Advanced Message Processing
System (AMPS) Evaluation Guide

TECHNOLOGIES

@ EOEast

Advanced Message Processing System (AMPS) Evaluation Guide
4.3

Publication date Oct 29, 2015
Copyright © 2015

All rights reserved. 60East, AMPS, and Advanced Message Processing System are trademarks of 60East Technologies, Inc. All other trademarks
are the property of their respective owners.

Table of Contents

1. Introduction to 60East Technologies AMPScccoiiiiiiiiiiieiiiineeeee e e 1
1.1, PrOQUCE OVEIVIBW ...eeeiiiiiiiieiieiiiiiieeeee e e e ettt e e e s ettt e e e e s e saibe et eeeeeeseasbeeneeeeessananns 1
1.2, Software REeQUITEINIEILScoeevereieieieieieieieieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseseeesesesesesesesesasasssasasanenes 2
1.3. DOCUMENt CONVENTIONS .evvvuuuueeeeerritreniuiaeeeeeretttenuuaeeeeeeeeremunassseeeesemesmnnssseeeesseemmnnesseeeee 2
B @ o] 110N e T 110] 0 T0) o A 3
2. GetiNg StATTeA ...ceeevviiiiiiiiiiiiiiiei eaeaeeas 5
2.1, INStAlliNG AMPS ..ottt bttt bbbttt bbbt ts bt n bt st nbnnnnnnns 5
2.2, Starting AMPS ..ottt e e e ettt e e e e e et eetbba e e eaeeaaes 5
2.3. Admin View Of the AMPS SEIVETuuuuuuiiiuiiiiiiiiiiiiiiretiteteieeerereeeressaeaarerereneraeea——————— 6
2.4. Interacting with AMPS USING SPATKeeeeeieieieieieieieieeeeeie e 6
2.5. JSON Messages - A QUICK PTiIMeTcccoeeveieeiieieieieeeeeeeeeeeeeee e 6
3. Publish and SUDSCIIDEcccoeiiiiiiiiiieiiee ettt e e e e eeee e 8
3.1 TOPICS eeeeietiiiiieee e e ee ettt e e e e e et ettt e e e e eeetetbba e e e e eeeteabbaa e e e eeeteebbba e e e eeetaatbbaaeeeeeraees 8
3.2. Filtering Subscriptions By CONEENLueeieeieriiiiiiiiiieeeereeiiiiiieeeeeeeereiereeeeeeeeeseeereeeeees 10
4. State of the WOTIA (SOW) ..eeiiiiiiee et e et e e e e e e e e ettt e e e e e eeseassaaaaeeaaeenes 12
4.1. How Does the State of the World Work?coooiiiiiiiiiiiii, 12
O @1 1<) o (<R 13
TG T @) 1Vt [;110 s E OO PSSP PPPPPPPPPTP 13
5. AdVaAnCed TOPICS .eeevereriiiiiiiiiiiitiiitiitetttetettteteettteetetetttettteetttteteteeetetatetatetettttteeeterereretereerrereereeee 19
5.1, LOBEBING ..eiieiiiiiiiiiie ettt e e e ettt s e e e e ettt bbb e e e e e et ettt e e e e e e et tbbb e e e e eetaabbaa s 19
5.2. MESSAZE REPIAY ...eeveiiiiiiiiiiiiiiiiiiititieteiteeeeteteteeeteeeeeeereeetet et eae e ettt et ettt aatttteretetararerarereraaes 19
5.3. Conflated TOPICS .ievvveiiiiiiiiiiiiiiiiiiieiiieieeeeeeee et te et e e e e e e et e ee e et eeeteteteteeetetereteteeereeeeerereees 19
5.4. View Topics and AGGIeGatiOnueuuuuuuururuuurerurueerereeseesesssnsesssesesenesseesesesnnaneeaee——. 20
5.5. HiStOTiCal SOW QUETYevvrrrireririririrerirererereetrteeeeeereeererereeerereeeseseeeeeseresesaeereaeraseresararanes 20
5.6, UHIEIES +eeeeeeieiiiiitieee ettt ettt e e ettt e e e e e sttt e e e e e s st eeeeeeeeseeaareeaeeas 20
5.7. MONItOTING INTETTACEuueuiiiiiiiiiiii bbb ebsbesesnne 20
5.8. High AVailability ..eeceerieiiiiiiiiiieeeeeeee ettt e e e e e e e e 21
B. INEXE STEPS .uuueeeieiitiiiiiiie et ettt ettt eee e e e eeettttta e e e eeeetetateaaae e eeeeteesssanassseeeseesssnnanssseeereesssnnannsseeerees 22
6.1. Operation and DeplOYIMENTceeitiiiiiriiiiiiiiieieieireeeeeeeeeeeeeeeerererererererererererrearaerrerer. 22
6.2. Application DeVEIOPIMENTuuuuuuuuiiii e as 22
INAEX . eeeeeeeee ettt e e ettt e e e e e ettt e e e e e e e bbbt e et e e s e e b bt teeeeeeeeeaaanee 23

1ii

Chapter 1. Introduction to 60East
Technologies AMPS

Thank you for choosing the Advanced Message Processing System (AMPS™) from 60East Technolo-
gies™, AMPS is more than a publish and subscribe system. It is a feature-rich platform that enables you
to easily build data intensive applications that provide previously unattainable low latency and high per-
formance. AMPS combines a set of capabilities that cut across traditional component divisions. 60East
designed the capabilities based on the needs of some of the most demanding data-intensive applications
on the planet, and engineered the capabilities to work together seamlessly and provide the kind of perfor-
mance and latency that those applications demand.

1.1. Product Overview

AMPS, the Advanced Message Processing System, is built around an incredibly fast messaging engine
that provides traditional publish-subscribe messaging and a wide array of advanced messaging features.
AMPS combines the capabilities necessary for scalable high-throughput, low-latency messaging in real-
time deployments such as in financial services. AMPS goes beyond basic messaging to include advanced
features such as high availability, historical replay, aggregation and analytics, content filtering and con-
tinuous query, last value caching, and more.

Furthermore, AMPS is designed and engineered specifically for next generation computing environments.
The architecture, design and implementation of AMPS allows the exploitation of parallelism inherent
in emerging multi-socket, multi-core commodity systems and the low-latency, high-bandwidth of 10Gb
Ethernet and faster networks. AMPS is designed to detect and take advantage of the capabilities of the
hardware of the system on which it runs.

AMPS does more than just route and deliver messages. AMPS was designed to lower the latency in
real-world messaging deployments by focusing on the entire lifetime of a message from the message's
origin to the time at which a subscriber takes action on the message. AMPS considers the full message
lifetime, rather than just the "in flight" time, and allows you to optimize your applications to conserve
network bandwidth and subscriber CPU utilization -- typically the first elements of a system to reach the
saturation point in real messaging systems.

AMPS offers both topic and content based subscription semantics, which makes it different than most
other messaging platforms. Some of the highlights of AMPS include:

+ Topic and content based publish and subscribe
* Client development kits for popular programming languages such as Java, C#, C++, C and Python

* Built in support for FIX, NVFIX, JSON, BSON and XML messages. AMPS also supports uninterpreted
binary messages, and allows you to create composite message types from existing message types.

« State-of-the-World queries

* Historical State-of-the-World queries

Introduction to 60East Technologies AMPS

+ Easy to use command interface

» Full PERL compatible regular expression matching

+ Content filters with SQL92 WHERE clause semantics
* Built-in latency statistics and client status monitoring

» Advanced subscription management, including delta publish and subscriptions and out-of-focus noti-
fications

* Basic CEP capabilities for real-time computation and analysis

» Aggregation within topics and joins between topics, including joins between different message types
* Replication for high availability

 Fully queryable transaction log

» Message replay functionality

» Extensibility API for adding message types, transports, authentication, and entitlement functionality

1.2. Software Requirements

AMPS is supported on the following platforms:

» Linux 64-bit (2.6 kernel or later) on x86 compatible processors

While 2.6 is the minimum kernel version supported, AMPS will select the most efficient
mechanisms available to it and thus reaps greater benefit from more recent kernel and CPU
versions.

1.3. Document Conventions

This manual is an introduction to the 60East Technologies AMPS product. It assumes that you have a
working knowledge of Linux, and uses the following conventions.

Table 1.1. Documentation Conventions

Construct Usage

text standard document text

code inline code fragment

variable variables within commands or configuration
@ usage tip or extra information

Introduction to 60East Technologies AMPS

Construct Usage

2 usage warning

required required parameters in parameter tables

optional optional parameters in parameter tables

Additionally, here are the constructs used for displaying content filters, XML, code, command line, and
script fragments.

(exprl = 1) OR (expr2 = 2) OR (expr3 = 3) OR (expr4 = 4) OR (expr5 =
5) OR (expr6 = 6) OR (expr7 = 7) OR (expr8 = 8)

Command lines will be formatted as in the following example:

find . -name *.java

1.4. Obtaining Support

For an outline of your specific support policies, please see your 60East Technologies License Agreement.
Support contracts can be purchased through your 60East Technologies account representative.

Support Steps

You can save time if you complete the following steps before you contact 60East Technologies Support:

1. Check the documentation. The problem may already be solved and documented in the User’s Guide or
reference guide for the product. 60East Technologies also provides answers to frequently asked support
questions on the support web site at http://support.crankuptheamps.com.

2. Isolate the problem.

If you require Support Services, please isolate the problem to the smallest test case possible. Capture
erroneous output into a text file along with the commands used to generate the errors.

3. Collect your information.
* Your product version number.
* Your operating system and its kernel version number.
» The expected behavior, observed behavior and all input used to reproduce the problem.

+ Submit your request.

http://support.crankuptheamps.com

Introduction to 60East Technologies AMPS

« If you have a minidump file, be sure to include that in your email to
crash@crankuptheamps.com.

The AMPS version number used when reporting your product version number follows a format listed
below. The version number is composed of the following:

MAJOR .MINOR.MAINTENANCE .HOTFIX.TIMESTAMP . TAG

Each AMPS version number component has the following breakdown:

Table 1.2. Version Number Components

Component Description

MAJOR Increments when there are changes in functionality, file formats, configs, or
deprecated functionality.

MINOR Ticks when new functionality is added.

MAINTENANCE Increments with standard bug fixing, maintenance, small features and en-
hancements.

HOTFIX A release for a critical defect impacting a customer. A hotfix release is de-

signed to be 100% compatible with the release it fixes (that is, a release with
same MAJOR.MINOR.MAINTENANCE version)

TIMESTAMP Proprietary build timestamp.

TAG Identifier that corresponds to precise code used in the release.

Contacting 60East Technologies Support

Please contact 60East Technologies Support Services according to the terms of your 60East Technologies
License Agreement.

Support is offered through the United States:

Toll-free: (888) 206-1365

International: (702) 979-1323

FAX: (888) 216-8502

Web: http://www.crankuptheamps.com
E-Mail: sales@crankuptheamps.com
Support: support@crankuptheamps.com

mailto:crash@crankuptheamps.com
http://www.crankuptheamps.com
mailto:sales@crankuptheamps.com
mailto:support@crankuptheamps.com

Chapter 2. Getting Started

This chapter is for users who are new to AMPS and want to get up and running on a simple instance of
AMPS. This chapter will walk new users through the file structure of an AMPS installation, configuring
a simple AMPS instance and running the demonstration tools provided as part of the distribution to show
how a simple publisher can send messages to AMPS.

2.1. Installing AMPS

To install AMPS, unpack the distribution for your platform where you want the binaries and libraries to
be stored. For the remainder of this guide, the installation directory will be referred to as SAMPSDIR as
if an environment variable with that name was set to the correct path.

Within $AMPSDIR the following sub-directories listed in Table 2.1.

Table 2.1. AMPS Distribution Directories

Directory Description

api Include files for modules that work directly with the AMPS server binary
bin AMPS engine binaries and utilities

docs Documentation

lib Library dependencies

sdk Include files for the AMPS extension API

@ AMPS client libraries are available as a separate download from the AMPS web site. See the

AMPS developer page at http://www.crankuptheamps.com/developer to download the latest
libraries.

2.2. Starting AMPS

The AMPS Engine binary is named ampServer and is found in SAMPSDIR/b7in. Start the AMPS
engine with a single command line argument that includes a valid path to an AMPS configuration file. For
example, you can start AMPS with the demo configuration as follows:

SAMPSDIR/bin/ampServer $AMPSDIR/demos/amps_config.xml

AMPS uses the current working directory for storing files (logs and persistence) for any relative

@ paths specified in the configuration. While this is important for real deployments, the demo
configuration used in this chapter does not persist anything, so you can safely start AMPS from
any working directory using this configuration.

@ On older processor architectures, ampServer will start the ampServer-compat binary.

The ampServer-compat binary avoids using hardware instructions that are not available
on these systems.

http://www.crankuptheamps.com/developer

Getting Started

If your first start-up is successful, you should see AMPS display a simple message similar to the following
to let you know that your instance has started correctly.

AMPS 4.0.0.0 - Copyright (c) 2006 - 2014 60East Technologies, Inc.
(Built: Nov 16 2014 13:53:41)

For all support questions: support@crankuptheamps.com

If you see this, congratulations! You have successfully cranked up the AMPS!

2.3. Admin View of the AMPS Server

When AMPS has been started correctly, you can get an indication if it is up or not by connecting to its
admin port with a browser at http://<host>:<port> where <host> is the host the AMPS instance
is running on and <port> is the administration port configured in the configuration file. When successful,
a hierarchy of information regarding the instance will be displayed. If you've started AMPS using the
sample configuration file, try connecting to http://localhost:8085. For more information on
the monitoring capabilities, please see AMPS Monitoring Reference Guide, available from the 60East
documentation site at http://docs.crankuptheamps.com/.

2.4. Interacting with AMPS Using Spark

AMPS provides the spark utility as a command line interface to interacting with an AMPS server.
spark provides many of the capabilities of the AMPS client libraries through this interface. The utili-
ty lets you execute commands like ' subscribe', 'publish’', 'sow', 'sow_and_subscribe'
and 'sow_delete'.

You can read more about spark in the spark chapter of the AMPS User Guide. Other useful tools for
troubleshooting AMPS are described in the AMPS Utilities Guide.

2.5. JSON Messages - A Quick Primer

AMPS includes support for FIX, NVFIX, XML, JSON and BSON messages, as well as the ability to
develop custom message types and to send binary payloads. This section is going to focus on JSON as
the primary message type.

JSON format is a simple, standardized message format. JSON has two basic constructs:

* key / value pairs

* arrays of values

Getting Started

JSON supports hierarchical construction: the value for a key can be a single value, an array of values, or
another set of key/value pairs. For example, the following JSON message includes two nested sets of key
value pairs. Notice that a key only needs to be unique within each set of values -- the name value for the
ship does not conflict with the name value for the character.

{ "id" : 73, "character"
{ "name" : "Han Solo",
"occupation" : "smuggler",
llSh—i pll
{ "name" : "Millennium Falcon",
"speed" : ".5 past light speed",
"cargo"

["widgets", "baskets", "spice"]
I
I
ks

Many AMPS applications use JSON as the payload. In addition, the amps protocol used by most AMPS
applications represents commands to AMPS in a JSON-format header. For example, a publish command
might look like:

{"c":"publish","t":"test-topic"}{ "id" : 1, "message" : "Hello,
World!" }

The command to AMPS, using the amps protocol, is a JSON document which contains the header infor-
mation for AMPS -- in this case, a pub 17 sh to the topic test-topic. The header is followed by the
message body, the payload of the command.

While the amps protocol is implemented as JSON, you can use any message type with the amps protocol:
the header for the command will still be JSON, while the body can be in the message type of your choice,
as in the sample below, which publishes to an XML topic:

{ "c":"publish","t":"xml-topic"}<example><id>1</id><message>Hello,
world!</message></example>

The AMPS client libraries create and parse AMPS headers. For example, the pub 17 sh method in the
AMPS client libraries creates the appropriate header for a publish command based on the provided para-
meters.

Your applications use the Message and Command interfaces of the AMPS client libraries to work with
the AMPS headers. There is no need for your application to parse or serialize the AMPS headers directly.

The AMPS client libraries handle creating and parsing AMPS headers. They do not parse or
@ interpret the payload data on received Message, instead returning the payload as a string.

Chapter 3. Publish and Subscribe

AMPS is a publish and subscribe message delivery system, which routes messages from publishers to
subscribers. “Pub/Sub” systems, as they are often called, are a key part of most enterprise message buses,
where publishers broadcast messages without necessarily knowing all of the subscribers that will receive
them. This decoupling of the publishers from the subscribers allows maximum flexibility when adding
new data sources or consumers.

SUBSCRIBER

Topic: LN_ORDERS

e

PUBLISHER
AMPS .| SUBSCRIBER 2

Topic: LN_ORDERS f ST —_ "
Ticker: IBM]Price:125 Filter: Ticker == "IBM

\ 4

SUBSCRIBER

Filter: Ticker == "MSFT"

Figure 3.1. Publish and Subscribe

AMPS can route messages from publishers to subscribers using a topic identifier and/or content within the
message's payload. For example, in Figure 3.1, there is a Publisher sending AMPS a message pertaining
to the LN_ORDERS topic. The message being sent contains information on Ticker “IBM” with a Price of
125, both of these properties are contained within the message payload itself (i.e., the message content).
AMPS routes the message to Subscriber 1 because it is subscribing to all messages on the LN_ORDERS
topic. Similarly, AMPS routes the message to Subscriber 2 because it is subscribed to any messages having
the Ticker equal to “IBM”. Subscriber 3 is looking for a different Ticker value and is not sent the message.

3.1. Topics

A topic is a string that is used to declare a subject of interest for purposes of routing messages between
publishers and subscribers. Topic-based Publish and-Subscribe (e.g., Pub/Sub) is the simplest form of Pub/
Sub filtering. All messages are published with a topic designation to the AMPS engine, and subscribers
will receive messages for topics to which they have subscribed.

Publish and Subscribe

SUBSCRIBER 1

Topic: LN_ORDERS

PUBLISHER 1 \
Topic: LN_ORDERS
AMPS | SUBSCRIBER 2
> Topic: .*_ORDERS
PUBLISHER 2 /
Topic: NY_ORDERS
SUBSCRIBER 3

Topic: NY_ORDERS

Figure 3.2. Topic Based Pub/Sub

For example, in Section 3.1, there are two publishers: Publisher 1 and Publisher 2 which publish to the
topics LN_ORDERS and NY_ORDERS, respectively. Messages published to AMPS are filtered and routed
to the subscribers of a respective topic. For example, Subscriber 1, which is subscribed to all messages for
the LN_ORDERS topic will receive everything published by Publisher 1. Subscriber 2, which is subscribed
to the regular expression topic " . *_ORDERS" will receive all orders published by Publisher 1 and 2.

Regular expression matching makes it easy to create topic paths in AMPS. Some messaging systems re-
quire a specific delimiter for paths. AMPS allows you the flexibility to use any delimiter. However, 60East
recommends using characters that do not have significance in regular expressions, such as forward slashes.
For example, rather than using northamer-ica.orders as a path, use northamerica/orders.

Regular Expressions

With AMPS, a subscriber can use a regular expression to simultaneously subscribe to multiple topics that
match the given pattern. This feature can be used to effectively subscribe to topics without knowing the
topic names in advance. Note that the messages themselves have no notion of a topic pattern. The topic
for a given message is unambiguously specified using a literal string. From the publisher’s point of view,
it is publishing a message to a topic; it is never publishing to a topic pattern.

Subscription topics are interpreted as regular expressions if they include special regular expression char-
acters. Otherwise, they must be an exact match. Some examples of regular expressions within topics are
included in Table 3.1.

Publish and Subscribe

Table 3.1. Topic Regular Expression Examples

Topic Behavior

Mrade$ matches only “trade”.

Aelient.x matches “client”, “clients”, “client001”, etc.
.xtrade. * matches “NYSEtrades”, “ICEtrade”, etc.

For more information regarding the regular expression syntax supported within AMPS, please see the
Regular Expression chapter in the AMPS User Guide.

AMPS can be configured to disallow regular expression topic matching for subscriptions. See the AMPS
Configuration Guide for details.

3.2. Filtering Subscriptions By Content

One thing that differentiates AMPS from classic messaging systems is its ability to route messages based
on message content. Instead of a publisher declaring metadata describing the message for downstream
consumers, the publisher can simply publish the message content to AMPS and let AMPS examine the
native message content to determine how best to deliver the message.

The ability to use content filters greatly reduces the problem of oversubscription that occurs when topics
are the only facility for subscribing to message content. The topic space can be kept simple and content
filters used to deliver only the desired messages. The topic space can reflect broad categories of messages
and does not have to be polluted with metadata that is usually found in the content of the message. In
addition, many of the advanced features of AMPS such as out-of-focus messaging, aggregation, views,
and SOW topics rely on the ability to filter content.

Content-based messaging is somewhat analogous to database queries that include a WHERE clause. Topics
can be considered tables into which rows are inserted (or updated). A subscription is similar to issuing
a SELECT from the topic table with a WHERE clause to limit the rows which are returned. Topic-based
messaging is analogous to a SELECT on a table with no limiting WHERE clause.

AMPS uses a combination of XPath-based identifiers and SQL-92 operators for content filtering. Some
examples are shown below:

Example Filter for a JSON message

(/Order/Instrument/Symbol = 'IBM') AND
(/Order/Px >= 90.00 AND /Order/Px < 91.00)

Example Filter for an XML Message:

(/FIXML/Order/Instrmt/@Sym = *IBM’) AND (/FIXML/Order/@Px

10

Publish and Subscribe

>= 90.00 AND /FIXML/Order/@Px < 91.0)

Example Filter for a FIX Message:

/35 < 10 AND /34 = /9

For more information about how content is handled within AMPS, check out the Content Filtering chapter
in the AMPS User Guide.

Unlike some other messaging systems, AMPS lets you use a relatively small set of topics to
@ categorize messages at a high level and use content filters to retrieve specific data published
to those topics. Examples of good, broad topic choices:

trades, positions, MarketData, Europe, alerts

This approach makes it easier to administer AMPS, easier for publishers to decide which topics
to publish to, and easier for subscribers to be sure that they've subscribed to all relevant topics.

Replacing the Content Filter on a Subscription

AMPS allows you to replace the content filter on an existing subscription. When this happens, AMPS
begins sending messages on the subscription that match the new filter. When an application needs to bring
more messages into scope, this can be more efficient than creating another subscription.

For example, an application might start off with a filter such as the following
/region = 'WesternUS'

The application might then need to bring other regions into scope, for example:
/region IN ('WesternUS', 'Alaska', 'Hawaii')

Replacing a filter is an atomic operation. That is, the application is guaranteed not to miss messages that
are in both the original and replacement filter, and is guaranteed to receive all messages for the new filter
as of the point at which the replacement happens.

11

Chapter 4. State of the World (SOW)

One of the core features of AMPS is the ability to persist the most recent update for each message matching
a topic. The State of the World can be thought of as a database where messages published to AMPS are
filtered into topics, and where the topics store the latest update to a message. Since AMPS subscriptions
are based on the combination of topics and filters, the State of the World (SOW) gives subscribers the
ability to quickly resolve any differences between their data and updated data in the SOW by querying the
current state of a topic, or a set of messages inside a topic.

4.1. How Does the State of the World Work?

Much like a relational database, AMPS SOW topics contain the ability to persist the most recent update
for each message. AMPS identifies a message by using a unique key for the message. The SOW key for a
message is similar to the primary key in a relational database: each value of the key is a unique message.
The first time a message is received with a particular SOW key, AMPS adds the message to the SOW.
Subsequent messages with the same SOW key value update the message.

AMPS assigns a SOW key based on the content of the message. The fields to use for the key are specified in
the SOW topic definition, and consist of one or more XPath expressions. AMPS finds the specified fields

in the message and computes a SOW key based on the name of the topic and the values in these fields.

The following diagrams demonstrate how the SOW works.

ORDERS
-@ Key Symbol Price
key=1; synmbol =M5FT; pri ce=30 |————p| 1 MSFT 30

2 IBM 120
(2
key=2; synbol =I BM pri ce=120

Figure 4.1. A SOW topic named ORDERS with a key definition of /Key

In Figure 4.1, two messages are published where neither of the messages have matching keys existing in
the ORDERS topic, the messages are both inserted as new messages. Some time after these messages are
processed, an update comes in for the MSFT order changing the price from 30 to 35. Since the MSFT order
update has a key field of 1, this matches an existing record and overwrites the existing message containing
the same key, as seen in Figure 4.2.

12

State of the World (SOW)

ORDERS
3 Key Symbol Price
key=1; synbol =MSFT; pri ce=35 p—————p 1 MSFT 360 35
2 IBM 120

Figure 4.2. Updating the MSFT record by matching incoming message keys

By default, state of the world topics are persistent. For persistent topics, AMPS stores the contents of the
state of the world in a dedicated file. This means that the total state of the world does not need to fit into
memory, and that the contents of the state of the world database are maintained across server restarts. You
can also define a transient state of the world topic, which does not store the contents of the SOW to a file.

The state of the world file is separate from the transaction log, and you do not need to configure a trans-
action log to use a SOW. When a transaction log is present that covers the SOW topic, on restart AMPS
uses the transaction log to keep the SOW up to date. When the latest transaction in the SOW is more
recent than the last transaction in the transaction log (for example, if the transaction log has been deleted),
AMPS takes no action. If the transaction log has newer transactions than the SOW, AMPS replays those
transactions into the SOW to bring the SOW file up to date. If the SOW file is missing, AMPS rebuilds
the state of the world by replaying the transaction log from the beginning of the log.

When the state of the world is transient, AMPS does not store the state of the world across restarts. In this
case, AMPS does not synchronize the state of the world with the transaction log when the server starts.
Instead, AMPS tracks the state of the world for messages that occur while the server is running, without
replaying previous messages into the SOW.

4.2. Queries

At any point in time, applications can issue SOW queries to retrieve all of the messages that match a given
topic and content filter. When a query is executed, AMPS will test each message in the SOW against the
content filter specified and all messages matching the filter will be returned to the client. The topic can be
a literal topic name or a regular expression pattern. For more information on issuing queries, please see
the SOW Queries chapter in the AMPS User Guide.

4.3. Configuration

Topics where SOW persistence is desired can be individually configured within the SOW section of the
configuration file. Each topic will be defined with a TopicDefinition section enclosed within SOW.

13

State of the World (SOW)

The AMPS Configuration Reference contains a description of the attributes that can be configured per
topic. TopicMetaData is a synonym for SOW provided for compatibility with previous versions of

AMPS.

Table 4.1. SOW/TopicDefinition

Element

FileName

MessageType

Topic

Key

HashIndex

Description
The file where the State of the World data will be stored.

This element is required for State of the World topics with a Durability of
persistent (the default) because those topics are persisted to the filesystem.
This is not required for State of the World topics with a durability of tran-
sient.

Type of messages to be stored. To use AMPS generated SOW keys, the message
type specified must support content filtering so that AMPS can determine the
SOW key for the message. In this release, AMPS loads these message types that
support content filtering: fix, nvfix, json, bson, and xm1.

The binary message type does not support content filtering. This message
type does not support content filtering, so this message type can only be used
for a SOW when publishers use explict keys.

The name of the SOW topic - all unique messages (see Key) on this topic will
be stored in a topic-specific SOW database.

Specifies an XPath within each message that AMPS will use to determine
whether a message is unique. This element can be specified multiple times to
create a composite key.

A SOW topic can have either a key determined by AMPS, or publishers can
provide the SOW key for a message with each message. 60East recommends
having AMPS determine the key unless your application has specific needs that
make this impractical.

AMPS automatically creates a hash index for the SOW key.

AMPS provides the ability to do fast lookup for SOW records based on specific
fields.

When one or more HashIndex elements are provided, AMPS creates a hash
index for the fields specified in the element. These indexes are created on startup,
and are kept up to date as records are added, removed, and updated.

The HashIndex element contains a Key element for each field in the hash
index.

AMPS uses a hash index when a query uses exact matching for all of the fields
in the index. AMPS does not use hash indexes for range queries or regular ex-
pressions.

AMPS automatically creates a hash index for the SOW key.

14

State of the World (SOW)

Element

RecoveryPoint

Index

RecordSize

InitialSize

IncrementSize

Expiration

Description
For SOW topics that are covered by the transaction log, the point from which to

recover the SOW if the SOW file is removed, or if the SOW topic has tran-
sient duration.

This configuration item allows two values:
* epoch recovers the SOW from the beginning of the transaction log
* now recovers the SOW from the current point in the transaction log

Defaults to epoch.

AMPS supports the ability to precreate memo indexes for specific fields using
the Tndex configuration option.

When one or more Tndex elements are provided, AMPS creates memo index-
es for any field specified in an Index element on startup, before a query that
uses that field runs. Otherwise, AMPS indexes each field the first time a query
uses the field. Adding one or more Index configurations to a TopicDefin-
ition can improve retrieval performance the first time a query that contains
the indexed fields runs for large SOW topics.

Size (in bytes) of a SOW record for this topic.

Default: 512
Initial size (in records) of the SOW database file for this topic.

Default: 2048

Number of records to expand the SOW database (for this topic) by when more
space is required.

Default: 1000

Time for how long a record should live in the SOW database for this topic. The
expiration time is stored on each message, so changing the expiration time in
the configuration file will not affect the expiration of messages currently in the
SOW.

AMPS accepts interval values for the Expiration, using the interval format de-
scribed in the AMPS Configuration Guide section on units, or one of the fol-
lowing special values:

* A value of disabled specifies that AMPS will not process SOW expiration
for this topic, regardless of any expiration value set on the message. In this
case, AMPS saves the expiration for the message, but does not process it. The
value must be set to disabled (the default) if History is enabled for this
topic.

15

State of the World (SOW)

Element

KeyDomain

Durability

History

Window

Granularity

Description

* A value of enabled specifies that AMPS will process SOW expiration for
this topic, with no expiration set by default. Instead, AMPS uses the value set
on the individual messages (with no expiration set for messages that do not
contain an expiration value).

Default: disabled (never expire)

The seed value for SowKeys used within the topic. The default is the topic
name, but it can be changed to a string value to unify SowKey values between
different topics.

For example, if your application has a ShippingAddress SOW and a
CreditRating SOW thatbothuse /customerID asthe SOW key, you can
use a KeyDomain to ensure that the generated SowKey for a given /cus-
tomerId is identical for both SOW topics. This does not affect how AMPS
processes the SOW topics, but can make correlating information from different
SOW topics easier in your application.

Default: the name of the SOW topic

Defines the data durability of a SOW topic. SOW databases listed as persis-
tent are stored to the file system, and retain their data across instance restarts.
Those listed as transient are not persisted to the file system, and are reset
each time the AMPS instance restarts.

Default: persistent
Valid values: persistentor transient

Synonyms: Duration is also accepted for this parameter for backward com-
patibility with configuration prior to 4.0.0.1

Enable historical query for this SOW. This element contains a Window and
Granularity element. When the History element is present, historical
query is enabled for this sow. Otherwise, AMPS does not enable historical query
and does not store the historical state of the SOW.

Expiration mustbe disabled when History is enabled.

For a historical SOW, the length of time to store history. For example, when the
value is 1w, AMPS will store one week of history for this SOW.

Used within the History element.

Default: By default, AMPS does not expire historical SOW data.

For a historical SOW, the granularity of the history to store. In many cases, it
is not necessary for AMPS to store all of the updates to the SOW. This para-
meter sets the resolution at which you can query history. For example, with a
granularity of 1m, AMPS will store the state of an updated messages no more
frequently than once a minute.

16

State of the World (SOW)

Element Description

Used within the History element.

Even though the RecordS1 ze defined may be smaller than the incoming message, the record

@ will still be stored. Messages larger than the RecordSze will span multiple records. For
example if the RecordS-ize is defined to be 128 bytes, and a message comes in that is 266
bytes in size, that record will be stored over 3 records. The maximum size for a single message
is calculated as RecordSize * IncrementSize, or IMB (whichever is larger). AMPS
reports an error if a single message exceeds this size.

The listing in Example 4.1 is an example of using TopicDefinition to add a SOW topic to the AM-
PS configuration. One topic named ORDERS is defined as having key /invoice, /customerId and
MessageType of json. The persistence file for this topic be saved in the sow/ORDERS. json. sow
file. For every message published to the ORDERS topic, a unique key will be assigned to each record
with a unique combination of the fields invoice and customerId. A second topic named ALERTS
is also defined with a MessageType of xml keyed off of /client/id. The SOW persistence file for
ALERTS is saved in the sow/ALERTS. sow file.

<SOow>

<TopicDefinition>
<FileName>sow/%n.sow</FileName>
<Topic>ORDERS</Topic>
<Key>/invoice</Key>
<Key>/customerId</Key>
<MessageType>json</MessageType>
<RecordSize>512</RecordSize>
<HashIndex>

<Key>/region</Key>

</HashIndex>

</TopicDefinition>

<TopicDefinition>
<FileName>sow/%n.sow</FileName>
<Topic>ALERTS</Topic>
<Key>/alert/id</Key>
<MessageType>xml</MessageType>
</TopicDefinition>
</SOwW>

Example 4.1. Sample SOW configuration

@ Topics are scoped by their respective message types and transports.

For example, two topics named Orders can be created one which supports MessageType of
j son and another which supports MessageType of xml.

17

State of the World (SOW)

Each of the MessageType entries that are defined for the Orders topic will require a unique
Transport entry in the configuration file.

This means that messages published to the Orders topic must know the type of message they
are sending (i x or xm1) and the port defined by the transport.

18

Chapter 5. Advanced Topics

While there is much more content beyond the scope of this document, AMPS provides many of the fol-
lowing additional utilities and guides for you to learn about the many feature of AMPS.

5.1. Logging

AMPS supports logging to many different targets including the console, syslog, and files. Every error
message within AMPS is uniquely identified and can be filtered out or explicitly included in the logger
output. This chapter of the AMPS User Guide describes the AMPS logger configuration and the unique
settings for each logging target.

5.2. Message Replay

AMPS supports a fully-queryable transaction log. You can configure the transaction log to keep a journal
of incoming messages for one or more topics, and then replay those messages, in order, from any point in
time. This capability is often used for historical analysis, as well as for clients to

The AMPS clients provide resumable subscription capability that works with the transaction log. Using
this capability, you can create applications that ensure that clients never miss a message, even if the client
is shut down and restarted.

5.3. Conflated Topics

To further reduce network bandwidth consumption, AMPS supports a form of SOW topic called a “con-
flated topic.” A conflated topic is a copy of one SOW topic into another with the ability to control the
update interval. Changes to a message that occur between updates are conflated into a single message that
represents the current state of the message.

To better see the value in a conflated topic, imagine a SOW topic called ORDER_STATE exists in an
AMPS instance. ORDER_STATE messages are published frequently to the topic. Meanwhile, there are
several subscribing clients that are watching updates to this topic and displaying the latest state in a GUI
front-end.

If this GUI front-end only needs updates in five second intervals from the ORDER_STATE topic, then
more frequent updates would be wasteful of network and client-side processing resources. To reduce net-
work congestion, a conflating topic replica of the ORDER_STATE topic can be created which will contain a
copy of ORDER_STATE updated in five second intervals. Only the changed records from ORDER_STATE
will be copied to the conflating replica topic and then sent to the subscribing clients. Those records with
multiple updates within the time interval will have their latest updated values sent during replication, re-
sulting in substantial savings in bandwidth for single records with high update rates.

19

Advanced Topics

5.4. View Topics and Aggregation

AMPS contains a high-performance aggregation engine, which can be used to project one topic onto
another, similar to the CREATE VIEW functionality found in most RDBMS software. Views can JOIN
multiple topics together, including topics with different message types.

5.5. Historical SOW Query

AMPS allows you to configure a SOW topic to retain the historical state of the SOW, on a configurable
granularity. You can then query for the state of the SOW at a point in time, and retrieve results from the
saved state.

5.6. Utilities

AMPS provides several utilities that are not essential to message processing, but can be helpful in trou-
bleshooting or tuning an AMPS instance:

* amps_sow_dump is used to inspect the contents of a SOW topic store.

* amps_journal_dump is used to examine the contents of an AMPS journal file during debugging
and program tuning.

* ampserr is used to expand and examine error messages that may be observed in the logs. This utility
allows a user to input a specific error code, or a class of error codes, examine the error message in more
detail, and where applicable, view known solutions to similar issues.

* AMPS provides a command-line client, spark, as a useful tool for checking the status of the AMPS
engine. The Spark client can also be used to run queries, place subscriptions, and publish data.

More information, including usage and examples, about each of these utilities can be found in the AMPS
Utilities User Guide.

5.7. Monitoring Interface

AMPS provides a monitoring interface which contains information about the state of the host system
(CPU, memory, disk and network) as well as statistics about the state of the AMPS instance it is monitoring
(clients, SOW state, Journal State and more).

More information about the monitoring system provided in AMPS can be found in the AMPS Monitoring
Reference Guide.

20

Advanced Topics

5.8. High Avalilability

The High Availability chapter in the AMPS User Guidewill showcase the powerful High Availability fea-
tures that AMPS provides. This chapter will first show how a Transaction Log can be configured to keep
a journal of all messages published to a topic, then show how that journal can be used in different client
recovery scenarios. Then we will show how Replication can be used to implement instance synchroniza-
tion and failover strategies to guarantee that AMPS is always available, even in multiple locations.

21

Chapter 6. Next Steps

Now that you understand the basics of how AMPS works, you have two potential paths forward in your
usage of the product:

* On one path, you may want to learn how to configure, deploy, and administer your own instance of
AMPS. For this path, see the User Guide, which provides complete information for system administra-
tors who are responsible for the deployment, availability and management of data to other users.

+ Alternatively, you may need to develop an application to work with AMPS, using one of the Developer
Guides for Java, Python, C++, or C#. For this path, download one of the evaluation kits from the AMPS
developer page at http://www.crankuptheamps.com/developer.

The following sections provide more information about each of these paths and also briefly describes
some use cases for AMPS.

6.1. Operation and Deployment

In preparing to deploy your instance of AMPS, you must size your host environment according to multiple
dimensions: memory, storage, CPU, and network. The “Operation and Deployment” chapter in the AMPS
User Guide provides guidelines and best practices for configuring the host environment. The chapter also
specifies recommended settings for running AMPS on a Linux operating system.

6.2. Application Development

Each language-specific Development Guide explains how to install, configure, and develop applications
that use AMPS. In order to develop applications using an AMPS client, you must understand the basic
concepts of AMPS, such as topics, subscriptions, messages and SOW.

You will also need an installed and running AMPS server to use the product. Although you can type
and compile programs that use AMPS without a running server, you will get the most benefit by run-
ning the programs against a working server. An evaluation version of AMPS is available from http://
www.crankuptheamps.com/evaluate.

22

http://www.crankuptheamps.com/developer
http://www.crankuptheamps.com/evaluate
http://www.crankuptheamps.com/evaluate

Index

Symbols
60East Technologies, 4

A
Admin view, 6
AMPS
installation, 5
logging, 19
starting, 5
state, 12
Topic Replicas, 19
topics, 8
transaction log, 19
utilities, 20
Views, 20
Availability, 21

C
Caching, 12

F

FileName
SOW/TopicDefinition, 14

H

High availability, 21

Highlights, 1

historical SOW
enabling, 16

installation, 5

J
JSON messages, 6

L

Last value cache, 12
Logging, 19

M

message expiration, 15
message replay, 19
Monitoring Interface, 20

O

Operating systems, 2
overview, 1

P
Platforms, 2

Pub/sub, 8

Publish, 8

Publish and subscribe, 8

R

RecordSize, 17

Regular expressions, 9
topics, 9

replacing filter, 11

Replication, 21

S

SOW, 12
configuration, 13
queries, 13
RecordSize, 17
topic definition, 13

spark utility, 6

starting, 5

State of the World (SOW), 12

storage, 12

Subscribe, 8

Support, 3
channels, 4
technical, 3

Supported platforms, 2

T

Technical support, 3
Topic Replicas, 19
Topics

intro, 8

regular expressions, 9
Transactions, 21

U

Utilities, 20
ampserr, 20
amps_journal_dump, 20
amps_sow_dump, 20

23

Index

Views, 20

24

	Advanced Message Processing System (AMPS) Evaluation Guide
	Table of Contents
	Chapter 1. Introduction to 60East Technologies AMPS
	1.1. Product Overview
	1.2. Software Requirements
	1.3. Document Conventions
	1.4. Obtaining Support
	Support Steps
	Contacting 60East Technologies Support

	Chapter 2. Getting Started
	2.1. Installing AMPS
	2.2. Starting AMPS
	2.3. Admin View of the AMPS Server
	2.4. Interacting with AMPS Using Spark
	2.5. JSON Messages - A Quick Primer

	Chapter 3. Publish and Subscribe
	3.1. Topics
	Regular Expressions

	3.2. Filtering Subscriptions By Content
	Replacing the Content Filter on a Subscription

	Chapter 4. State of the World (SOW)
	4.1. How Does the State of the World Work?
	4.2. Queries
	4.3. Configuration

	Chapter 5. Advanced Topics
	5.1. Logging
	5.2. Message Replay
	5.3. Conflated Topics
	5.4. View Topics and Aggregation
	5.5. Historical SOW Query
	5.6. Utilities
	5.7. Monitoring Interface
	5.8. High Availability

	Chapter 6. Next Steps
	6.1. Operation and Deployment
	6.2. Application Development

	Index

