
AMPS Configuration Reference Guide

AMPS Configuration Reference Guide
4.3

Publication date Oct 29, 2015
Copyright © 2015

All rights reserved. 60East, AMPS, and Advanced Message Processing System are trademarks of 60East Technologies, Inc. All other trademarks
are the property of their respective owners.

iii

Table of Contents
1. AMPS Configuration Reference Guide ... 1

1.1. AMPS Configuration Basics .. 1
2. Generating a Configuration File ... 9
3. Instance Level Configuration .. 10

3.1. SOW Statistics Interval ... 11
3.2. Minidump Directory .. 11
3.3. Configuration Validation .. 12
3.4. Tuning .. 12

4. Admin Server .. 14
5. Modules .. 15
6. Message Types .. 18
7. Transports .. 21
8. Logging ... 26
9. State-of-the-World (SOW) Features .. 28

9.1. SOW/TopicDefinition .. 28
9.2. SOW/ViewDefinition ... 32
9.3. SOW/ConflatedTopic ... 33

10. Replication Destination .. 35
11. Transaction Log ... 38
12. Authentication .. 40
13. Entitlement .. 41
14. Actions .. 42

14.1. Running an Action on a Schedule .. 42
14.2. Running an Action in Response to a Signal .. 43
14.3. Running an Action on Startup or Shutdown .. 44
14.4. Rotate Log Files .. 44
14.5. Manage Statistics Files .. 44
14.6. Manage Journal Files ... 45
14.7. Removing Files ... 46
14.8. Manage SOW Contents ... 47
14.9. Create Mini-Dump .. 48
14.10. Manage Security .. 48
14.11. Manage Transports .. 49
14.12. Manage Replication ... 49
14.13. Shut Down AMPS ... 50
14.14. Do Nothing ... 51
14.15. Action Configuration Examples .. 51

Index ... 53

1

Chapter 1. AMPS Configuration
Reference Guide

This reference is targeted to those who have familiarized themselves with the AMPS User Guide, and are
ready to dive into configuring some of the more advanced features of AMPS. This guide complements
the AMPS User Guide by presenting the full set of options for the AMPS configuration file.

1.1. AMPS Configuration Basics
If you have not become familiar with the AMPS User Guide, in particular the Getting Started chapter,
please start there before reading this guide.

The easiest way to create a custom XML configuration file for AMPS is to start with the sample configu-
ration file produced by the --sample-config flag to AMPS. Example 1.1 shows a simplified sample
configuration file.

<?xml version="1.0" encoding="UTF-8"?>

<!-- Sample AMPS configuration

 This file defines an AMPS instance that provides publish and
 subscribe, topic filtering, and content filtering for JSON
 messages.
 The instance provides messaging services on port 9007 of the
 server.
 This configuration also provides an adminstrative interface on
 port 8085, and logs serious messages (error and higher severity)
 to
 stdout.

 This sample file does not configure State of the World (SOW)
 Topics,
 Transaction Logs, Aggregation and Views, Historical Query,
 Replication,
 Authentication and Entitlement, Conflating Topic Replicas, or
 other
 features of AMPS.

 More details for the featuers available and how to configure
 them are
 provided in the AMPS User Guide and the AMPS Configuration
 Reference.
 Both are available at http://crankuptheamps.com/documentation/

 -->

AMPS Configuration Reference Guide

2

<AMPSConfig>

 <!-- Name of the AMPS instance -->

 <Name>AMPS-Sample</Name>

 <!-- Configure the administrative HTTP server on port 8085

 This HTTP server provides admin functions and statistics
 for the instance
 -->

 <Admin>
 <InetAddr>localhost:8085</InetAddr>
 </Admin>

 <!-- Configure a transport for JSON messages over TCP on port 9007
 -->

 <Transports>
 <Transport>
 <Name>json-tcp</Name>
 <Type>tcp</Type>
 <InetAddr>9007</InetAddr>
 <MessageType>json</MessageType>
 <Protocol>amps</Protocol>
 </Transport>
 </Transports>

 <!-- Log messages of severity 'error' and higher to stdout -->

 <Logging>
 <Target>
 <Protocol>stdout</Protocol>
 <Level>error</Level>
 </Target>
 </Logging>

</AMPSConfig>

Example 1.1. Simple AMPS configuration file

The AMPS configuration XML file is defined first by wrapping the config file with an AMPSConfig tag
to identify it as a configuration file. Next, the instance is given a name using the <Name> tag.

Once our instance has a name, it is good to define the connection target for the administration port. By
default, the administration port can be found by pointing a browser to http://localhost:8085, but
if a different port or host name is desired, then that is defined in the Admin and InetAddr tags. The
Admin port is discussed more in Table 4.1.

AMPS Configuration Reference Guide

3

Next we describe how to get messages into AMPS. There are several different transport types which can be
parsed by AMPS, all of which are discussed in greater detail in the Transports chapter, but for this sample,
we keep things simple by focusing on JSON messages over tcp. In AMPS, each key to defining each
transport is to give them a unique InetAddr port and specify the type of message AMPS will process on
that port using MessageType tag. The MessageType tells AMPS how to parse the incoming messages
on a specific port. In the above example, messages are coming in on port 9007, and AMPS uses the JSON
parser to parse the body of the message. AMPS also requires a Protocol tag for the Transport,
which specifies the format of the commands to AMPS. In this case, we use the standard amps protocol.
(Older AMPS applications and AMPS installations may require a different protocol format, such as fix
or xml. There's no functional difference between these protocols, but the AMPS server and the clients
need to use the same protocol format to successfully exchange messages.)

The last portion of the configuration is Logging. In the above example, the Logging tag defines only one
log target, but it's quite common to have one or more Logging targets. Again referring to the example,
all logging messages that are at error level and above will be logged to the logging Protocol of
stdout. In other words, these messages will be logged to the terminal, and not to a file. AMPS supports
a robust set of logging features and configurations, all of which are covered in more detail in the Logging
chapter in the AMPS User Guide and in Chapter 8 of this reference.

AMPS Configuration File Special Characters
In AMPS there are a few special characters that you should be aware of when creating your configuration
file. These characters can provide some handy short cuts and make configuration creation easier, but you
should also be aware of them so as not to introduce errors.

State of the World File Name

When specifying the file for a State of the World database, using the %n string in the log file name specifies
that the AMPS server will use the message type and topic name in that position to create a unique filename.
Example 1.2 shows how to use this in the AMPS configuration file.

 <SOW>
 <TopicDefinition>
 <Topic>Customers</Topic>
 <FileName>./sow/%n.sow</FileName>
 <MessageType>json</MessageType>
 <Key>/customerId</Key>
 </TopicDefinition>
</SOW>

Example 1.2. SOW file name tokens used in configuration file

AMPS Configuration Reference Guide

4

Log Rotation Name

When specifying an AMPS log file which has RotationThreshold specified, using the %n string in
the log file name is a useful mechanism for ensuring the name of the log file is unique and sequential.
Example 1.3 shows a file name token replacement in the AMPS configuration file.

<Logging>
 <Target>
 <Protocol>file</Protocol>
 <Level>info</Level>
 <FileName>log/log-%n.log</FileName>
 <RotationThreshold>2G</RotationThreshold>
 </Target>
</Logging>

Example 1.3. Log file name tokens used in configuration file

In the above example, a log file will be created in the AMPSDIR/log/ directory. The first time this file
is created, it will be named log-1.log. Once the log file reaches the RotationThreshold limit of
2G, the previous log file will be saved, and the new log file name will be incremented by one. Thus, the
next log file will be named AMPSDIR/log/log-2.log.

Dates
AMPS allows administrators to use date-based file names when specifying the file name in the configu-
ration, as demonstrated in Example 1.4.

<Logging>
 <Target>
 <Protocol>file</Protocol>
 <Level>info</Level>
 <FileName>
 log/log-\%Y-\%m-\%dT\%H\%m\%s.log
 </FileName>
 <RotationThreshold>2G</RotationThreshold>
 </Target>
</Logging>

Example 1.4. Date tokens used in configuration file

In the above example, a log file will be created in the $AMPSDIR/log named
2011-01-01-120000.log if the log was created at noon on January 1, 2011.

AMPS provides full support for the date tokens provided by the standard strftime function, with the ex-
ception of %n, as described above. The following table shows some of the most commonly used tokens:

AMPS Configuration Reference Guide

5

Table 1.1. Commonly Used Date and Time Tokens

Token Provides Example
%a Short weekday name Fri
%A Full weekday name Friday
%b Short month name Feb
%B Full month name February
%c Simple date and time Fri Feb 14 17:25:00 2014
%C Century 20
%d Day of the month (leading zero if necessary) 05
%D Short date format (MM/DD/YY) 02/20/14
%e Day of the month (leading space if necessary) 5
%F Short date format (YYYY-MM-DD) 2014-02-20
%H Hour (00-23) 17
%I Hour (00-12) 05
%j Day of the year (001-366) 051
%m Month (01-12) 02
%p AM or PM PM
%r Current time, 12 hour format 05:25:00 pm
%R Current time, 24 hour format 17:25
%T ISO 8601 Time format 17:25:00
%u ISO 8601 day of the week (1-7, Monday = 1) 5
%V ISO 8601 week number (00-53) 07
%y Year, last two digits 14
%Y Year, four digits 2014
%Z Timezone name or abbreviation (blank if undetermined) PST

Using Units in the Configuration
To make configuration easy, AMPS permits the use of units to expand values. For example, if a time
interval is measured in seconds, then the letter s can be appended to the value. For example, the following
SOW topic definition used the Expiration tag to set the record expiration to 86400 seconds (one day).

<SOW>
 <TopicDefinition>
 ...
 <Expiration>86400s </Expiration>
 ...
 </TopicDefinition>
</SOW>

Example 1.5. Expiration Using Seconds

AMPS Configuration Reference Guide

6

An even easier way to specify an expiration of one day is to use the following Expiration:

<SOW>
 <TopicDefinition>
 ...
 <Expiration>1d</Expiration>
 ...
 </TopicDefinition>
</SOW>

Example 1.6. Expiration Using Days

Table 1.2 shows a listing of the time units AMPS supports in the configuration file.

Table 1.2. AMPS Configuration - Time Units

Units Description
ns nanoseconds

us microseconds

ms milliseconds

s seconds

m minutes

h hours

d days

w weeks

AMPS configuration supports a similar mechanism for byte-based units when specifying sizes in the
configuration file. Table 1.3 shows a listing of the byte units AMPS supports in the configuration file.

Table 1.3. AMPS Configuration - Byte Units

Units Description
kb kilobytes

mb megabytes

gb gigabytes

tb terabytes

Dealing with large numbers in AMPS configuration can also be simplified by using common exponent
values to handle raw values. This means that instead of having to input 10000000 to represent ten million,
a user can input 10M. Table 1.4 contains a list of the exponents supported.

Table 1.4. AMPS Configuration - Numeric Units

Units Description
k 103 - thousand
M 106 - million

AMPS Configuration Reference Guide

7

To make it easier for users to remember the units, AMPS interval and byte units are not case
sensitive.

Environment Variables in AMPS Configuration
AMPS configuration also allows for environment variables to be used as part of the data when specifying
a configuration file.

If a global system variable is commonly used in an organization, then it may be useful to define this in one
location and re-use it across multiple AMPS installations or applications. AMPS will replace any token
wrapped in ${} with the environment variable defined in the current user operating system environment.
Example 1.7 demonstrates how the environment variable ENV_LOG is used to define a global environment
variable for the location of the host logging.

<Logging>
 <Target>
 <Protocol>file</Protocol>
 <FileName>${ENV_LOG}</FileName>
 <Level>info</Level>
 <RotationThreshold>2G</RotationThreshold>
 </Target>
</Logging>

Example 1.7. Environment Variable Used in Configuration

Internal Environment Variables
In addition to supporting custom environment variables, AMPS includes a configuration variable,
AMPS_CONFIG_DIRECTORY, which can be used to reference the directory in which the configuration
file used to start AMPS is located. For example, assume that AMPS was started with the following com-
mand at the command prompt:

%>./ampServer ../amps/config/config.xml

Given this command, the log file configuration option shown in Example 1.8 can be used to instruct AMPS
to create the log files in the same parent directory as the configuration file — in this case ../amps/
config/logs/infoLog.log.

<Logging>
 <Target>
 <Protocol>file</Protocol>
 <FileName>

AMPS Configuration Reference Guide

8

 ${AMPS_CONFIG_DIRECTORY}/logs/infoLog.log
 </FileName>
 <Level>info</Level>
 <RotationThreshold>2G</RotationThreshold>
 </Target>
</Logging>

Example 1.8. AMPS_CONFIG_DIRECTORY Environment Variable Example

In addition to the AMPS_CONFIG_DIRECTORY environment variable, AMPS also supports the
AMPS_CONFIG_PATH, which is an absolute path to the configuration file used to start AMPS.

9

Chapter 2. Generating a Configuration
File

This appendix includes a listing of all AMPS configuration parameters. AMPS provides a command line
option to help an administrator quickly set up an AMPS server. In addition to the quick setup discussed in
the Getting Started chapter of the AMPS User Guide, AMPS also provides the following command line
options to create a basic XML configuration file. Running the following command will create a configu-
ration file named config.xml. The generated file is a bare-bones configuration that allows AMPS to
start, process JSON messages, and provide monitoring through the admin interface.

ampServer --sample-config > config.xml

The AMPS server also provides the ability to perform basic validation of the config file, using the --
verify-config flag.

ampServer --verify-config config.xml

The validation process checks for errors in the configuration that would prevent AMPS from starting,
and reports warnings and informational messages about the configuration file. However, the validation
process does not ensure that the configuration file provided is suitable for any particular purpose.

10

Chapter 3. Instance Level Configuration
This chapter describes elements of the AMPS configuration that set parameters for the instance as a whole.

Table 3.1. Instance Level Configuration Parameters

Element Description
Name This element defines the name of your AMPS instance. The name is used as the ident

parameter when logging to syslog.

Group Identifies the replication group for this instance. If no Group element is present, the
replication group for this instance is set to the Name of the instance. Set the group pa-
rameter when being able to refer to a set of instances makes your replication configu-
ration simpler.

Regex-
TopicSup-
port

Sets whether this instance supports regular expression topic matching. When this option
is true, clients can register subscriptions using regular expressions and receive mes-
sages for all matching topics. When this option is false, regular expression characters
are interpreted as literal characters.

Defaults to true.

Authenti-
cation

Sets the default authentication module to use for transports that do not explicitly specify
an authentication module. Authentication modules verify the identity of a connected
user.

The module specified must be one of the modules configured in the Modules element
or one of the authentication modules that AMPS loads by default. See Table 12.2 for
the list of default modules.

Defaults to amps-default-authentication-module.

Entitle-
ment

Sets the default entitlement module to use for transports that do not explicitly specify
an entitlement module. Entitlement modules enforce permissions for a connected user.

The module specified must be one of the modules configured in the Modules element
or one of the modules that AMPS loads by default. See for Table 13.2 for the list of
default modules.

Defaults to: amps-default-entitlement-module

Authenti-
cator

Sets the default authenticator module to use for outgoing connections from AMPS that
do not explicitly specify an authenticator module. Authenticator modules provide cre-
dentials to use for outgoing connections.

The module specified must be one of the modules configured in the Modules element
or one of hte modules that AMPS loads by default.

Defaults to: amps-default-authenticator-module

<AMPSConfig>

Instance Level Configuration

11

 <Name>AMPS</Name>
 <Group>Sample-AMPS</Group>

</AMPSConfig>

Example 3.1. Instance-Level Configuration Example

3.1. SOW Statistics Interval

AMPS can publish SOW statistics for each SOW topic which has been configured. The SOWStatsIn-
terval is specified as an interval (see Table 1.2) between updates to the /AMPS/SOWStats topic.

Table 3.2. SOW Statistics Interval Parameters

Element Description
SOWStatsInterval Interval for which SOW statistics are updated.

<AMPSConfig>
 ...
 <SOWStatsInterval>10s</SOWStatsInterval>
 ...
</AMPSConfig>

Example 3.2. SOW Statistics Interval Example

3.2. Minidump Directory

The minidump directory is used to specify a location for AMPS to create a file that contains program
information which is useful for support and diagnostics. AMPS will generate a minidump file on any crash
event, or a minidump file can be generated at any point in time through the monitoring interface (see the
AMPS Monitoring Reference Guide).

Table 3.3. Mini Dump Directory Parameters

Element Description
MiniDumpDirectory Location to store AMPS mini dumps. Default is /tmp. If the directory

does not exist, AMPS creates the directory.

The special value disabled configures AMPS not to produce mini
dumps.

<MiniDumpDirectory>/var/tmp</MiniDumpDirectory>

Instance Level Configuration

12

Example 3.3. Mini Dump Directory Example

3.3. Configuration Validation

Configuration validation can be used to enable or disable the validation checking performed by AMPS on
the initialization of each instance. Disabling the configuration validation can cause AMPS to start in an
invalid state or not properly log warnings or errors in the configuration file.

Configuration validation should only be disabled during testing or debugging. We strongly
recommend against disabling configuration validation in a production or development envi-
ronment.

Table 3.4. Config Validation Parameters

Element Description
ConfigValidation Setting this to disabled will turn off AMPS configuration validation. The

default is enabled, ensuring that the current AMPS configuration meets
valid parameter ranges and data types.

<AMPSConfig>
 <ConfigValidation>enabled</ConfigValidation>
</AMPSConfig>

Example 3.4. Configuration Validation Example

3.4. Tuning

The Tuning section of the configuration file sets instance-level parameters for tuning the performance
of AMPS. In many cases, AMPS self-tunes to take advantage of the hardware and environment. However,
explicitly setting tuning parameters is sometimes necessary in cases where an AMPS instance cannot
determine the best value. For example, if multiple AMPS servers are running on the same system, 60East
recommends disabling NUMA.

Use the Tuning element with care. Options in the Tuning element can affect AMPS per-
formance, and the behavior of Tuning options may be version-specific.

Table 3.5. Tuning Parameters

Element Description
NUMA/Enabled Setting this to disabled will turn off AMPS NUMA tuning. The default is

enabled, which affinitizes certain AMPS threads to specific processors.

Instance Level Configuration

13

Element Description
The default value of enabled produces significantly better performance
when a single instance of AMPS is running on a given system. However, if
multiple instances of AMPS are running on the same system, setting this val-
ue to disabled for all of the instances on the system may reduce contention
among the instances and produce better overall performance.

<AMPSConfig>
 <Tuning>
 <NUMA>
 <Enabled>enabled</Enabled>
 </NUMA>
 </Tuning>
</AMPSConfig>

Example 3.5. Tuning Example

14

Chapter 4. Admin Server
The Admin tag is used to control the behavior of the administration server.

Table 4.1. Admin Parameters

Element Description
InetAddr Defines a port for the embedded HTTP admin server, which can then be accessed via

a browser. This element can also specify an IP address, in which case the HTTP server
listens only on that address. If no IP address is specified, the HTTP server listens on
all available addresses.

FileName Location for storing the statistics information reported by the Admin Server.

default: :memory:

Interval The refresh interval for the Admin Server to update gathered statistics.

default: 10s

minimum: 1s

Authentica-
tion

The authentication to use for the Administrative interface. This is an Authentica-
tion element, as described in Chapter 12.

Entitlement The entitlement to use for the Administrative interface. This is an Entitlement element,
as described in Chapter 13.

 <Admin>
 <InetAddr>localhost:9090</InetAddr>
 <FileName>stats.db</FileName>
 <Interval>20s</Interval>
 </Admin>

Example 4.1. Admin Example

15

Chapter 5. Modules
The Modules section of the AMPS configuration file is used to load, configure and define any plug-
in modules used for this installation of AMPS. AMPS supports a wide variety of plug-in modules, as
described in the Extending AMPS Guide.

The following steps are required to use a plug-in module:

1. Load the module and declare the name of the module.

2. Define the AMPS object that the module contains and give the object a name and pass any required
options.

3. Use the module in a specific context.

For many modules, such as Authentication and Entitlement modules, steps 2 and 3 are per-
formed at the same time. Steps 2 and 3 above are separate when a module must have the same definition
across mutliple contexts (for example, a MessageType which may be used in a Transport, a SOW, a
View, and replicated to other instances).

The available features of a Module are listed in Table 5.1.

Table 5.1. Module Parameters

Element Description
Name A plain text name for the module. This will be used as a reference when the module is

used elsewhere in the AMPS configuration, and is also the name that AMPS will use for
logging messages related to the module.

Library The shared object file that contains the compiled module. This must contain the path,
relative to the AMPS server's directory.

Options A list of supported features for the implemented library. AMPS allows you to pass op-
tions to the module by specifying elements within the Options element. The exact
options that the module requires, if any, are determined by the creator of the module.

Example 5.1 provides an example of an AMPS configuration using an authorization
and entitlement plug-in module. In our example, a custom authentication module named
libauthenticate_customer001.so has been written to manage the authentication por-
tion of AMPS authentication. Similarly, a custom entitlements module has been written named
libentitlement_customer001.so to manage the permissions and access of the authenticated
user.

The first step is to define the global Modules section of the AMPS configuration, and then list the
individual modules.

<AMPSConfig>
...
 <Modules>
 <Module>

Modules

16

 <Name>authentication1</Name>
 <Library>libauthenticate_customer001.so</Library>
 <Options>
 <LogLevel>info</LogLevel>
 <Mode>debugging</Mode>
 </Options>
 </Module>
 <Module>
 <Name>entitlement1</Name>
 <Library>libentitlement_customer001.so</Library>
 <Options>
 <LogLevel>error</LogLevel>
 <Mode>prod</Mode>
 </Options>
 </Module>
 ...
 </Modules>
...
</AMPSConfig>

Example 5.1. Sample global config of authentication and entitlements modules

We now have an authentication module and an entitlements module that we can reference elsewhere in
the AMPS configuration file to enable authentication and/or entitlements for supported features. For ex-
ample, we can create one type of Authentication module for the instance as a whole, and then create
instances of a different type of Authentication and Entitlement modules for each Transport, to ensure
that our Transports are properly enabling authentication and entitlements. In this example, the Au-
thentication and Entitlement modules configured for an individual Transport are used for
that transport, and the instance level modules are used as a default for transports that do not specify any
Authentication or Entitlement.

This is accomplished via an entry similar to Example 5.2.

<AMPSConfig>
...
 <Authentication>
 <Module>amps-no-authorization</Module>
 </Authentication>
 <Entitlement>
 <Module>amps-no-authorization</Module>
 </Entitlement>
...
 <Transports>
 <Transport>
 <Name>fix-tcp-001</Name>
...
 <Authentication>
 <Module>authenticate_customer001</Module>

Modules

17

 </Authentication>
 <Entitlement>
 <Module>entitlement_customer001</Module>
 </Entitlement>
 </Transport>
 <Transport>
 <Name>fix-tcp-007</Name>
 ...
 <Authentication>
 <Module>authenticate_customer007</Module>
 </Authentication>
 <Entitlement>
 <Module>entitlement_customer007</Module>
 </Entitlement>
 </Transport>

 <Transport>
 <Name>json-tcp<Name>
 <!-- does not specify Authentication or
 entitlement, uses instance-level
 modules -->
 ...
 </Transport>

 </Transports>
...
</AMPSConfig>

Example 5.2. Example of security enabled transports

Example 5.2 shows how our fix-tcp-001 transport is secured with the
authenticate_customer001 authentication module, and the entitlement_customer001
entitlement module, which is defined in a global Modules section similar to the one listed in Example 5.1.
Similarly, the fix-tcp-007 transport is secured with the authenticate_customer007 authenti-
cation module and the entitlement_customer007 entitlement module. In contrast, the json-tcp
transport does not define modules, and instead uses the authentication and entitlement modules specified
at the instance level.

18

Chapter 6. Message Types
This tag defines the message types supported by the AMPS instance. A single AMPS instance can support
multiple message types, as MessageTypes can contain multiple MessageType definitions.

MessageType definitions for fix, nvfix, xml, json, bson, and binary are automatically loaded
by AMPS. You only need to define a new MessageType these if the settings for the message type need
to be changed (for example, to create a custom FIX-based type that changes the FieldSeparator of
the message).

AMPS also supports the ability to create a composite message type by combining a number of existing
message types. Composite message types are defined using the MessageType configuration element.

Table 6.1. Message Type Parameters

Name Description

Name This element defines the name for the message type. The name is used
to specify MessageType in other sections such as Transport and
TopicDefinition.

By default, AMPS loads message types for fix, nvfix, soapfix,
json, bson, xml and binary.

Module The element specifies the name of the module that will be loaded for
this message type.

By default, AMPS loads the modules that implement the following
message types: fix, nvfix, soapfix, json, bson xml and bi-
nary.

AMPS supports creating composite message types out of exist-
ing message types using the composite-global and compos-
ite-local modules, which are loaded by default.

AMPSVersionCompliance Sets the version compatibility for the messages that AMPS sends to
the /AMPS/SOWStats topic. When set to 2, AMPS creates mes-
sages that use the field tags used by AMPS 2.X versions, which differ
from the tags in the current version of AMPS.

By default, this value is unset, and AMPS uses the field tags for the
current version.

60East recommends leaving this value unset unless your application
requires version 2.0 messages.

Options Options to pass to a custom message type module. AMPS does not
specify the format or type of the elements within an Options ele-
ment. AMPS simply parses the XML and then sends the XML to the
module. If you are configuring a custom message type, see the docu-
mentation for that message type module for details.

Message Types

19

Name Description

FieldSeparator Option: Applies to fix and nvfix message types.

Sequence of characters used to separate field items in a FIX message.
Note: this field is the ASCII value of the char sequence.

HeaderSeparator Option: Applies to fix and nvfix message types.

Sequence of characters used to separate the header from the body in a
FIX message. Note: this field is the ASCII value of the char sequence.

MessageSeparator Option: Applies to fix and nvfix message types.

Sequence of characters used to separate message items in the body in a
FIX message. Note: this field is the ASCII value of the char sequence.

EarlyTerminationOpti-
mization

Option: Applies to the json message type.

By default, AMPS includes a optimization to allow the server to to
only partially parse JSON messages. This may result in unexpected
behavior for some messages. For example, given a message such as
{ "code" : 1, "data" : "some data", "code" : 2 },
AMPS will report the value of code as 1 when this optimization is
active. To ensure consistent results, in this mode AMPS always reports
the first value for a field even when AMPS fully parses the message.

When set to false, the optimization is disabled. AMPS will fully
parse all JSON messages and report the last value for a field. For the
message above, AMPS would report the value of code as 2.

Default: true

Type Obsolete No longer used in AMPS 4.0 and later versions: to define a
base message type to customize, use Module.

MessageType Required: Applies to message types that use the composite-lo-
cal or composite-global modules.

For composite message types, the MessageType definition must
contain one or more message type declarations that specify the types
that the composite message type contains.

See the AMPS User Guide for more information on composite mes-
sage types.

<MessageTypes>
 <!-- Define a FIX-based message type with custom separators -->
 <MessageType>
 <Name>fix-custom</Name>
 <Module>fix</Module>
 <!-- The following are FIX specific options -->

Message Types

20

 <FieldSeparator>1</FieldSeparator>
 <HeaderSeparator>2</HeaderSeparator>
 <MessageSeparator>5</MessageSeparator>
 </MessageType>

 <!-- Define a message type for a custom
 payload. 'type-module' must be the
 Name of a Module specified in the
 configuration. -->
 <MessageType>
 <Name>custom-payload</Name>
 <Module>type-module</Module>
 </MessageType>

 <!-- Define a composite message type
 that combines a json message and
 a custom-payload message. -->

 <MessageType>
 <Name>custom-composite</Name>
 <Module>composite-local</Module>
 <MessageType>json</MessageType>
 <MessageType>custom-payload</MessageType>
 </MessageType>

</MessageTypes>

Example 6.1. Message Types Example

21

Chapter 7. Transports
The Transports element configures how AMPS communicates with publishers and subscribers, as
well as how AMPS accepts connections for replication. The Transports element is a container for one
or more Transport elements. Each Transport is a combination of a network transport, an AMPS
header protocol, and a message type.

A Transport also specifies the Authentication used to validate the users that connect, and the
Entitlement used to enforce permissions for users that connect over that transport.

AMPS supports a variety of network transports, header protocols and message formats for communication
between publishers and subscribers. This section describes how to configure a Transport.
Table 7.1. Transport Parameters

Element Description
Name The name to use for this Transport. This name appears in the AMPS log

for messages related to the transport.

InetAddr The port on which AMPS will listen for this transport. This element can
also specify an IP address, in which case AMPS listens only on that ad-
dress. If no IP address is specified, AMPS listens on all available ad-
dresses.

Protocol This element defines the protocol to use for sending and receiving mes-
sages. The protocol is typically amps, the name of a specific protocol for
interoperability with another system or a legacy application, or the name
of a custom protocol module specified in the Modules element.

AMPS provides support for the following protocols:

Table 7.2. Protocols

Protocol Name Description

amps Standard AMPS messaging, using
compact headers in JSON format.

AMPS accepts json as a synonym
for amps in a protocol declaration.

fix-session FIX session protocol, for use with
systems that publish FIX messages
using this format.

websocket-json Websocket protocol, using JSON
format headers.

Legacy protocols

fix Standard AMPS messaging, using
headers in FIX format.

nvfix Standard AMPS messaging, using
headers in NVFIX format.

Transports

22

Element Description
Protocol Name Description

soap Standard AMPS messaging, using
headers in SOAP format.

xml Standard AMPS messaging, using
headers in XML format.

60East recommends using the amps protocol for general purpose AM-
PS messaging. When your application uses the the FIX session layer or
Websockets, use those protocols.

Older versions of AMPS used message headers in the same format as the
message type: if your instance supports applications that expect to use a
specific message type protocol, use that protocol in your Transport
configuration.

Type The type of Transport. Valid values include: tcp, amps-replica-
tion

MessageType Defines the message type for this transport, and is a reference to the name
of a specific message type defined in the MessageTypes section or
one of the message types that AMPS loads by default.

In this release, AMPS loads the following message types by default: fix,
nvfix, xml, json, bson and binary.

ReuseAddr Permits an AMPS instance to use a socket that is in a WAIT state. This
can occur when AMPS has been restarted using the same InetAddr
and the previous instance did not fully close the port.

Valid values: true or false

Default: false

SlowClientDisconnect Define whether or not to disconnect clients based on the number of mes-
sages that are offlined for the client.

This setting does not affect disconnection based on the Client-
MaxBufferThreshold. AMPS always disconnects clients that ex-
ceed that threshold.

Valid values: enabled or disabled (also accepts true or false)

Default: enabled

This option is not used when the transport type is amps-replica-
tion.

ClientOffline Defines whether or not AMPS should offline messages a slow client to
reduce memory pressure on the AMPS instnace when a client falls be-
hind.

Transports

23

Element Description
Valid values: enabled or disabled (also accepts true or false)

Default: enabled

This option is not used when the transport type is amps-replication

ClientBufferThresh-
old

Defines how much memory a slow client can use before off lining.

Units: Bytes

Default: 50MB

This option is not used when the transport type is amps-replication

ClientMaxBuffer-
Threshold

The maximum amount of space, in bytes, that AMPS will use to buffer
messages for a slow client. If a client exceeds this threshold, AMPS dis-
connects the client. This limit applies regardless of other slow client set-
tings.

Notice that when offlining is enabled, clients can also be disconnect-
ed based on the count of messages offlined (as set by the ClientOf-
flineThreshold).

Units: Bytes

Default: 1GB

This option is not used when the transport type is amps-replication

ClientOfflineThresh-
old

Defines how many messages a slow client can offline before being dis-
connected.

Units: Messages

Default: 100K

This option is not used when the transport type is amps-replication

ClientOfflineDirec-
tory

Location to persist messages for a slow client in anticipation of it resum-
ing message processing. Required if ClientOffline is enabled.

Default: /var/tmp

This option is not used when the transport type is amps-replication

Entitlement Specifies the entitlement module to use for this transport. If no entitle-
ment module is provided, the transport uses the default entitlement mod-
ule for the instance. This element must contain a Module element with
the Name of an entitlement module. If the module requires options, those
options are provided in an Options element within the Entitlement
element.

Transports

24

Element Description
Default: The module specified in the Entitlement for the instance
(defaults to amps-default-entitlement-module if not provid-
ed)

Authentication Specifies the authentication module to use for this transport. If no authen-
tication module is provided, the transport uses the authentication module
for the instance. This element must contain a Module element with the
Name of an authentication module. If the module requires options, those
options are provided in an Options element within the Authenti-
cation element.

Default: The module specified in the Authentication element for
the instance (defaults to amps-default-authentication-mod-
ule if not provided)

<Transports>

 <!-- fix messages using TCP -->
 <Transport>
 <Name>fix-tcp</Name>
 <Type>tcp</Type>
 <InetAddr>9004</InetAddr>
 <ReuseAddr>true</ReuseAddr>
 <MessageType>fix</MessageType>
 <ClientBufferThreshold>
 4194304
 </ClientBufferThreshold>
 <ClientOffline>enabled</ClientOffline>
 <ClientOfflineThreshold>
 10000
 </ClientOfflineThreshold>
 <ClientOfflineDirectory>
 /var/tmp
 </ClientOfflineDirectory>
 <SlowClientDisconnect>true</SlowClientDisconnect>
 </Transport>

 <!-- nvfix messages using TCP -->
 <Transport>
 <Name>nvfix-tcp</Name>
 <Type>tcp</Type>
 <InetAddr>9005</InetAddr>
 <ReuseAddr>true</ReuseAddr>
 <MessageType>nvfix</MessageType>
 </Transport>

 <!-- xml messages using TCP -->

Transports

25

 <Transport>
 <Name>soap-tcp</Name>
 <Type>tcp</Type>
 <InetAddr>9006</InetAddr>
 <ReuseAddr>true</ReuseAddr>
 <MessageType>xml</MessageType>
 </Transport>

</Transports>

Example 7.1. Transports Example

26

Chapter 8. Logging
AMPS supports several different types of log formats, and multiple targets can be defined simultaneously.

Table 8.1. Logging Parameters

Element Description
Protocol Define the logging target protocol

Valid values: stdout, stderr, file, gzip, syslog
FileName File to log to. If RotationThreshold is specified, then -%n is

added to the file. If the protocol is gzip, then .gz is added to the file
name

Default: $PWD/%Y-%m-%dT%H%M%S.log

RotationThreshold Log size at which log rotation will occur. See Table 1.3 for details on
specifying file size.

Level Defines a lower bound (inclusive) log level for logging. All log mes-
sages at the specified level and up are logged.

Valid values: none, trace, debug, stats, info, warning, er-
ror, critical, emergency

Levels A comma separated list of specific log levels. Only log messages at
the specified levels will be logged. This element can be used with the
Level element. In that case, the AMPS will log all messages at Lev-
el and above, and in addition, will log errors at the levels specified
by Levels.

Valid values: none, trace, debug, stats, info, warning, er-
ror, critical, emergency

IncludeErrors Additional errors that should be included when logging. If an error
appears in this element, it will be logged regardless of the level of the
error.

ExcludeErrors Errors that should be excluded when logging. If an error appears in
this element, it will not be logged regardless of the level of the error.

If the same error appears in both IncludeErrors and Ex-
cludeErrors, ExcludeErrors takes precedence and the error
will not be logged.

Ident Syslog identifier for the AMPS instance.

Default: AMPS Instance Name

Options A comma separated list of syslog options. If using syslog, 60East
recommends using LOG_CONS, LOG_NDELAY, and LOG_PID. AM-
PS uses the standard options to syslog, as described in the syslog man
page.

Logging

27

Element Description
Facility Syslog facility to use.

<Logging>
 <Target>
 <Protocol>file</Protocol>
 <FileName>
 /var/tmp/amps/logs/\%Y\%m\%d\%H\%M\%S-\%n.log
 </FileName>
 <RotationThreshold>2G</RotationThreshold>
 <Level>trace</Level>
 <Levels>critical</Levels>
 </Target>
 <Target>
 <Protocol>syslog</Protocol>
 <Level>critical</Level>
 <Ident>amps_dma</Ident>
 <Options>LOG_CONS,LOG_NDELAY,LOG_PID</Options>
 <Facility>LOG_USER</Facility>
 </Target>
</Logging>

Example 8.1. Logging Example

28

Chapter 9. State-of-the-World (SOW)
Features

The SOW section of the configuration file holds the configuration for State-of-the-World topics and features
that depend on State-of-the-World topics.
Table 9.1. SOW section configuration elements

Element Description
TopicDefi-
nition

Defines a SOW topic. SOW topic definitions are used directly as a last-value cache,
and are required for many of the advanced messaging features in AMPS such as out-of-
focus notifications and delta messaging. SOW topic definitions are also the underlying
topics for views, aggregates, and conflated topics. TopicDefinition configuration
is described in Section 9.1.

View Defines a View over one or more SOW topics. A view can perform aggregation, can
JOIN multiple topics together. A view can be based on a SOW topic of one message
type and project results of a different message type. View configuration is described in
Section 9.2.

Conflated-
Topic

Defines a copy of a SOW topic that receives current value updates at a specified interval,
conflating any changes to values that occur between the scheduled updates. Conflated-
Topic configuration is described in Section 9.3.

The elements within the SOW section are described in detail in the following sections.

9.1. SOW/TopicDefinition

State of the World (SOW) provides a mechanism for AMPS to persist the most recent publish for each
message. Notice that AMPS does not require topics to be predeclared: defining topics in this way enables
the State of the World for the topic. This configuration is not required to publish messages to the topic.

Table 9.2 contains a listing of the parameters for a TopicDefinition section in the SOW section of
an AMPS configuration file.
Table 9.2. SOW/TopicDefinition

Element Description
FileName The file where the State of the World data will be stored.

This element is required for State of the World topics with a Durability of
persistent (the default) because those topics are persisted to the filesystem.
This is not required for State of the World topics with a durability of tran-
sient.

MessageType Type of messages to be stored. To use AMPS generated SOW keys, the message
type specified must support content filtering so that AMPS can determine the
SOW key for the message. In this release, AMPS loads these message types that
support content filtering: fix, nvfix, json, bson, and xml.

State-of-the-World (SOW) Features

29

Element Description
The binary message type does not support content filtering. This message
type does not support content filtering, so this message type can only be used
for a SOW when publishers use explict keys.

Topic The name of the SOW topic - all unique messages (see Key) on this topic will
be stored in a topic-specific SOW database.

Key Specifies an XPath within each message that AMPS will use to determine
whether a message is unique. This element can be specified multiple times to
create a composite key.

A SOW topic can have either a key determined by AMPS, or publishers can
provide the SOW key for a message with each message. 60East recommends
having AMPS determine the key unless your application has specific needs that
make this impractical.

AMPS automatically creates a hash index for the SOW key.

HashIndex AMPS provides the ability to do fast lookup for SOW records based on specific
fields.

When one or more HashIndex elements are provided, AMPS creates a hash
index for the fields specified in the element. These indexes are created on startup,
and are kept up to date as records are added, removed, and updated.

The HashIndex element contains a Key element for each field in the hash
index.

AMPS uses a hash index when a query uses exact matching for all of the fields
in the index. AMPS does not use hash indexes for range queries or regular ex-
pressions.

AMPS automatically creates a hash index for the SOW key.

RecoveryPoint For SOW topics that are covered by the transaction log, the point from which to
recover the SOW if the SOW file is removed, or if the SOW topic has tran-
sient duration.

This configuration item allows two values:

• epoch recovers the SOW from the beginning of the transaction log

• now recovers the SOW from the current point in the transaction log

Defaults to epoch.

Index AMPS supports the ability to precreate memo indexes for specific fields using
the Index configuration option.

When one or more Index elements are provided, AMPS creates memo index-
es for any field specified in an Index element on startup, before a query that
uses that field runs. Otherwise, AMPS indexes each field the first time a query

State-of-the-World (SOW) Features

30

Element Description
uses the field. Adding one or more Index configurations to a TopicDefin-
ition can improve retrieval performance the first time a query that contains
the indexed fields runs for large SOW topics.

RecordSize Size (in bytes) of a SOW record for this topic.

Default: 512

InitialSize Initial size (in records) of the SOW database file for this topic.

Default: 2048

IncrementSize Number of records to expand the SOW database (for this topic) by when more
space is required.

Default: 1000

Expiration Time for how long a record should live in the SOW database for this topic. The
expiration time is stored on each message, so changing the expiration time in
the configuration file will not affect the expiration of messages currently in the
SOW.

AMPS accepts interval values for the Expiration, using the interval format de-
scribed in the AMPS Configuration Guide section on units, or one of the fol-
lowing special values:

• A value of disabled specifies that AMPS will not process SOW expiration
for this topic, regardless of any expiration value set on the message. In this
case, AMPS saves the expiration for the message, but does not process it. The
value must be set to disabled (the default) if History is enabled for this
topic.

• A value of enabled specifies that AMPS will process SOW expiration for
this topic, with no expiration set by default. Instead, AMPS uses the value set
on the individual messages (with no expiration set for messages that do not
contain an expiration value).

Default: disabled (never expire)

KeyDomain The seed value for SowKeys used within the topic. The default is the topic
name, but it can be changed to a string value to unify SowKey values between
different topics.

For example, if your application has a ShippingAddress SOW and a
CreditRating SOW that both use /customerID as the SOW key, you can
use a KeyDomain to ensure that the generated SowKey for a given /cus-
tomerId is identical for both SOW topics. This does not affect how AMPS
processes the SOW topics, but can make correlating information from different
SOW topics easier in your application.

Default: the name of the SOW topic

State-of-the-World (SOW) Features

31

Element Description
Durability Defines the data durability of a SOW topic. SOW databases listed as persis-

tent are stored to the file system, and retain their data across instance restarts.
Those listed as transient are not persisted to the file system, and are reset
each time the AMPS instance restarts.

Default: persistent

Valid values: persistent or transient

Synonyms: Duration is also accepted for this parameter for backward com-
patibility with configuration prior to 4.0.0.1

History Enable historical query for this SOW. This element contains a Window and
Granularity element. When the History element is present, historical
query is enabled for this sow. Otherwise, AMPS does not enable historical query
and does not store the historical state of the SOW.

Expiration must be disabled when History is enabled.

Window For a historical SOW, the length of time to store history. For example, when the
value is 1w, AMPS will store one week of history for this SOW.

Used within the History element.

Default: By default, AMPS does not expire historical SOW data.

Granularity For a historical SOW, the granularity of the history to store. In many cases, it
is not necessary for AMPS to store all of the updates to the SOW. This para-
meter sets the resolution at which you can query history. For example, with a
granularity of 1m, AMPS will store the state of an updated messages no more
frequently than once a minute.

Used within the History element.

An example of a SOW configuration looks like the following:

<SOW>

 <!-- Simple SOW topic definition -->
 <TopicDefinition>
 <Topic>orders</Topic>
 <Key>/orderId</Key>
 <MessageType>nvfix</MessageType>
 <FileName>./sow/%n.sow</FileName>
 </TopicDefinition>

 <!-- SOW with hash indexes -->
 <TopicDefinition>
 <Topic>customers</Topic>

State-of-the-World (SOW) Features

32

 <Key>/customerId</Key>
 <MessageType>json</MessageType>
 <FileName>./sow/%n.sow</FileName>
 <HashIndex>
 <Key>/customerName</Key>
 </HashIndex>
 <HashIndex>
 <Key>/zipCode</Key>
 <Key>/customerType</Key
 </HashIndex>
 </TopicDefinition>

 <!-- Historical SOW -->
 <TopicDefinition>
 <Topic>catalog</Topic>
 <Key>/sku</Key>
 <MessageType>json</MessageType>
 <FileName>./sow/%n.sow</FileName>
 <History>
 <Window>7d</Window>
 <Granularity>15m</Granularity>
 </History>
 </TopicDefinition>
</SOW>

Example 9.1. SOW Topic Configuration

9.2. SOW/ViewDefinition

Table 9.3 contains a listing of the parameters for a ViewDefinition section in the SOW section of an
AMPS configuration file.

Table 9.3. SOW/ViewDefinition

Element Definition
FileName File location to store view data.
MessageType One of the message types configured for the instance. AMPS includes fix,

xml, nvfix, json, and bson message types. You can also use any custom
message type defined for the configuration file, provided that the message type
supports views.

Notice that the binary message type does not specify a fixed format for the
message contents, so that message type cannot be used in a view.

Topic Defines the topic name for this view.
UnderlyingTopic Defines the SOW topic or topics on which this view is based. This element can

contain a single topic name, or any number of Join elements.

State-of-the-World (SOW) Features

33

Element Definition
MessageType The message type of the view. This does not need to be the same type as any of

the topics in the aggregation, but does need to be a message type that supports
views.

Projection/Field Defines what the view will contain. This element can be specified multiple
times to compose a complex view. Complex expressions that use aggregation
functions and conditional branching can also be used.

Grouping/Field Defines how the records in the underlying topic will be grouped. This is anal-
ogous to a SQL GROUP BY clause.

KeyDomain The seed value for SowKeys used within this topic. The default is the topic
name, but it can be changed to a string value to unify SowKey values between
different topics.

Join Within an UnderlyingTopic, each Join specifies two topics to join to-
gether to create the view, as well as the relationship between those topics.

An UnderlyingTopic can have any number of Join specifications. For
more information on Join specifications, see the AMPS User Guide.

<SOW>
 <TopicDefinition>
 <Topic>/ett/order</Topic>
 <MessageType>fix</MessageType>
 <Key>/orderId</Key>
 </TopicDefinition>
 <ViewDefinition>
 <FileName>./sow/%n.view.sow</FileName>
 <MessageType>nvfix</MessageType>
 <Topic>TOTAL_VALUE</Topic>
 <UnderlyingTopic>/ett/order</UnderlyingTopic>
 <Projection>
 <Field>/109</Field>
 <Field>SUM(/14 * /6) AS /71406</Field>
 </Projection>
 <Grouping>
 <Field>/109</Field>
 </Grouping>
 </ViewDefinition>
</SOW>

Example 9.2. View Example

9.3. SOW/ConflatedTopic

State-of-the-World (SOW) Features

34

AMPS provides the ability to create ongoing snapshots of a SOW topic, called conflated topics (also
called topic replicas in previous releases of AMPS). Topic replicas are updated on an interval, and store a
snapshot of the current state of the world at each interval. This helps to manage bandwidth to clients that
do not act on each update, such as a client UI that refreshes every second rather than with every update.

For compatibility with previous versions of AMPS, AMPS allows you to use TopicReplica as a syn-
onym for ConflatedTopic.

Table 9.4. SOW/ConflatedTopic Parameters

Element Description
Topic String used to define the name of the conflated topic. While AMPS doesn't en-

force naming conventions, it can be convenient to name the conflated topic based
on the underlying topic name. For example, if the underlying topic is orders,
it can be convenient to name the conflated topic orders-C.

UnderlyingTopic String used to define the SOW topic which provides updates to the conflated
topic. This must exactly match the name of a SOW topic.

MessageType The message format of the underlying topic. This MessageType must be the
MessageType of the provided UnderlyingTopic.

Interval The frequency at which AMPS updates the data in the conflated topic.

Default: 5 seconds

Filter Content filter that is applied to the underlying topic. Only messages that match
the content filter are stored in the conflated topic.

<ConflatedTopic>
 <Topic>FastPublishTopic-C</Topic>
 <FileName>./sow/%n.sow</FileName>
 <MessageType>nvfix</MessageType>
 <UnderlyingTopic>FastPublishTopic</UnderlyingTopic>
 <Interval>5s</Interval>
 <Filter>/region = 'A'</Filter>
</ConflatedTopic>

35

Chapter 10. Replication Destination
An AMPS replication target is defined within the Replication section of an AMPS configuration file.
Within the Replication section, there are one or more Destination sections, each specifying a
unique replication target. Table 10.1 contains a listing of the parameters for the Destination section
in the Replication section of an AMPS configuration file.

Table 10.1. Replication Destination

Element Description
Destination Required parent tag, which defines a unique replication target.
SyncType Defines how synchronization of ack messages is handled, either sync or

async.

Transport The message type and URI where messages will be replicated. Requires a Type,
which must be “amps-replication”, and one or more InetAddr elements.

AMPS supports multiple Transport items within a Destination. When
multiple Transports are provided, AMPS interprets these as transports for redun-
dant servers, listed in priority order. If AMPS cannot connect to any of the inter-
net addresses in a transport, AMPS tries the next Transport, in the order in
which the Transport items appear in the file. When AMPS has tried all of the
Transport items, AMPS tries again at the beginning of the list of transports.

To provide failover, use multiple InetAddr elements within a single Trans-
port for servers that can use the same Authenticator context (that is, the
same credentials provided with the same authentication scheme). Use multiple
Transport elements if the failover servers require different authentication.

Type

The Type of a replication destination must always be amps-replication.

InetAddr

A Transport for a replicaiton destination requires one or more InetAddr elements.

When a single InetAddr element is present, AMPS connect to that address for
replication.

When more than one InetAddr element is present, AMPS uses the list of ad-
dresses as a prioritized list of failover servers to provide high availability. The
list is in priority order, with the most preferred server at the beginning of the list.
Each time AMPS needs to make a connection for this Destination, AMPS
starts with the first address in the list and tries each address in order until a con-
nection succeeds. If no connection succeeds, AMPS waits for a timeout period
and then either moves to the next Transport (if more than one Transport
is present in the destination) or starts again with the first address in the list. Each
time AMPS tries all of the addresses in the list without a successful connection,

Replication Destination

36

Element Description
AMPS increases the timeout period between tries, up to a maximum timeout. The
first time through the list, upon startup, AMPS gives addresses extra time, up to
60 seconds, to connect successfully.

Authenticator

A Transport element within a Destination may contain an Authenti-
cator element, which specifies a module that provides credentials to use when
connecting to the destination. All of the InetAddr elements specified within a
Transport use the same Authenticator.

Name The name of the destination. This name appears in the AMPS logs when AMPS
logs a message about this destination.

Topic Defines the topic name to replicate. Requires a Name and MessageType. See
the following table (Replication Destination : Topic Definition) for details.

PassThrough Specifies source instances to pass through to this destination. The value of this
element is a regular expression which is matched against the group name of the
instance that sent the replication message to this instance. When the regular ex-
pression matches, the replication message is eligible for passthrough, and will be
sent to the destination if the Topic specifications match the message.

Compression Specifies whether to use compression for this destination. When set to enabled,
AMPS compresses traffic to this destination.

Default: disabled

A replication destination can contain any number of Topic definition elements

Table 10.2. Replication Destination : Topic Definition

Element Description
Name The name of the topic to replicate. The Name can be either a literal topic name

or a regular expression.

When Name is a literal topic, a topic with that name and the specified message
type must be captured in a transaction log. When Name is a regular expression,
only topics that match the expression., match the message type, and are present
in a transaction log are replicated.

MessageType The message type of the topic to replicate.

Filter A content filter to apply to the topics. When present, only messages that match
the filter are replicated. This filter follows the standard AMPS filter syntax.

<Replication>
 <Destination>
 <Name>amps-2</Name>
 <Topic>
 <Name>ORDER_STATE-Replication</Name>

Replication Destination

37

 <MessageType>xml</MessageType>
 </Topic>
 <Topic>
 <Name>REFERENCE_INFO-.*</Name>
 <MessageType>json</MessageType>
 <Filter>/state = 'published'</Filter>
 </Topic>
 <SyncType>sync</SyncType>
 <Compression>enabled</Compression>
 <Transport>
 <Type>amps-replication</Type>
 <InetAddr>remote.example.com:19005</InetAddr>
 <InetAddr>remote-backup.example.com:19080</InetAddr>
 <Authenticator>
 <Module>my-credentials-store-module</Module>
 </Authenticator>
 </Transport>
 <Passthrough>NYC</Passthrough>
 </Destination>
</Replication>

Example 10.1. Replication Example

38

Chapter 11. Transaction Log
AMPS includes the ability to record and replay messages. This capability can be used by applications
for durable subscriptions, reliable publish, and historical replay. The AMPS transaction log is also the
foundation of the high availability features in AMPS. To enable message recording and replay, configure
a TransactionLog to keep a journal of messages published to an AMPS instance. The Transactional
Messaging and Bookmark Subscriptions chapter in the AMPS User Guide covers how to use the transac-
tion log for historical replay, durable publish, and durable subscriptions. The Replication and High Avail-
ability chapter in the AMPS User Guide covers the use cases where a TransactionLog can be used
to maximize the up-time of your AMPS instance.

Table 11.1. TransactionLog Configuration Parameters

Element Description
JournalDirectory Filesystem location where journal files will be stored.

JournalArchiveDirectory File system location where journal files are archived.

PreAllocatedJournalFiles The number of journal files AMPS will create as part of the server
startup. Default: 2. Minimum: 1

MinJournalSize The smallest possible journal size that AMPS will create. Default:
1GB. Minimum: 10M

Topic The topic to include in the transaction log. When no Topic is
specified, AMPS initializes transaction log management for the
instance, but does not persist messages.If a Topic is specified,
then all messages which match exactly the specified topic or reg-
ular expression will be included in the transaction log. If you want
all topics of a specific message type to be persisted, use the regu-
lar expression .* for the name of the topic.

Multiple Topic elements can be included in a Transaction-
Log element.

FlushInterval The interval at which messages will be flushed the journal file
during periods of slow activity. Default: 100ms Maximum: 100ms
Minimum: 30us

MetadataIndexing Specifies whether to create journal index files for the journal.
When set to persistent, AMPS creates journal index files.
When set to transient, AMPS does not create journal index
files. Default: persistent

O_DIRECT Where supported, O_DIRECT will perform DMA directly from/
to physical memory to a userspace buffer. Having this enabled
can improve AMPS performance, however not all devices support
O_DIRECT. Default: enabled.

DEPRECATED BatchSize This element is no longer necessary in releases of AMPS 4.0 and
greater. If this element is present in the configuration, AMPS
emits a deprecation warning and ignores the configured value.

Transaction Log

39

Example 11.1 demonstrates a transaction log where the journal file will be written to ./amps/journal.
When AMPS starts, a single journal file will be pre-allocated as noted by the PreallocationJour-
nalFiles setting; and when a the first SOW is completely full, 128 new journal files will be created.
This journal is going to contain only those messages which match the topic orders and also have a
message type of fix. All messages that are going to be written to this file will be flushed in 40us intervals.

<AMPSConfig>
...

 <TransactionLog>
 <JournalDirectory>./amps/journal/</JournalDirectory>
 <PreallocatedJournalFiles>1</PreallocatedJournalFiles>
 <MinJournalSize>10MB</MinJournalSize>
 <Topic>
 <Name>orders</Name>
 <MessageType>nvfix</MessageType>
 <Filter>/price > 5</Filter>
 </Topic>
 <FlushInterval>40ms</FlushInterval>
 </TransactionLog>

...
</AMPSConfig>

Example 11.1. Transaction Log Configuration Example

40

Chapter 12. Authentication
The Authentication element specifies the module to use for validating user identity. AMPS allows
you to set the default Authentication for the instance as a whole, and also to set the Authenti-
cation on each Transport individually.

Authentication elements are not required. The instance authentication defaults to using the amps-
default-authentication-module if no Authentication element is specified for the in-
stance. An individual Transport defaults to using the instance Authentication if no Authen-
tication element is provided for that Transport.

Table 12.1. Authentication Parameters

Name Description

Module The element specifies the name of the module that will be used for au-
thentication. The value of this element must be the name of an authen-
tication module loaded in the Modules section of the configuration
file or one of the authentication modules that AMPS loads by default.

By default, AMPS loads the authentication modules listed in Ta-
ble 12.2.

Options A list of supported features for the implemented library. AMPS allows
you to pass options to the module by specifying elements within the
Options element. The exact options that the module requires, if any,
are determined by the creator of the module.

AMPS loads the following authentication modules by default:

Table 12.2. AMPS default authentication modules

Module Name Policy

amps-default-authentication-module Authenticate any user, regardless of the credentials
provided. Does not provide the user name to AMPS.

amps-default-no-
authentication-module

Do not authenticate any user.

41

Chapter 13. Entitlement
The Entitlement element specifies the module to use for validating permissions to resources within
AMPS. AMPS allows you to set the default Entitlement for the instance as a whole, and also to set
the Entitlement on each Transport individually.

Entitlement elements are not required. The instance authentication defaults to using the amps-de-
fault-entitlement-module if no Entitlement element is specified for the instance. An in-
dividual Transport defaults to using the instance Entitlement if no Entitlement element is
provided for that Transport.

Table 13.1. Entitlement Parameters

Name Description

Module The element specifies the name of the module that will be used for
entitlement. The value of this element must be the name of an entitle-
ment module loaded in the Modules section of the configuration file
or one of the entitlement modules that AMPS loads by default.

By default, AMPS loads the entitlement modules listed in Table 13.2.

Options A list of options to provide to the module for this instance of the mod-
ule. AMPS allows you to pass options to the module by specifying
elements within the Options element. The exact options that the
module requires, if any, are determined by the creator of the module.

AMPS loads the following entitlement modules by default:

Table 13.2. AMPS default entitlement modules

Module Name Policy

amps-default-entitlement-module Allow all permissions to every user.

amps-default-no-entitlement-module Deny all permissions to every user.

42

Chapter 14. Actions
AMPS includes the ability to perform administrative tasks in response to Linux signals or on a set schedule.
The Actions element allows you to specify these actions and when they occur.

The Actions element contains one or more Action elements. An Action element contains an On
element, which tells AMPS when to perform the task, and a Do element, which tells AMPS what task
to perform.

14.1. Running an Action on a Schedule
AMPS provides the amps-action-on-schedule module for running actions on a specified sched-
ule.

The options provided to the module define the schedule on which AMPS will run the actions in the Do
element.

Table 14.1. Parameters for Scheduling Actions

Parameter Description
Every Specifies a recurring action that runs whenever the time matches the provided speci-

fication. Specifications can take three forms:

• Timer action. A specification that is simply a duration, such as 4h or 1d, creates
a timer action. AMPS starts the timer when the instance starts. When the timer
expires, AMPS runs the action and resets the timer.

• Daily action. A specification that is a time of day, such as 00:30 or 17:45, creates
a daily action. AMPS runs the action every day at the specified time. AMPS uses
a 24 hour notation for daily actions.

• Weekly action. A specification that includes a day of the week and a time, such as
Saturday at 11:00 or Wednesday at 03:30 creates a weekly action.
AMPS runs the action each week on the day specified, at the time specified. AMPS
uses a 24 hour notation for weekly actions.

AMPS accepts both local time and UTC for time specifications. To use UTC, append
a Z to the time specifier. For example, the time specification 11:30 is 11:30 AM
local time. The time specification 11:30Z is 11:30 AM UTC.

Name The name of the schedule. This name appears in log messages related to this schedule.

Default: unknown

Actions

43

14.2. Running an Action in Response to a
Signal

AMPS provides the amps-action-on-signal module for running actions when AMPS receives a
specified signal.

The module requires the Signal parameter:

Table 14.2. Parameters for Responding to Signals

Parameter Description
Signal Specifies the signal to respond to. This module supports the standard Linux signals.

Configuring an action uses the standard name of the signal.

For example, to configure an action to SIGUSR1, the value for the Signal element
is SIGUSR1. To configure an action for SIGHUP, the value for the Signal element
is SIGHUP and so on.

AMPS reserves SIGQUIT for producing minidumps, and does not allow this module
to override SIGQUIT. AMPS registers actions for several signals by default. See the
section called “Default Signal Actions” for details.

Actions can be used to override the default signal behavior for AMPS.

Default Signal Actions
By default, AMPS registers the following actions for signals.

Table 14.3. Default Actions

On Event Action

SIGUSR1 amps-action-do-disable-authentication

SIGUSR1 amps-action-do-disable-entititlement

SIGUSR2 amps-action-do-enable-authentication

SIGUSR2 amps-action-do-enable-entitlement

SIGINT amps-action-do-shutdown

SIGTERM amps-action-do-shutdown

SIGHUP amps-action-do-shutdown

The actions in the table above can be be overriden by creating an explicit action in the configuration file.

Notice that AMPS also reserves SIQUIT to perform the action amps-action-do-minidump. This
behavior is reserved, and cannot be overriden.

Actions

44

14.3. Running an Action on Startup or Shut-
down

AMPS includes modules to run actions when AMPS starts up or shuts down.

The amps-action-on-startup module runs actions as the last step in the startup sequence. The
amps-action-on-shutdown module runs actions as the first step in the AMPS shutdown sequence.

In both cases, actions run in the order that the actions appear in the configuration file.

14.4. Rotate Log Files
AMPS provides the following module for rotating log files. AMPS loads this module by default:

Table 14.4. Managing Logs

Module Name Does

amps-action-do-
rotate-logs

Rotates logs that are older than a specified age, for log types that sup-
port log rotation. Rotating a log involves closing the log and opening
the next log in sequence.

AMPS will use the name specifier provided in the AMPS configura-
tion for the new log file. This may overwrite the current log file if
the specifier results in the same name as the current log file.

This module requires an Age parameter that specifies the age of the log files to process, as determined
by the last message written to the file.

Table 14.5. Parameters for Rotating Log Files

Parameter Description
Age Specifies the age of files to process. The module processes any file older

than the specified Age. For example, when the Age is 5d, only files that
have been unused for longer than 5 days will be processed by the module.
AMPS does not process the current log file, even if it has been inactive for
longer than the Age parameter.

There is no default for this parameter.

14.5. Manage Statistics Files
AMPS provides the following modules for managing statistics. As a maintenance strategy, 60East recom-
mends truncating statistics on a regular basis. This frees space in the statistics file, which will be reused

Actions

45

as new statistics are generated. It is generally not necessary to vacuum statistics unless you have changed
your retention policy so that less data is retained between truncation operations. With regular truncation,
the statistics file will usually stabilize at the correct size to hold the amount of data your application gen-
erates between truncation operations.

AMPS loads these modules by default.

Table 14.6. Managing Logs

Module Name Does

amps-action-do-truncate-statistics Removes statistics that are older than a specified
age. This frees space in the statistics file, but does
not reduce the size of the file.

amps-action-do-vacuum-statistics Remove unused space in the statistics file to re-
duce the size of the file.

In general, it is not necessary to remove unused
space in the statistics file. This operation can be
expensive, and query access to the statistics data-
base can be unavailable for an extended period of
time if the file is large. If storage space is in high
demand, and the interval at which the file is vacu-
umed has been reduced, removing space from the
file can sometimes reduce the space needs.

60East recommends using this action only in long-
running AMPS environments where space is at a
premium, and scheduling the action during times
when it is acceptable for monitoring of the system
to be unavailable while the file is processed.

The amps-action-do-truncate-statistics module requires an Age parameter that specifies
the age of the statistics to process.

Table 14.7. Parameters for Managing Statistics

Parameter Description
Age Specifies the age of the statistics to remove. The module processes any file

older than the specified Age. For example, when the Age is 5d, the module
removes statistics that are older than 5d.

There is no default for this parameter.

14.6. Manage Journal Files
AMPS provides the following modules for managing journal files. AMPS loads these modules by default:

Actions

46

Table 14.8. Managing Journals

Module Name Does

amps-action-do-archive-journal Archives journal files that are older than a specified age
to the JournalArchiveDirectory specified for
the transaction log.

amps-action-do-compress-journal Compresses journal files that are older than a specified
age.

amps-action-do-remove-journal Deletes journal files that are older than a specified age.

Each of these modules requires an Age parameter that specifies the age of the journal files to process.

Table 14.9. Parameters for Managing Journals

Parameter Description
Age Specifies the age of files to process. The module processes any file older

than the specified Age. For example, when the Age is 5d, only files that
have been unused for longer than 5 days will be processed by the module.
AMPS does not process the current log file, or files that are being used for
replay or replication, even if the file has been inactive for longer than the
Age parameter.

There is no default for this parameter.

14.7. Removing Files
AMPS provides the following module for removing files. Use this action to remove error log files that
are no longer needed. AMPS loads this module by default. This action cannot be used to safely remove
journal files (also known as transaction log files). For those files, use the journal management actions
described in Section 14.6.

This action removes files that match an arbitrary pattern. If the pattern is not specified carefully,
this action can remove files that contain important data, are required for AMPS, or are required
by the operating system.

This action cannot be used to safely remove journal files. Use the actions in Section 14.6 to
manage journal files.

Table 14.10. Removing Files

Module Name Does

amps-action-do-
remove-files

Removes files that match the specified pattern that are older than the
specified age. This action accepts an arbitrary pattern, and removes
files that match that pattern. While AMPS attempts to protect against
deleting journal files, using a pattern that removes files that are crit-

Actions

47

Module Name Does
ical for AMPS, for the application, or for the operating system may
result in loss of data.

The module does not recurse into directories. It skips open files. The
module does not remove AMPS journals (that is, files that end with
a .journal extension), and reports an error if a file with that ex-
tension matches the specified Pattern.

The commands to remove files are executed with the current permis-
sions of the AMPS process.

This module requires an Age parameter that specifies the age of the files to remove, as determined by the
update to the file. This module also requires a Pattern parameter that specifies a pattern for locating
files to remove.

Table 14.11. Parameters for Removing Files

Parameter Description
Age Specifies the age of files to process. The module removes any file older than

the specified Age that matches the specified Pattern. For example, when
the Age is 5d, only files that have not modified within 5 days and that match
the pattern will be processed by the module.

There is no default for this parameter.
Pattern Specifies the pattern for files to remove. The module removes any files that

match the specified Pattern that have not been modified more recently
than the specified Age.

This parameter is interpreted as a Unix shell globbing pattern. It is not inter-
preted as a regular expression.

As with other parameters that use the file system, when the pattern specified
is a relative path the parameter is interpreted relative to the current working
directory of the AMPS process. When the pattern specified is an absolute
path, AMPS uses the absolute path.

There is no default for this parameter.

14.8. Manage SOW Contents
The amps-do-delete-sow module deletes messages from SOW topics. The module accepts the fol-
lowing options:

Table 14.12. Parameters for Deleting SOW Messages

Parameter Description
MessageType The MessageType for the SOW topic.

Actions

48

Parameter Description
There is no default for this parameter.

Topic The name of the SOW topic from which to delete messages.

There is no default for this parameter

Filter Set the filter to apply. If a Filter is present, only messages matching that
filter will be deleted.

14.9. Create Mini-Dump
AMPS minidumps provide a way for the 60East Technologies engineering team to inspect the state of a
running AMPS system.

The amps-do-minidump module creates a minidump. This module is typically used with the amps-
action-on-signal module to provide a way for a developer or administrator to easily create a
minidump for diagnostic purposes.

14.10. Manage Security
AMPS provides modules for managing the security features of an instance.

Authentication and entitlement can be enabled or disabled, which is useful for debugging or auditing
purposes. You can also reset security and authentication, which clears the AMPS internal caches and gives
security and authentication modules the opportunity to reinitialize themselves, for example, by re-parsing
an entitlements file.

AMPS loads the following modules by default:

Table 14.13. Security Modules

Module Name Does

amps-action-do-
disable-authentication

Disables authentication for the instance.

amps-action-do-
disable-entitlement

Disables entitlement for the instance.

amps-action-do-
enable-authentication

Enables authentication for the instance.

amps-action-do-enable-entitlement Enables entitlement for the instance.

amps-action-do-
reset-authentication

Resets authentication by clearing AMPS caches and
reinitializing authentication

amps-action-do-reset-entitlement Resets entitlement by clearing AMPS caches and
reinitializing entitlement

Actions

49

These modules require no parameters.

14.11. Manage Transports
AMPS provides modules that can enable and disable specific transports.

Table 14.14. Transport Action Modules

Module Name Does

amps-action-do-
enable-transport

Enables a specific transport.

amps-action-do-
disable-transport

Disables a specific transport.

These modules accept the following options:

Table 14.15. Parameters for Managing Transports

Parameter Description

Transport The Name of the transport to enable or disable.

If no Name is provided, the module affects all transports.

14.12. Manage Replication
AMPS provides modules for downgrading replication destinations that fall behind and upgrading them
again when they catch up.

Table 14.16. Replication Modules

Module Name Does

amps-action-do-
downgrade-replication

Downgrades replication connections from synchronous
to asynchronous if the age of the last acknowledged mes-
sage is older than a specified time period.

amps-action-do-
upgrade-replication

Upgrades previously-downgraded replication connec-
tions from asynchronous to synchronous if the age of the
last acknowledged message is more recent than a speci-
fied time period.

The modules determine when to downgrade and upgrade based on the age of the oldest message that a
destination has not yet acknowledged. When using these modules, it is important that the thresholds for
the modules are not set too close together. Otherwise, AMPS may repeatedly upgrade and downgrade the
connection when the destination is consistently acknowledging messages at a rate close to the threshold
values. To avoid this, 60East recommends that the Age set for the upgrade module is 1/2 of the age used
for the downgrade module.

Actions

50

The amps-action-do-downgrade-replication module accepts the following options:

Table 14.17. Parameters for Downgrading Replication

Parameter Description
Age Specifies the maximum message age at which AMPS downgrades a replica-

tion destination to async. When this action runs, AMPS downgrades any
destination for which the oldest unacknowledge message is older than the
specified Age.

For example, when the Age is 5m, AMPS will downgrade any destination
where a message older than 5 minutes has not been acknowledged.

There is no default for this parameter.

GracePeriod The approximate time to wait after start up before beginning to check
whether to downgrade links. The GracePeriod allows time for other AM-
PS instances to start up, and for connections to be established between AM-
PS instances.

The amps-action-do-upgrade-replication module only applies to destinations configured as
sync that have been previously downgraded. The module accepts the following options:

Table 14.18. Parameters for Upgrading Replication

Parameter Description
Age Specifies the maximum message age at which a previously-downgraded des-

tination will be upgraded to sync mode. When this action runs, AMPS up-
grades any destination that has been previously downgraded where the oldest
unacknowledged message to AMPS is more recent than time value specified
in the Age parameter.

For example, if a destination has been downgraded to async mode and the
Age is 2m, AMPS will upgrade the destination when the oldest unacknowl-
edged message to that destination is less than 2 minutes old.

There is no default for this parameter.

GracePeriod The approximate time to wait after start up before beginning to check
whether to upgrade links. The GracePeriod allows time for other AMPS
instances to start up, and for connections to be established between AMPS
instances.

14.13. Shut Down AMPS
The amps-action-do-shutdown module shuts down AMPS. This module is registered as the default
action for several Linux signals, as described in the section called “Default Signal Actions”.

Actions

51

Table 14.19. Do Nothing Module

Module Name Does

amps-action-do-
shutdown

Shuts down AMPS.

14.14. Do Nothing
The amps-action-do-nothing module does not modify the state of AMPS in any way. The module simply
logs that it was called.

The module provides a convenient way of testing schedule specifications or signal handling without re-
quiring further configuration.

Table 14.20. Do Nothing Module

Module Name Does

amps-action-do-
nothing

Takes no action.

14.15. Action Configuration Examples

Archive Files Older Than One Week, Every Saturday
The listing below asks AMPS to archive files older than 1 week, every Saturday at 12:30 AM:

<Actions>
 <Action>
 <On>
 <Module>amps-action-on-schedule</Module>
 <Options>
 <Every>Saturday at 00:30</Every>
 <Name>Saturday Night Fever</Name>
 </Options>
 </On>
 <Do>
 <Module>amps-action-do-archive-journal</Module>
 <Options>
 <Age>7d</Age>
 </Options>
 </Do>
 </Action>

Actions

52

 </Actions>

Disable and Re-enable Security on Signal
The listing below disables authentication and entitlement when AMPS receives on the USR1 signal. When
AMPS receives the USR2 signal, AMPS re-enables authentication and entitlement. This configuration is,
in effect, the configuration that AMPS installs by default for these signals:

<Actions>
 <Action>
 <On>
 <Module>amps-action-on-signal</Module>
 <Options>
 <Signal>SIGUSR1</Signal>
 </Options>
 </On>
 <Do>
 <Module>amps-action-do-disable-authentication</Module>
 </Do>
 <Do>
 <Module>amps-action-do-disable-entitlement</Module>
 </Do>
 </Action>
 <Action>
 <On>
 <Module>amps-action-on-signal</Module>
 <Options>
 <Signal>SIGUSR2</Signal>
 </Options>
 </On>
 <Do>
 <Module>amps-action-do-enable-authentication</Module>
 </Do>
 <Do>
 <Module>amps-action-do-enable-entitlement</Module>
 </Do>
 </Action>
 </Actions>

53

Index
A
action

loading modules, 15
actions, 42
Admin server, 14
authentication

configuring, 40
default for instance, 10, 10
loading modules, 15

Authentication
Transport, 24

authenticator
default for instance, 10
loading modules, 15

C
client offlining configuration, 22
configuration validation, 12
conflated topics, 33

D
default actions, 43

E
entitlement

configuring, 41
default for instance, 10, 10
loading modules, 15

Entitlement
Transport, 23

error log
rotation size, 26

F
FileName

Logging, 26
SOW/TopicDefinition, 28

H
historical SOW

enabling, 31

I
Instance name, 10
instance name, 10

Interval
Admin, 14

J
joining topics, 32

L
logging

configuration, 26
including specific levels, 26

M
message expiration, 30
message type

loading modules, 15
specifying module, 18

MessageType
defining and configuring, 18
SOW/ViewDefinition, 32
Transport, 22

minidump
configuring dump location, 11
disabling, 11

module
setting name, 15

Module
MessageType, 18

Modules
configuration, 15

N
Name

AMPSConfig, 10
MessageType, 18
Module, 15
Transport, 21

O
Options

Logging, 26

P
projecting topics, 32
protocol

loading modules, 15
Protocol

Logging, 26
Transport, 21

Index

54

R
recording messages, 38
replication, 35

setting group name, 10
reserved signals

SIGQUIT, 43

S
SIGHUP, 43
SIGINT, 43
SIGQUIT, 43
SIGTERM, 43
SIGUSR1, 43
SIGUSR2, 43
SOW, 28

configuration, 28
ConflatedTopic, 33
TopicDefinition, 28
ViewDefinition, 32

sow statistics interval, 11
State of the World (SOW)

configuration, 28
stats.db file location, 14

T
topic replicas, 33
transaction log, 38
Transport, 21
tuning, 12

V
views

configuring, 32

	AMPS Configuration Reference Guide
	Table of Contents
	Chapter 1. AMPS Configuration Reference Guide
	1.1. AMPS Configuration Basics
	AMPS Configuration File Special Characters
	State of the World File Name
	Log Rotation Name
	Dates

	Using Units in the Configuration
	Environment Variables in AMPS Configuration
	Internal Environment Variables

	Chapter 2. Generating a Configuration File
	Chapter 3. Instance Level Configuration
	3.1. SOW Statistics Interval
	3.2. Minidump Directory
	3.3. Configuration Validation
	3.4. Tuning

	Chapter 4. Admin Server
	Chapter 5. Modules
	Chapter 6. Message Types
	Chapter 7. Transports
	Chapter 8. Logging
	Chapter 9. State-of-the-World (SOW) Features
	9.1. SOW/TopicDefinition
	9.2. SOW/ViewDefinition
	9.3. SOW/ConflatedTopic

	Chapter 10. Replication Destination
	Chapter 11. Transaction Log
	Chapter 12. Authentication
	Chapter 13. Entitlement
	Chapter 14. Actions
	14.1. Running an Action on a Schedule
	14.2. Running an Action in Response to a Signal
	Default Signal Actions

	14.3. Running an Action on Startup or Shutdown
	14.4. Rotate Log Files
	14.5. Manage Statistics Files
	14.6. Manage Journal Files
	14.7. Removing Files
	14.8. Manage SOW Contents
	14.9. Create Mini-Dump
	14.10. Manage Security
	14.11. Manage Transports
	14.12. Manage Replication
	14.13. Shut Down AMPS
	14.14. Do Nothing
	14.15. Action Configuration Examples
	Archive Files Older Than One Week, Every Saturday
	Disable and Re-enable Security on Signal

	Index

