe

read

delta_publish, publish,

sow_delete

write

Entitlement Caching
AMPS does not present a request to the entitlement module each time that an entitlement check is needed.
Instead, AMPS presents the request the first time the entitlement is needed, and then caches the results from
the module for subsequent entitlement checks. This improves performance, although it also means that
when a module that reads entitlements from an external source (such as a central directory of permissions)
that may change without requiring a restart of the AMPS instance, that module will need to establish a
policy for resetting the entitlement cache.

Regular Expression Subscriptions
Each request from AMPS is for a specific resource name. When a client requests a regular expression
subscription, AMPS makes a request for each topic that matches the subscription at the point that AMPS
has a message to deliver for that topic. For example, if the user Nina enters a subscription for /parts/
(mechanical|electrical), AMPS will make a request to the entitlement module for /parts/
mechanical when there is a message to deliver for that topic, and will make a separate request for /
parts/electrical when there is a message to deliver for that topic.

Content Filtered Entitlements
The entitlement system offers the ability to enforce content restrictions on subscriptions. When AMPS
requests read access to a topic, the module that performs entitlement can also return a filter to AMPS.

Securing AMPS

160

This filter is evaluated independently of any filter on the subscription, and messages must match both the
subscription filter and the filter provided by the entitlement to be returned to the application. If a message
does not match the entitlement filter, the message is not delivered, regardless of whether the message
matches the filters provided by the application.

AMPS also offers the ability to enforce content restrictions on publish commands. When AMPS re-
quests write access to a topic, the module that performs entitlement can return a filter to AMPS. This
filter is then evaluated against messages published to that topic by that user. If the message being published
matches the filter, AMPS allows the message. Otherwise, AMPS rejects the message.

24.3. Providing an Identity for Outbound Con-
nections (Authenticator)

For outgoing replication connections, AMPS may need to provide an identity and credentials to the repli-
cation destination. AMPS uses a module type called an authenticator to provide those credentials and
handle any challenge/response protocol required by the authentication module in the remote system.

AMPS provides a default authenticator module, amps-default-authenticator-module, that
is automatically configured as the Authenticator for the instance if no other instance Authenticator is
provided. This module provides a user name with no password, using the USER environment variable if
one is set, or the value of the User option to the module if one is provided.

The Authenticator used for a replication Destination must provide credentials that are accepted by the
Transport of the remote instance that the Destination is connecting to. See the AMPS Configuration Ref-
erence for information on configuring the Authenticator for a Destination.

161

Chapter 25. Troubleshooting AMPS
This chapter presents common techniques for troubleshooting AMPS. Additional troubleshooting in-
formation and answers to common questions about AMPS are included on our support site at http://
support.crankuptheamps.com/hc.

25.1. Planning for Troubleshooting

There are several steps that you can take before you need to troubleshoot a problem that will make trou-
bleshooting easier. 60East recommends that you consider taking the following steps for a production in-
stance of AMPS:

1. Configure the instance to log messages of at least warning or higher level. Some problems require
more information, so increasing the amount of logging may make troubleshooting easier, if your in-
stance has storage available.

2. Ensure that client applications use unique names. Wherever possible, ensure that those names can easily
be traced back to the instance of the application. For example, you might use the name of application
combined with the name of the logged on user as a unique name. This will help you to more quickly
find log messages related to a problem.

3. Enable the administrative server. The administrative console is a good way to get a snapshot of the
current state of a running instance.

4. If you are using replication, ensure that your AMPS instances have unique names. Where possible,
use names that make it easy to relate replication messages to the servers that process the message. For
example, you might relate the AMPS instance name to the purpose that the instance serves, the physical
server that the instance runs on, or both.

5. Learn what normal operation looks like for your application. If possible, take the time to inspect the
AMPS logs and the output of the administrator console when everything is working as expected. Ap-
plications vary in how they use AMPS, and what is normal for your application might indicate a prob-
lem in a different application. For example, if your application normally has a few publishers and many
subscribers, seeing dozens of publishers come online may indicate that an application has unexpectedly
started more publishers. Likewise, if no publishers are online, that may indicate an issue with connec-
tivity to the AMPS server. Understanding normal behavior will help you to more easily and accurately
spot problems.

25.2. Finding Information in the Log

The AMPS log is one of the most useful places to find information when there's a problem with your
application. Here are some techniques to use for finding relevant information in the log.

http://support.crankuptheamps.com/hc
http://support.crankuptheamps.com/hc

Troubleshooting AMPS

162

• Ensure the log is capturing information that will be useful for diagnosing the problem. To detect a
problem, 60East recommends logging at warning level and above. To fully troubleshoot an error, it
may be necessary to log at trace level to see the exact behavior in AMPS.

• To find log messages that may indicate a problem, use the Linux grep tool to find log messages at
warning, error, critical, or emergency levels. For example, you might use the following command line:

grep -E 'warning|error|critical|emergency' log_file

This will show lines from the log that contain messages logged at those levels. The text that AMPS
uses for log messages is guaranteed not to include strings that duplicate one of the log levels, although
information that you configure (such as client names, topic names, and so on) may contain those strings.

• If you know the name of the client that experienced the problem, you can use that name to get infor-
mation about the client. It's often helpful to get log messages that include the client name and several
lines of output after the client name to help you understand the context in which AMPS produced the
message for the client name. To do this, you might you use the following command line:

grep –B2 –A15 client_name log_file

This command line looks for all occurances of the client_name in the log file, and prints two lines of
context before the line that contains the client name, and ten lines of context after the line that contains
the client name.

Once you've found the information you're looking for, the ampserr utility can help you look up more
information on messages, as described in Section 17.9.

25.3. Reading Replication Log Messages

For replication connections, the replication source creates a client name that it uses to connect to the
downstream instance. This client name contains the source, destination, sync setting, and protocol for the
connection. The client name uses the following format:

source!destination!sync_setting!protocol

Notice, however, that this is a client name. The client name is the name used for the connection, but it
does not indicate the direction of any particular message. As an example, consider a client name of:

OrderServer!HotBackup!sync!amps-replication

This client name is used for a connection that the AMPS instance named OrderServer has made to AMPS
instance named HotBackup. The connection uses the amps-replication protocol, and was configured for
synchronous replication at the time the client connected. In this case, a message like the following:

12-1002 client[OrderServer!HotBackup!sync!amps-replication]
 replication ack received: publish ack
 [txid=35922]

Troubleshooting AMPS

163

Means that a publish acknowledgement was received on the connection that OrderServer made to Hot-
Backup.

25.4. Troubleshooting Disconnected Clients

One common symptom of problems in an AMPS application is that AMPS disconnects clients unexpect-
edly. AMPS disconnects clients in the following situations:

• When transaction logging is configured for the instance and a client with a duplicate name logs on

• When heartbeating is enabled, and the client misses a heartbeat

• When a slow client falls behind by more than the configured threshold

• When the entitlement cache for an instance is reset

• When the administration console disconnects a client

• When the transport is disabled

This section presents techniques to help you identify why clients are disconnected and correct any prob-
lems that may exist.

Locating the Reason for Disconnection
To discover the reason that a client was disconnected, use the following command to find the client name
in the logs:

grep -B2 -A5 client_name log_file

The results of this can provide information as to why the client was disconnected. AMPS logs a reason for
the disconnection if the disconnection was the result of an internal action by AMPS. If the disconnection
was the result of an action from the Admin console, or the client chose to disconnect, the disconnection
is logged, but no further information is given.

Duplicate Client Name Disconnection

When a client is disconnected due to another client with the same name logging on, the messages produced
might look like:

2014-11-20T16:26:59.6408410-08:00 [5] warning: 02-0025 A client
 logon with an 'in use' client name for the same user id forced a
 disconnect of client: client[my-name] with user id:

To resolve this issue, ensure that clients use unique names when connecting to instances that configure
a transaction log.

Troubleshooting AMPS

164

Missed Heartbeat Disconnection

When AMPS disconnects a client due to the client failing to heartbeat, the log messages produced look
like the following:

2014-11-20T16:35:23.9185690-08:00 [6] error: 07-0042 AMPS heartbeat
 manager is disconnecting an unresponsive client: no-heartbeat-client

This error most often arises from severe network congestion, a deadlock or similar problem in the appli-
cation that is preventing the AMPS client library from producing heartbeats, or a problem in AMPS that
prevents AMPS from servicing heartbeat requests.

Slow Client Disconnection

The following shows sample log entries for slow client disconnectin. If a client named sleepy-client
was disconnected for being a slow client, the relevant entries in the transaction log might look like:

2014-11-20T15:33:06.8496430-08:00 [7] warning: 70-0011 client[sleepy-
client] slow consumption detected, offline messages.
2014-11-20T15:33:06.8498130-08:00 [7] error: 70-0004 client[sleepy-
client] is not consuming messages, disconnecting slow client

Notice that there may be a considerable period of time between the client being offlined and the client
being disconnected.

There are several approaches to solving the problem:

• Reduce the number of messages returned. Clients most often fall behind when a SOW query or a replay
from the transaction log returns a large number of messages. If possible, use content filtering to return
a more precise set of messages.

• Improve the rate at which the client handles messages. If the client message handler takes a relatively
long time to process the message, moving message processing onto a different thread or streamlining
the processing may improve the speed of the client and allow the client to keep up.

• Adjust the client offlining threshold. You can also increase the number of messages that AMPS will
buffer for a specific client, as described in the section called “Slow Client Management ”.

Admin Console Client Disconnection

Disconnection from the admin console provides no additional information, and produces a log message
like the following:

2014-11-20T15:33:06.8502350-08:00 [4] info: 07-0013 client[sleepy-
client] disconnected.

Admin Console Transport Disabled

A transport being disabled through the admin console produces messages like the following:

Troubleshooting AMPS

165

2014-11-20T16:04:00.9548130-08:00 [10] info: 07-0047 Transport[json-
tcp] being disabled.
2014-11-20T16:04:00.9550150-08:00 [4] info: 07-0013 client[amps-json-
tcp-18] disconnected.

Part IV. Building Applications with AMPS

167

Chapter 26. Sample Use Cases
To further your understanding of AMPS, we provide some sample use cases that highlight how multiple
AMPS features can be leveraged in larger messaging solutions. For example, AMPS is often used as a
back-end persistent data store for client desktop applications.

The provided use case shows how a client application can use the AMPS command
sow_and_suscribe to populate an order table that is continually kept up-to-date. To limit redundant
data from being sent to the GUI, we show how you can use a delta subscription command. You will also
see how to improve performance and protect the GUI from over-subscription by using the TopN query
limiter along with a stats acknowledgement.

26.1. View Server Use Case
Many AMPS deployments are used as the back-end persistent store for desktop GUI applications. Many
of the features covered in previous chapters are unique to AMPS and make it well suited for this task. In
this example AMPS will be act as a data store for an application with the following requirements:

• allow users to query current order-state (SOW query)

• continually keep the returned data up to date by applying incremental changes (subscribe)

For purposes of highlighting the functionality unique to AMPS, we’ll skip most of the details and chal-
lenges of GUI development.

Setup
For this example, let’s configure AMPS to persist FIX messages to the topic ORDERS. We use a separate
application to acquire the FIX messages from the market (or other data source) and publish them into
AMPS. AMPS accumulates all of the orders in its SOW persistence, making the data available for the
GUI clients to consume.

GUI Interface
GUI Interface

GUI Interface
GUI Interface

AMPS

Market SOW

Figure 26.1. AMPS View Server Deployment Configuration

Sample Use Cases

168

SOW Query and Subscription
The GUI will enable a user to enter a query and submit it to AMPS. If the query filter is valid, then the
GUI displays the results in a table or “grid” and continually applies changes as they are published from
AMPS to the GUI. For example, if the user wants to display active orders for Client-A, then they may
use a query similar to this:

/11 = 'Client-A' AND /39 IN (0, 'A')

This filter matches all orders for Client-A that have FIX tag 39 (the FIX order status field) as 0 (’New’)
or ’A’ (’Pending New’).

From a GUI client, we want to first issue a query to pull back all current orders and, at the same time,
place a subscription to get future updates and new orders. AMPS provides the sow_and_subscribe
command for this purpose.

A more realistic scenario may involve a GUI Client with multiple tables, each subscribing with
a different AMPS filter, and all of these subscriptions being managed in a single GUI Client. A
single connection to AMPS can be used to service many active subscriptions if the subscription
identifiers are chosen such that they can be demultiplexed during consumption.

The GUI issues the sow_and_subscribe command, specifying a topic of ORDERS and possibly other
filter criteria to further narrow down the query results. Once the sow_and_subscribe command has
been received by AMPS, the query returns to the GUI all messages in the SOW that, at the moment, match
the topic and content filter. Simultaneously, a subscription is placed to guarantee that any messages not
included in the initial query result will be sent after the query result.

The GUI client then receives a group_begin message from AMPS, signaling the beginning of a set of
records returned as a result of the query. Upon receiving the initial SOW query result, this GUI inserts the
returned records into the table, as shown in Figure 26.2. Every record in the query will have assigned to
it a unique SowKey that can be used for future updates.

The receipt of the group_end message serves as a notification to the GUI that AMPS has reached the
end of the initial query results and going forward all messages from the subscription will be live updates.

Sample Use Cases

169

1

2

39

0
0
A

38

100
200
100

A:11=client-A,39=O,55=MSFT,38=100
B:11=client-A,39=O,55=IBM, 38=200
C:11=client-A,39=A,55=ORCL,38=100

sow_and_subscribe
Topic: ORDERS

Filter: 11 = 'client-A' AND /39 IN (O, 'A')

AMPS

SOW

55

MSFT

ORCL
IBM

Figure 26.2. AMPS GUI Instance With sow_and_subscribe

Once the initial SOW query has completed, each publish message received by the GUI will be either a
new record or an update to an existing record. The SowKey sent as part of each publish message is used to
determine if the newly published record is an update or a new record. If the SowKey matches an existing
record in the GUI’s order table, then it is considered an update and should replace the existing value.
Otherwise, the record is considered to be a new record and can be inserted directly into the order table.

For example, assume there is an update to order C that changes the order status (tag 39) of the client’s
ORCL order from ’A’ to 0. This is shown below in Figure 26.3

Sample Use Cases

170

AMPS

SOW

55

MSFT

ORCL

39

0
0
0

38

100
200
100

publish_update
C:11=client-A,39=0,55=ORCL,38=100

IBM

Figure 26.3. AMPS Mesage Publish Update

Out-of-Focus (OOF) Processing
Let’s take another look at the original filter used to subscribe to the ORDERS SOW topic. A unique case
exists if an update occurs in which an ORDER record status gets changed to a value other than 0 or ’A’.
One of the key features of AMPS is OOF processing, which ensures that client data is continually kept up-
to-date. OOF processing is the AMPS method of notifying a client that a new message has caused a SOW
record’s state to change, thus informing the client that a message which previously matched their filter
criteria no longer matches or was deleted. For more information about OOF processing, see Chapter 10.

When such a scenario occurs, AMPS won’t send the update over a normal subscription. If OOF processing
is enabled within AMPS by specifying the oof option for this subscription, then updates will occur when
previously matching records no longer match due to an update, expiration, or deletion.

For example, let’s say the order for MSFT has been filled in the market and the update comes into AMPS.
AMPS won’t send the published message to the GUI because the order no longer matches the subscription
filter; AMPS instead sends it as part of an OOF message. This happens because AMPS knows that the
previous matching record was sent to the GUI client prior to the update. Once an OOF message is received,
the GUI can remove the corresponding order from the orders table to ensure that users see only the up-
to-date state of the orders which match their filter.

Sample Use Cases

171

55

MSFT

ORCL

39

2
0
0

38

100
200
100

A:11=client-A,39=2,55=MSFT,38=100

oof(matching)
A:11=client-A,39=2,55=MSFT,38=100

AMPS

SOW

IBM

Figure 26.4. AMPS OOF Processing

Conclusion and Next Steps
In summary, we have shown how a GUI application can use the sow and subscribe command to populate
an order table, which is then continually kept up-to-date. AMPS can create further enhancements, such as
those described below, that improve performance and add greater value to a GUI client implementation.

sow_and_delta subscribe
The first improvement that we can make is to limit redundant data being sent to the GUI, by plac-
ing a sow_and_delta_subscribe command instead of a sow_and_subscribe command. The
sow_and_delta_subscribe command, which works with the FIX and NVFIX message types, can
greatly reduce network congestion as well as decrease parsing time on the GUI client, yielding a more
responsive end-user experience.

With a delta subscription, AMPS Figure 26.3 sends to the subscriber only the values that have changed:
C:39=0 instead of all of the fields that were already sent to the client during the initial SOW query
result. This may seem to make little difference in a single GUI deployment; but it can make a significant

Sample Use Cases

172

difference in an AMPS deployment with hundreds of connected GUI clients that may be running on a
congested network or WAN.

TopN and Stats

We can also improve client-side data utilization and performance by using a TopN query limiter with a
stats acknowledgment, which protects the GUI from over-subscription.

For example, we may want to put a 10,000 record limit on the initial query response, given that users rarely
want to view the real-time order state for such a large set. If a TopN value of 10000 and an AckType of
stats is used when placing the initial sow and subscribe command, then the GUI client would expect to
receive up to 10,000 records in the query result, followed by a stats acknowledgment.

The stats acknowledgement is useful for tracking how many records matched and how many were sent.
The GUI client can leverage the stats acknowledgment metrics to provide a helpful error to the user.
For example, in a scenario where a query matched 130,000 messages, the GUI client can notify the user
that they may want to refine their content filter to be more selective.

Part V. Appendices

174

Appendix A. AMPS Distribution Layout
This appendix lists layout of the AMPS distribution, with special focus on the binaries present in the
layout. Use this appendix to plan your AMPS deployment.

60East recommends that all AMPS deployments contain the full contents of the /bin and /lib direc-
tories. For development installations that are extending the AMPS server, your installation should contain
the /api and /sdk directories (as well as the AMPS Server SDK, available as a separate download from
the 60East web site).

The AMPS distribution contains the following items at the top level:

Table A.1. AMPS Distribution Contents

Item Description

/api Headers for the internal functions provided to AM-
PS modules by the AMPS server.

/bin AMPS binaries: the AMPS server, daemon deploy-
ment scripts, AMPS utilities, and spark.

/docs AMPS base documentation. Current versions of the
documentation and additional guides are available
from the 60East website.

HISTORY Revision history for AMPS releases, containing in-
formation on changes for each version of AMPS.

/lib Libraries used by the AMPS binary.

LICENSE The AMPS license.
README The README file for AMPS.

/sdk Headers used for modules that extend AMPS.

A.1. /bin directory
Table A.2. AMPS /bin directory Contents

Item Description

amps_bio_perf_test Diagnostic tool for testing the performance of I/O
systems.

amps_client_ack_dump Utility for showing the contents of the AMPS
client.ack file, containing persistent per-client infor-
mation.

ampsErr Utility for looking up details on AMPS log file
items.

ampServer The AMPS server binary.

AMPS Distribution Layout

175

Item Description

ampServer-compat The downward compatible version of the AMPS
server binary. This version avoids using some of the
hardware capabilities present in newer architecture.

amps-init-script Part of the AMPS service installation. This script is
installed into the init.d directory when the AMPS
service is installed.

amps_journal_dump Utility for extracting the contents of AMPS transac-
tion log journal files.

amps_mt_perf_test Diagnostic tool for performance testing of the AM-
PS engine parsing infrastructure.

amps_sow_test Utility for extracting the contents of AMPS SOW
files.

amps_upgrade Utility for upgrading data files from previous ver-
sions of AMPS to the current version.

install-amps-daemon.sh Installation script for installing AMPS as a Linux
service.

/lib Directory containing the libraries used by the
spark utility.

spark Utility that provides a command-line interface to
AMPS.

uninstall-amps-daemon.sh Installation script for removing the AMPS Linux
service from the system.

/sdk Headers used for modules that extend AMPS.

176

Glossary of AMPS Terminology
acknowledgement a networking technique in which the receiver of a message is responsible

for informing the sender that the message was received

conflated topic a copy of a SOW topic that conflates updates on a specified interval. This
helps to conserve bandwidth and processing resources for subscribers to
the conflated topic.

conflation the process of merging a group of messages into a single message. e.g.
when sending acknowledgment messages for a group of sequential mes-
sages, sending only the most recent message can be used to conflate
all messages which have outstanding acknowledgments waiting to be
processed.

filter a text string that is used to match a subset of messages from a larger set
of messages.

message expiration the process where the life span of records stored are allowed limited.

message type the data format used to encapsulate messages

oof (out of focus) the process of notifying subscribing clients that a message which was pre-
viously a result of a SOW or a SOW subscribe filter result has either ex-
pired, been deleted from the SOW or has been updated such that it no longer
matches the filter criteria.

replication the process of duplicating the messages stored into an AMPS instance for
the purpose of enabling high availability features.

replication source an instance of AMPS which is the primary recipient of a published message
which are then sent out to a replication destination.

replication destination the recipient of replicated messages from the replication source.

slow client a client that is over-subscribed and being sent messages at a rate which is
faster than it can consume.

SOW (State of the World) the last value cache used to store the current state of messages belonging
to a topic.

topic a label which is affixed to every message by a publisher which used to
aggregate and group messages.

transport the network protocol used to to transfer messages between AMPS sub-
scribers, publishers and replicas.

transaction log a history of all messages published which can be used to recreate an up to
date state of all messages processed.

view a data relation which is constructed from the records of a SOW topic.

177

Index
Symbols
60East Technologies, 6

A
ack, 71
Actions, 116
admin permission, 159
Admin view, 8
Aggregate functions, 77

null values, 78
aggregation, 74
Aggregation, 77
AMPS

basics, 7
capacity, 145
Conflated Topic, 72
events, 105
installation, 7
internal topics, 105
logging, 94
operation and deployment, 145
organization, 3
queries, 49
starting, 7
state, 41
topics, 19, 105
upgrade, 151
utilities, 110
Views, 74

AMPS binaries, 174
AMPS ClientStatus, 105
AMPS messages, 28
AMPS SOWStats, 106
ampserr, 104
ampServer, 174
amps_upgrade, 110
authentication, 157
authenticator, 160
Availability, 127
AVG, 77, 77

B
Basics, 7
BEGINS WITH, 35
Bookmark Subscription

bookmark, 86
content filter, 88
datetime, 87
EPOCH, 86
NOW, 86

bookmark subscriptions, 85
Bookmarks, 85

C
Caching, 41
Capacity planning, 145
capacity planning

cpu, 148
memory, 145
network, 148
storage, 146

Client
status, 105

Client events, 105
client offlining

tuning, 155
ClientBufferThreshold

tuning, 155
ClientMaxBufferThreshold

tuning, 155
ClientOfflineThreshold

tuning, 155
ClientStatus, 105
Command

delta publish, 66
oof, 59

Configuration
admin, 111
monitoring interface, 111

Conflated Topic, 72
conflation, 72
Content filtering, 31

IS NULL, 36
NaN, 36
NULL, 36

CorrelationId, 29
COUNT, 77, 78
current time, 37

D
daemon, 91
default actions, 117
delta, 66
Deployment, 145

Index

178

distribution layout, 174

E
ENDS WITH, 35
Engine

statistics, 106
entitlement, 158
Error categories, 102
Errors

ampserr, 104
error categories, 102

Event topics, 105
event topics

persisting to SOW, 107
Events, 105
Extracting records, 49

F
FileName

SOW/TopicDefinition, 44
Filters, 31
Functions

aggregate, 77
aggregate null values, 78

H
header fields

custom, 30
heartbeat, 143
High availability, 127

heartbeat, 143
replication, 131
transaction log, 83

High Availability
durable subscriptions, 142
guaranteed publishing, 141

Highlights, 2
historical queries, 85
historical SOW

enabling, 46

I
identifiers, 31
incremental message update, 66
indexing SOW topics, 43
installation, 7
INSTR, 35
Internal event topics, 105

J
joins, 74

L
Last value cache, 41
Logging, 94
logon permission, 158

M
MAX, 78
Memory, 145
message expiration, 46
Message expiration, 56
Message Replay, 83
Message types, 22

BSON, 22
composite, 22
FIX, 22
JSON, 22
NVFIX, 22
XML, 22

MIN, 78
Minidump, 156
Monitoring interface, 111, 111

configuration, 111
host, 111
instance, 111
output formatting, 113

CSV, 113
JSON, 114
RNC, 115
XML, 113

time range selection, 112
MOST_RECENT bookmark value, 87

N
NaN

in AMPS expressions, 36
NULL

in AMPS expressions, 36
using IF to replace with value, 36

Null values, 78

O
OOF, 59

use case, 170
Operating systems, 3
Operation, 145

Index

179

Operation and deployment
minidump, 156
slow clients, 153

operations
client offlining, 155

Out of focus, 59
use case, 170

overview, 2

P
permissions

admin, 159
logon, 158
replication, 158
topic, 159

Platforms, 3
Playback, 83
Pub/sub, 19
Publish, 19
Publish and subscribe, 19

Q
Query

filters, 31

R
raw strings, 40
Reason, 30
RecordSize, 47
Regular expressions, 20

raw strings, 40
topics, 20

replacing filter, 22
Replay, 83
Replication, 127
replication, 131

benefits, 135
compression, 136
configuration, 132

replication_logon permission, 158
reserved signals

SIGQUIT, 118

S
securing AMPS

enforcing permissions, 158
verifying identity, 157

SIGHUP, 118
SIGINT, 117

SIGQUIT, 118
SIGTERM, 117
SIGUSR1, 117
SIGUSR2, 117
Slow clients, 143, 153
SOW, 41

configuration, 44
content filters, 31
hash index, 43
queries, 42
queryfilters, 31
RecordSize, 47
statistics, 106
storage requirements, 146
topic definition, 44
use case, 168

SOW events, 105
SOW keys

user generated, 42
SOW queries, 49
SowKey, 29
spark, 10

ping, 17
publish, 12
sow, 13
sow_and_subscribe, 15
sow_delete, 16
subscribe, 14

spark utility, 8
starting, 7
State of the World (SOW), 41

events, 105
example of query and subscription, 168

Statistics
SOW, 106

Status, 29
storage, 41
Subscribe, 19
subscriptions

bookmark, 85
SUM, 77, 78
Support, 5

channels, 6
technical, 5

Supported platforms, 3

T
Technical support, 5
Timestamp, 30

Index

180

topic permission, 159
Topic Replicas, 72
Topics

ClientStatus, 105, 105
intro, 19
regular expressions, 20
SOWStats, 106

Transaction log, 83
Transaction Log

administration, 88
Bookmarks, 85
configuration, 84
pruning, 88

Transactions, 83, 127
troubleshooting

disconnected clients, 163
error categories, 102
examining logs, 161
planning, 161
replication log messages, 162
understanding error messages, 104

U
UNIX_TIMESTAMP, 37
unparsed payload, 25
upgrade, 151
Utilities, 110

ampserr, 110
spark, 10

V
Views, 74

W
Web console, 111

X
XPath syntax, 31

	Advanced Message Processing System (AMPS)
	Table of Contents
	Part I. Introduction and Overview
	Chapter 1. Introduction to 60East Technologies AMPS
	1.1. Product Overview
	1.2. Software Requirements
	1.3. Organization of this Manual
	1.4. Document Conventions
	1.5. Obtaining Support
	Support Steps
	Contacting 60East Technologies Support

	Chapter 2. Getting Started
	2.1. Installing AMPS
	2.2. Starting AMPS
	2.3. Admin View of the AMPS Server
	2.4. Interacting with AMPS Using Spark
	2.5. Next Steps

	Chapter 3. Spark
	3.1. Getting help with spark
	3.2. Spark Commands
	publish
	Options
	Examples

	sow
	Options
	Examples

	subscribe
	Options
	Examples

	sow_and_subscribe
	Options
	Examples

	sow-delete
	Options
	Examples

	ping
	Options
	Examples

	Part II. Understanding AMPS
	Chapter 4. Publish and Subscribe
	4.1. Topics
	Regular Expressions

	4.2. Filtering Subscriptions By Content
	Replacing the Content Filter on a Subscription

	4.3. Message Types
	Default Message Types
	Composite Messages
	Configuring Composite Message Types
	Content Filtering with Composite Message Types
	composite-global

	composite-local
	Choosing A Composite Type

	Loading Additional Message Types

	4.4. Messages in AMPS
	Introduction to AMPS Headers

	Chapter 5. Content Filtering
	5.1. Syntax
	Identifiers
	Literals
	Logical Operators
	Arithmetic Operators
	Comparison Operators
	Conditional Operators

	NULL, NaN and IS NULL
	Working With Substrings
	Utility Functions

	Chapter 6. Regular Expressions
	6.1. Examples
	Raw Strings
	Topic Regular Expressions

	Chapter 7. State of the World (SOW)
	7.1. How Does the State of the World Work?
	7.2. Queries
	7.3. SOW Keys
	AMPS-Generated SOW Keys
	User-Generated SOW Keys

	7.4. SOW Indexing
	7.5. Configuration

	Chapter 8. SOW Queries
	8.1. SOW Queries
	8.2. Historical SOW Queries
	Window and Granularity
	Message Sequence Flow

	8.3. SOW Query-and-Subscribe
	Historical SOW Query and Subscribe
	Replacing Subscriptions with SOW and Subscribe

	8.4. SOW Query Response Batching
	8.5. Configuring SOW Query Result Sets

	Chapter 9. SOW Message Expiration
	9.1. Usage
	Topic Expiration
	Message Expiration

	9.2. Example Message Lifecycle
	Recovery and Expiration

	Chapter 10. Out-of-Focus Messages (OOF)
	10.1. Usage
	10.2. Example
	Client-Side Filtering in a sow_and_subscribe Command
	AMPS Filtering in a sow_and_subscribe command
	OOF Processing in a sow_and_subscribe command

	Chapter 11. Delta Messaging
	11.1. Delta Subscribe
	Using Delta Subscribe
	Options for Delta Subscribe
	Identifying Changed Records
	Delta Subscribe Support

	11.2. Delta Publish
	Using Delta Publish
	Delta Publish Support

	Chapter 12. Message Acknowledgement
	Chapter 13. Conflated Topics
	13.1. Configuration

	Chapter 14. Aggregating Data with View Topics
	14.1. Understanding Views
	14.2. Creating Views and Aggregations
	Single Topic Aggregation: UnderlyingTopic
	Multiple Topic Aggregation: Join
	Setting the Message Type
	Defining Projections
	Grouping

	14.3. Functions
	Aggregation Functions

	14.4. Examples
	Simple Aggregate View Example
	Multiple Topic Aggregate Example

	Chapter 15. Transactional Messaging and Bookmark Subscriptions
	15.1. Transaction Log
	Understanding Message Persistence
	Configuring a Transaction Log
	Bookmark Subscription
	Recovery With an Epoch Bookmark
	Bookmark Replay From NOW
	Bookmark Replay With a Bookmark
	Bookmark Replay From a Moment in Time
	Content Filtering
	Using the 'live' Option for a Subscription

	Managing Journal Files

	Part III. Deployment, Monitoring, and Administration
	Chapter 16. Running AMPS as a Linux Service
	16.1. Installing the Service
	16.2. Configuring the Service
	AMPS Logging
	File Paths
	Configuration File Location

	16.3. Managing the Service
	16.4. Uninstalling the Service
	16.5. Upgrading the Service

	Chapter 17. Logging
	17.1. Configuration
	17.2. Log Messages
	17.3. Log Levels
	17.4. Logging to a File
	Selecting a Filename
	Log File Rotation
	Examples

	17.5. Logging to a Compressed File
	Example

	17.6. Logging to the Console
	Example

	17.7. Logging to Syslog
	Example

	17.8. Error Categories
	17.9. Looking Up Errors with ampserr

	Chapter 18. Event Topics
	18.1. Client Status
	18.2. SOW Statistics
	18.3. Persisting Event Topic Data

	Chapter 19. Utilities
	Chapter 20. Monitoring Interface
	20.1. Configuration
	20.2. Time Range Selection
	20.3. Output Formatting
	XML Document Output
	CSV Document Output
	JSON Document Output
	RNC Document Output

	Chapter 21. Automating Administration With Actions
	21.1. Running an Action on a Schedule
	21.2. Running an Action in Response to a Signal
	Default Signal Actions

	21.3. Running an Action on Startup or Shutdown
	21.4. Rotate Log Files
	21.5. Manage Statistics Files
	21.6. Manage Journal Files
	21.7. Removing Files
	21.8. Manage SOW Contents
	21.9. Create Mini-Dump
	21.10. Manage Security
	21.11. Manage Transports
	21.12. Manage Replication
	21.13. Shut Down AMPS
	21.14. Do Nothing
	21.15. Action Configuration Examples
	Archive Files Older Than One Week, Every Saturday
	Disable and Re-enable Security on Signal

	Chapter 22. Replication and High Availability
	22.1. Overview of AMPS High Availability
	22.2. High Availability Scenarios
	Failover Scenario
	Geographic Replication
	Geographic Replication with High Availability

	22.3. AMPS Replication
	Configuration
	Benefits of Replication
	Sync vs Async
	Replication Compression
	Destination Server Failover
	Back Replication
	Passthrough Replication
	Guarantees on ordering
	Downgrading an AMPS instance
	Replication Security
	Maximum downstream destinations

	22.4. High Availability
	Guaranteed Publishing
	Durable Publication and Subscriptions
	Heartbeat in High Availability
	Slow Client Management
	Message Ordering and Replication

	Chapter 23. Operation and Deployment
	23.1. Capacity Planning
	Memory
	Storage
	CPU
	Network
	NUMA Considerations

	23.2. Linux Operating System Configuration
	ulimit
	/proc/sys/fs/aio-max-nr
	/proc/sys/fs/file-max

	23.3. Upgrading an AMPS Installation
	Upgrading AMPS Data Files

	23.4. Best Practices
	Monitoring
	SOW Parameters
	Slow Clients
	Slow Client Offlining for Large Result Sets

	Minidump

	Chapter 24. Securing AMPS
	24.1. Authentication
	24.2. Entitlement
	24.3. Providing an Identity for Outbound Connections (Authenticator)

	Chapter 25. Troubleshooting AMPS
	25.1. Planning for Troubleshooting
	25.2. Finding Information in the Log
	25.3. Reading Replication Log Messages
	25.4. Troubleshooting Disconnected Clients
	Locating the Reason for Disconnection

	Part IV. Building Applications with AMPS
	Chapter 26. Sample Use Cases
	26.1. View Server Use Case
	Setup
	SOW Query and Subscription
	Out-of-Focus (OOF) Processing
	Conclusion and Next Steps
	sow_and_delta subscribe
	TopN and Stats

	Part V. Appendices
	Appendix A. AMPS Distribution Layout
	A.1. /bin directory

	Glossary of AMPS Terminology

	Index

