AMPS C/C++ Development Guide

GOEast

TECHNOLOGIES

&

AMPS C/C++ Development Guide

4.3

Publication date Oct 29, 2015
Copyright © 2015

All rights reserved. 60East, AMPS, and Advanced Message Processing System are trademarks of 60East Technologies, Inc. All other trademarks
are the property of their respective owners.

Table of Contents

I 013 4o T4 L (a4 (o) KO PP PSSP P PP PPPPPP RPN 1
1.0, PIOI@QUISITES ..eevuueeiiiieeeiiiueeeettti e e ettt e e ettt e e ettt eetttn e eeeteneeeensnaseeeenneseeenenaseeensnassennennnnns 1
1.2, C & CH+ SUPPOTE MALTIX teuuuiieeereriiiiiiiineeeeerettiiiiaeeeeeeetttetiaeeeeeeetttaruneseseeeseremmnnssseeeen 1
2. Installing the AMPS CIIENTuuuuuiiiiii s 3
2.1. Obtaining the CLENTccceeeeeeeieieeeeeeeeeeeeeee e s snes 3
2.2, EXPIOTE the CLIENE ...euvvveiiiiiiiiiiiiiiiitettttteietetaeetetaeeeeeeeeeeeetesaeeseaasesesesesesssssssssssnsssssssnsnssnnssnes 3
2.3. BUild the CLENEceiiiiiiiiiiiiiieet ettt ettt e e e e e et eee e e e e e e s enereeeeeas 4
2.4, Test Connectivity t0 AMPS ...ttt s eeeeeeaebae s 4
3. Your First AMPS PIOGIAM ..cccuuuuuiereiiiiiiiiiiiiieeeeeeeettiiiiieee e e e eeetttetieaeeeeeeettastaaanseeeeeseeessnnansseseeranes 5
3.1. Connecting t0 AIMMPS ..o e ettt e e e ettt e e e e e teabba e e e e eeraaes 5
3.2, USING the C CHENL ..ocoevviiiiiiieiiiieeeee e 7
3.3. CONNECLION SITIMZS ..eevtttiruuueeeeeertttietiaeeeeeeeetttrtuaeeeeeeeteetaaaaaaeeeereeerssnnanseseeesseresmnnssseeeee 9
3.4. Connection ParaIMeTerSccooiiiiiiiiiiiiiiiiiiiiiiiiiiieieiieiee ettt et et e e e ee e et et eeeeeeeeeeeeeeeeeeeens 10
3.5, INEXE SLEPS eeettruuuuieeeeeeetttiiiaeeeeeeetttttta e eeeeeetatsaaaaseeeeeeaetesaaansseeeeeeetsnnnanssseeeeseeessnnnnsnnns 11
A, SUDSCTIPHIONS .ieiiiiiiiiiiiiieiiiiieieteeeeeee ettt et et et e e e e et e e et e e e eeeeteteteteteeetaaetetateteteeeeeeereeeeetereeereeereeeees 12
4.1, SUDSCIIDING ooeiiiiiiiiii 12
4.2. Asynchronous Subscribe INterfacecccueveeieeiiiiiiiiiiiiieiee e 13
4.3. Understanding Threading and Message Handlerscccccceerreriiiiiieeeerinniiniiieeeeeeeennenns 14
4.4, UNSUDSCIIDITIE ...vutititiiitiiitiiiiiiitiitiiiitttitettt ettt sttt sttt sttt sttt sttt sssssssasesnsnsnnnnes 15
4.5. Understanding MESSAZES ...cceeeeiiiiiiiiiiiiiiiiiiiiiitieeeeeeeeeeeeteeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeaeeeaeees 16
4.6. Advanced MesSSaging SUPPOTTcceeeiiiriieiiieieieieeeieteeeeereeeeeeeeeeeeeeereeeeeeeeeeeeeeeeereeeeereeee. 16
4.7, INEXE SEEPS tevvuuuueeeeeerettrunuuaeeeeerettteuuuaseeeeetttereaaaeseeeeesteessnnssseeeeeseeemsmnnssseseeseeessnnnnnesseeseees 18
5. EITOT HANAINE ...uunne s es 19
5.1, EXCEPLIONS .vuuueeeeieiiiiiiiiieeeeeeeeettttiiaeeeeeeeettttueaeseeeeetttaraaaaseeeeeseeessnaassseseeseeessnnnnnseseereees 19
5.2. Disconnect Handlingccoeeeeeeereieieeeeeieieeeeeeeeeeeee e 21
5.3, UNEXPECIEA IMEBSSAZES ...uuuuuuunuuinunnnnnnnnnaiaaneaeeaaaiaenaneaaannansnensasnasannneasnnnsnnsnnnnnnnnnnnnnnnnnnnnnnnns 23
5.4. Unhandled EXCEPIONSuuuuruuuruuereiereierereieteterererarererererererereeeeeeeeerereeeeeeee. 24
5.5. Detecting WTite Failuresccoeeeioioi s 24
6. State Of the WOTLAccceeeiiiiiiiiieee ettt e et e e e e e st e e e e e e e s 26
6.1. Performing SOW QUETIESeveiiieieiiiiiiiiiieiieeeeereiittteeeeeeeeriieteeeeeeeeesenrreeeeeeeesseaanns 26
6.2. SOW and SUDSCIIDEeceiiiiiiiiiiiiiieee ettt e e e e e s eeeeeeeeeeens 27
6.3. Setting BatCh SZEceeiiiiiiiiiiiiiiiiiiiiiiiiieieee ettt e et et et bt ettt b bt tetetaaatararnnes 31
6.4. Managing SOW CONLEILSuuuerereerreiiiiiiereeeeetttiiiiieaeeeeeretrtanaseeeeereemssmmseseeereemmsnnnnns 31
7. High AVAIIADILILY ©.....v.ovovoceecceeeeeeceee ettt n et 33
7.1. Choosing an HAClient Protection Methodcc..eeviiiiiiiiiiiiiiiiiieceie e 33
7.2. Connections and the ServerCROOSETuueuuuuuurireiiiiiiiiiiriiireieaereaeiarareearareeraraeaa————— 34
7.3. Heartbeats and Failure DeteCtionccceeeeeererirrieneierireeeeeseesese e 35
7.4. Considerations for PUDLISRETSeuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiitieievevereeeeeveeeveaeeeeeveeeeeaeeeeeeeee 36
7.5. Considerations for SUDSCIIDETSuuuuuu e 37
7.6, COMCIUSION ...vveiiieiiiieiiiiiite ettt e e e sttt e e e e e sttt e e e e e seaaebeeeeeeeeesesannberaeeeeeeens 41
8. Advanced AMPS Programming: Working with Commandscccccueveeiieiiiiniiiiieeeeininieeee. 42
8.1. Understanding AMPS MESSAZEScccvvrrrerriiiiiiieieiiieieieeeieretererereeeretererereeerererererereeeeeeeeeees 42
8.2. Creating and Populating the Commandcccceeeerriiiiiietieeeeriniiieeeee e riereeeeeeee e 43
8.3, USING BXOCULEeeieiiiiiiiiiieeeeeeetttitiieeeeeeeettttutaaeeeeeettttranaaaeeeestetssnnnaaeeseseeesssmnnsseeeeeees 43
8.4. Command COOKDOOKeuiiiiiiiiiiiiiiiiiee ettt e e e e e e e e s 44
O. UHIILIES ..veeeeeeeeieiietittte ettt ettt e e e s ettt e e e e e e bbb beeeeeeeesaaansbaeeeeeeeeseansbeaaeeeeeeans 62

1ii

AMPS C/C++ Development Guide

9.1. Composite Message Types
10. AAVANCEA TOPICS ..uueeeieiieiiiiiieieeeeeeettii i eereeeeeeetetarenaeeeeeeererassnssaeeseeesersssnsnaseseeasersssnsnnseseeeeensrnns
10.1. Transport Filtering
A. Exceptions

iv

Chapter 1. Introduction

This document explains how to use the C/C++ client for AMPS. Use this document to learn how to install,
configure, develop C and C++ applications that use AMPS.

1.1. Prerequisites

Before reading this book, it is important to have a good understanding of the following topics:

» Developing in C or C++. To be successful using this guide, you will need to possess a working knowl-
edge of C or C++.

» AMPS concepts. Before reading this book, you will need to understand the basic concepts of AMPS,
such as topics, subscriptions, messages, and SOW. Consult the AMPSUsers Guide to learn more about
these topics before proceeding.

You will need an installed and running AMPS server to use the product as well. You can write and compile

programs that use AMPS without a running server, but you will get the most out of this guide by running
the programs against a working server.

1.2. C & C++ Support Matrix

This version of the AMPS C++ client supports the following operating systems and features:

Table 1.1. C++ client supported features

Linux x64 Windows x64 Solaris SPARC

Incredible performance ad O U
Publish and subscribe O O O
State of the World (SOW) queries 0 O O
Topic and content filtering O O O
Atomic SOW query and subscribe O O O
Transaction log replay O O 0
Historical SOW query O O U
Beautiful documentation O O O
HA: automatic failover 0 0

HA: durable publish and subscribe O 0

This version of the AMPS C++ client has been tested with the following compilers and versions. Other
compilers or versions may work, but have not been tested by 60East:

* Linux: gcc 4.8 (recommended), 4.6, or 4.4

Introduction

» Windows: Visual Studio 2010 or later

 Solaris: Oracle Solaris Studio 12.3

Chapter 2. Installing the AMPS Client

2.1. Obtaining the Client

Before using the client, you will need to download and install it on your development computer. The
client is packaged into a single file, amps-c++-client-<version>.tar.gz, where <version>
is replaced by the version of the client, such as amps-c++-client-3.3.0.z1ip. In the following
examples, the version number is omitted from the filename.

Once expanded, the amps-c++-client directory will be created, containing sources, samples and

makefiles for the C++ client. You’re welcome to locate this directory anywhere that seems convenient; but
for the remainder of this book, we’ll simply refer to this directory as the amps-c++-client directory.

2.2. Explore the client

The client is organized into a number of directories that you’ll be using through this book. Understanding
this organization now will save you time in the future. The top level directories are:

lib
An empty directory tree where built libraries are placed. Before using the AMPS C++ client, you must
build them using a C++ compiler and the provided makefile or solution file.

SIC

Sources and makefile for the AMPS C++ client library.

INC
Location of include files for C and C++ programs. When building your own program, you’ll add the
inc directory to your include path.

samples

Getting started with a new C/C++ library can be challenging. For your reference, we provide a number
of small samples, along with a makefile.

Installing the AMPS Client

spark

Spark is a command-line utility for interacting with AMPS, provided with each client library. This direc-

tory includes the source code for Spark, as an example of how to build a more complex application with
AMPS.

2.3. Build the Client

After unpacking the amps-c++-client directory, you must build the client library for your platform.
To do so, change to the amps-c++-client directory and, from a command prompt, type:

make

or on Windows, from a Visual Studio Command Prompt, type:

msbui ld

Upon successful completion, the AMPS libraries, samples, and spark client are builtin the 1ib, samples
and spark directories, respectively.

2.4. Test Connectivity to AMPS

Before writing programs using AMPS, make sure connectivity to an AMPS server from this computer is
working. Launch a Windows Command Prompt and change the directory to the AMPS directory in your
AMPS installation, and use spark.exe to test connectivity to your server, for example:

./spark ping -type fix -server 192.168.1.2:9004

If you receive an error message, verify that your AMPS server is up and running, and work with your
systems administrator to determine the cause of the connectivity issues. Without connectivity to AMPS,
you will be unable to make the best use of this guide.

Chapter 3. Your First AMPS Program

In this chapter, we will learn more about the structure and features of the AMPS C/C++ library, and build
our first C/C++ program using AMPS.

3.1. Connecting to AMPS

Let’s begin by writing a simple program that connects to an AMPS server and sends a single message
to a topic:

#include <ampsplusplus.hpp>
#include <jostream>

int main(void)

{

3

const charx uri = "tcp://127.0.0.1:9007/amps";
// Construct a client with the name "examplePublisher".

AMPS::Client ampsClient("examplePublisher");

try
{
// connect to the server and log on
ampsClient.connect(uri);
ampsClient. logon();
// publish a JSON message
ampsClient.publish("messages",
R"({ "message" : "Hello, World!"
R"(client" : 1 })'");
+
catch (const AMPS::AMPSException& e)
{
std::cerr << e.what() << std::endl;
exit(l);
+
return 0;

Example 3.1. Connecting to AMPS

)"

In the preceding Example 3.1, we show the entire program; but future examples will isolate one or more
specific portions of the code. The next section describes how to build and run the application and explains
the code in further detail.

Your First AMPS Program

Build and run

To build the program that you've created:

1. Create a new . cpp file and use your ¢ compiler to build it, making sure the anps- c++-cl i ent /
include directory is in your compiler’s include path.

2. Link to the libamps.a or amps. L1b static libraries.

3. Additionally, link to any operating system libraries required by AMPS; a full list may be found by
examining the Makefile and project files in the samp Les directory.

If the message is published successfully, there is no output to the console. We will demonstrate how to
create a subscriber to receive messages in Chapter 4.

Examining the code

Let us now revisit the code we listed earlier.

#@include <ampsplusplus.hpp>
#include <jostream>

int main()

{
@const char*x uri = "tcp://127.0.0.1:9007/amps";

OAMPS: :Client ampsClient("exampleClient");

otry {
@ampsClient.connect("tcp://127.0.0.1:9007/amps") ;
GampsClient. logon();

// publish a JSON message
@ampsClient.publish("messages",
R"({ "message" : "Hello, World!" ,)"
R"("client" : 1 })");
@} catch (const AMPS::AMPSException& e) {
std::cerr << e.what() << std::endl;

exit(1l);
}
Oreturn 0;
}

Example 3.2. Connecting to AMPS

® The URI to use to connect to AMPS. The URI consists of the transport, the address, and the
protocol to use for the AMPS connection. In this case, the transport is tcp, the address is

Your First AMPS Program

127.0.0.1:9007, and the protocol is amps. Check with the person who manages the AMPS
instance to get the connection string to use for your programs.

©® Theseare the include files required for an AMPS C++ Client. The firstis ampsplusplus. hpp.
This header includes everything needed to compile C++ programs for AMPS. The next include is
the Standard C++ Library <iostream>, necessary due to use of std: :cerrand std: :endl.

® This is where we first interact with AMPS by instantiating an AMPS: : Client object. Client
is the class used to connect to and interact with an AMPS server. We pass the string "example-
Client" asthe clientName. This name will be used to uniquely identify this client to the server.
Errors relating to this connection will be logged with reference to this name, and AMPS uses this
name to help detect duplicate messages. AMPS enforces uniqueness for client names when a trans-
action log is configured, and it is good practice to always use unique client names.

O Hereweopena try block. AMPS C++ classes throw exceptions to indicate errors. For the remainder
of our interactions with AMPS, if an error occurs, the exception thrown by AMPS will be caught
and handled in the exception handler below.

© At this point, we establish a valid AMPS network connection and can begin to use it to publish and
subscribe to messages. In this example, we use the URI specified earlier in the file. If any errors
occur while attempting to connect to AMPS, the connect () method will throw an exception.

©® The AMPS logon () command creates a named connection in AMPS.

© Here, a single message is published to AMPS on the messages topic, containing the data He l Lo
wor Ld. This data is placed into an XML message and sent to the server. Upon successful completion
of this function, the AMPS client has sent the message to the server, and subscribers to the mes-
sages topic will receive this Hello wor Ld message.

© Error handling begins with the catch block. All exceptions thrown by AMPS derive from AM-
PSException. More specific exceptions may be caught to handle certain conditions, but catching
AMPSException& allows us to handle all AMPS errors in one place. In this example, we print out
the error to the console and exit the program.

© At this point we return from main () and our ampsClient object falls out of scope. When this
happens AMPS automatically disconnects from the server and frees all of the client resources asso-
ciated with the connection. In the AMPS C++ client, objects are reference-counted, meaning that
you can safely copy a c Lient, for example, and destroy copies of c Lient without worrying about
premature closure of the server connection or memory leaks.

3.2. Using the C client

The AMPS C/C++ client is built in two layers: the “C” layer that exposes lower- level primitives for
sending and receiving messages to AMPS, and the “C++”’ layer providing a set of abstractions over the
“C” layer that make your programs more robust.

If you are integrating AMPS into existing C code, or need fine-grained control over how your application
interacts with AMPS, then you may choose to use the C layer directly. As an example, Example 3.3 shows
the previous sample rewritten to use the C layer directly:

#include <amps.h>
int main()

{

Your First AMPS Program

Ochar errorBuffer[256];

@amps_handle message;
amps_handle client;

@amps_result result;

client = amps_client_create("cClient"); O

Oresult = amps_client_connect(client,
"tcp://localhost:9007/amps") ;

if(result != AMPS_E_OK) {
amps_client_get_error(
client, errorBuffer, sizeof(errorBuffer));
printf("error %s\n", errorBuffer);
} else {
Omessage = amps_message_create(client);
@amps_message_set_field_value_nts(
message, AMPS_CommandId, "12345");
amps_message_set_field_value_nts(
message, AMPS_Command, "publish");
amps_message_set_field_value_nts(
message, AMPS_Topic, "messages");
amps_message_set_data_nts(
message, "{\"message\":\"HelloWorld\"}");
Oresult = amps_client_send(client, message);
if(result != AMPS_E_OK){
@amps_client_get_error(
client, errorBuffer, sizeof(errorBuffer));
printf("error sending: %s\n", errorBuffer);
b
® amps_message_destroy(message) ;
b
amps_client_destroy(client);
return 0;

Example 3.3. Connecting in C

Structurally, the example in C and in C++ are similar. In the C program more details are needed to form
your program, and the messages that are sent need to be constructed directly, instead of having portions
of the message already created.

O At this point in the program, the necessary objects are declared in order to permit in-
teraction with AMPS. When AMPS errors occur, their text is available through the
amps_client_get_error () function, so it is here that we will create a small char array to
hold the errors.

® Here an amps_handle is created for each object and message objects that are constructed later.
An amps_hand le is an opaque handle to an object constructed by AMPS, which cannot be deref-

Your First AMPS Program

erenced or used by means other than AMPS functions. amps_hand e is the size of a pointer and
may be passed by value wherever needed.

® Next we declare an amps_result object, which is used to store the return value from functions
that may fail, such as during connection or interaction with an AMPS server. Many AMPS functions
return an amps_results.

O Here we construct our AMPS client with a unique name. This function allocates resources that must
be freed, and can only be freed by a corresponding call to amps_client_destroy.

© This is how a connection is established; control continues to where the AMPS message is allocated.

0@ Unlike the convenience methods in the C++ client, every message sent to the server must be creat-
ed by your application. Instead of calling a function to send a pub 117 sh message for us, we con-
struct it ourselves. Note that this line also allocates resources that must be freed by a corresponding
amps_message_destroy function.

©® These next few lines are responsible for setting the necessary fields and data to construct a valid

publish message for AMPS. The C client provides a number of functions to assist in interacting

with the data and fields of a message. In this example the _nts functions are used, which allow for

quick population of messages fields and data with C-style null-terminated strings.

Once the message is constructed to our satisfaction, it is sent.

Any errors from the operation are detected and examined here.

This where we free any message that was allocated and then destroy the client, freeing up the re-

maining AMPS resources.

® 00

3.3. Connection Strings

The AMPS clients use connection strings to determine the server, port, transport, and protocol to use to
connect to AMPS. Connection strings have three elements.

tcp://localhost:9007/amps

N

transport host address protocol

Figure 3.1. elements of a connection string
As shown in the figure above, connection strings have the following elements:

+ Transport defines the network used to send and receive messages from AMPS. In this case, the transport
is tcp.

» Host address defines the destination on the network where the AMPS instance receives messages. The
format of the address is dependent on the transport. For tcp, the address consists of a host name and
port number. In this case, the host address is 127.0.0.1:9007.

 Protocol sets the format in which AMPS receives commands from the client. Most code uses the default
amps protocol, which sends header information in JSON format. AMPS supports the ability to devel-
op custom protocols as extension modules, and AMPS also supports legacy protocols for backward
compatibility.

Your First AMPS Program

This connection string works for programs connecting from the local host to a transport configured as
follows:

<AMPSConfig>

<Transport>
<Name>json-tcp</Name>
<Type>tcp</Type>
<InetAddr>9007</InetAddr>
<ReuseAddr>true</ReuseAddr>
<MessageType>json</MessageType>
<Protocol>amps</Protocol>

</Transport>

</AMPSConfig>

See the AMPS Configuration Guide for more information on configuring transports.

Providing Credentials in a Connection String

The AMPS clients support the standard format for including a user name and password in a URI, as shown
below:

tcp://user: passwor d@ghost:port/protocol

When provided in this form, the default authenticator provides the username and password specified in
the URL. If you have implemented another authenticator, that authenticator controls how passwords are
provided to the AMPS server.

3.4. Connection Parameters

When specifying a URI for connection to an AMPS server, you may specify a number of transport-specific
options in the parameters section of the URI. Here is an example:

tcp://localhost:9007/amps?tcp_nodelay=true&tcp_sndbuf=100000

In this example, we have specified the AMPS instance on localhost, port 9007, connecting to a
transport that uses the amps protocol. We have also set two parameters, tcp_nodelay, a Boolean
(true/false) parameter, and tcp_sndbuf, an integer parameter. Multiple parameters may be combined
to finely tune settings available on the transport. Normally, you'll want to stick with the defaults on your
platform, but there may be some cases where experimentation and fine-tuning will yield higher or more
efficient performance.

AMPS supports the value of tcp in the connection string for TCP/IP connections, and the value of shm
in the connection string for the AMPS shared memory protocol.

10

Your First AMPS Program

Transport options

The following transport options are available:

tcp_rcvbuf (integer) Sets the system receive buffer size.

tcp_sndbuf (integer) Sets the system send buffer size.

tcp_nodelay (boolean) Enables or disables the TCP_NODELAY setting on the socket.

tcp_Llinger (integer) Enables and sets the SO_LINGER value for the socket.

3.5. Next steps

You are now able to develop and build an application in C or C++ that publishes messages to AMPS. In
the following chapters, you will learn how to subscribe to messages, use content filters, work with SOW
caches, and fine-tune messages that you send.

11

Chapter 4. Subscriptions

Messages published to a topic on an AMPS server are available to other clients via a subscription. Before
messages can be received, a client must subscribe to one or more topics on the AMPS server so that the
server will begin sending messages to the client. The server will continue sending messages to the client
until the client unsubscribes, or the client disconnects. With content filtering, the AMPS server will limit
the messages sent only to those messages that match a client-supplied filter. In this chapter, you will learn
how to subscribe, unsubscribe, and supply filters for messages using the AMPS C/C++ client.

4.1. Subscribing

Subscribing to an AMPS topic takes place by calling Client.subscribe (). Here is a short example
showing the simplest way to subscribe to a topic (error handling and connection details are omitted for
brevity):

Client client(...);
client.connect(...);®
client.logon();

®for (auto message : client.subscribe("messages"))

{

std :: cout << "Received message: "
O<< message.getData () << std :: endl ;

Example 4.1. Subscribing to a topic

©® Here we have created or received a Client that is properly connected to an AMPS server.

® Here we subscribe to the topic messages. We do not provide a filter, so AMPS does not content-fil-
ter the subscription. Although we don't use the object explicitly here, the subscribe function re-
turns a MessageStreamobject that we iterate over. If, at any time, we no longer need to subscribe,
we can break out of the loop. When we break out of the loop, the MessageStream goes out of scope,
the MessageStream destructor runs, and the AMPS client sends an unsubscribe command to AMPS.

® Within the body of the loop, we can process the message as we need to. In this case, we simply print
the contents of the message.

AMPS creates a background thread that receives messages and copies them into a MessageStream that
you iterate over. This means that the client application as a whole can continue to receive messages while
you are doing processing work.

The simple method described above is provided for convenience. The AMPS C++ client provides conve-
nience methods for the most common form of the AMPS commands. The client also provides an inter-
face that allows you to have precise control over the command. Using that interface, the example above
becomes:

Client client(...);

12

Subscriptions

client.connect(...) ;@
client. logon();

®for (auto message : ampsClient.execute(
©®Command ("subscribe") .setTopic("messages"))
{
std :: cout << "Received message: "
O<< message.getData () << std :: endl ;

Example 4.2. Subscribing to a topic using a command

©® Here we have created or received a Client that is properly connected to an AMPS server.

® Here we create a command object for the subscribe command, specifying the topic messages.

® Here we subscribe to the topic messages. We do not provide a filter, so AMPS does not content-fil-
ter the subscription. Although we don't use the object explicitly here, the e xecute function returns
a MessageStream object that we iterate over. If, at any time, we no longer need to subscribe, we
can break out of the loop. When we break out of the loop, the MessageStream goes out of scope, the
MessageStream destructor runs, and the AMPS client sends an unsubscribe command to AMPS.

©® Within the body of the loop, we can process the message as we need to. In this case, we simply print
the contents of the message.

The Command interface allows you to precisely customize the commands you send to AMPS.

4.2. Asynchronous Subscribe Interface

The AMPS C++ client also supports an advanced, asynchronous interface. In this case, you add a message
handler to the function call. The client returns the command ID of the subscribe command once the server
has acknowledged that the command has been processed. As messages arrive, the client calls your message
handler directly on the background thread. This can be an advantage for some applications. For example,
if your application is highly multithreaded and copies message data to a work queue processed by multiple
threads, there may be a performance benefit to enqueuing work directly from the background thread.

Here is a short example (error handling and connection details are omitted for brevity):

Client client(...);
client.connect(...); ©
client. logon();

string subscriptionId = client.execute_async(@
©Command ("subscribe") .setTopic("messages"),
MessageHandler (myHandlerFunction, NULL));

void myHandlerFunction(const Message& message, void* @
userbData)

{

std::cout << message.getData() << std::endl;

13

Subscriptions

}

Example 4.3. Subscribing to a topic asynchronously

© Here we have created or received a Client that is properly connected to an AMPS server.
©® Here we create a command object for the subscribe command, specifying the topic nessages.
® Here we create a subscription with the following parameters:

command This is the AMPS Command object that contains the subscribe com-
mand.
MessageHandler This is an AMPS MessageHand Ler object that refers to our message han-

dling function myHandlerFunction. This function is called on a back-
ground thread each time a message arrives. The second parameter, NULL,
is passed as-is from the client.subscribe() call to the message han-
dler with every message, allowing you to pass context about the subscription
through to the message handler.
® The myHandlerFunction is a global function that is invoked by AMPS whenever a matching
message is received. The first parameter, nessage, is a reference to an AMPS Message object that
contains the data and headers of the received message. The second parameter, userData, is set to
whatever value was provided in the MessageHand ler constructor -- NULL in this example.

The AMPS client resets and reuses the message provided to this function between calls.

A This improves performance in the client, but means that if your handler function needs to
preserve information contained within the message, you must copy the information rather
than just saving the message object. Otherwise, the AMPS client cannot guarantee the
state of the object or the contents of the object when your program goes to use it.

With newer compilers, you can use additional constructs to specify a callback function. Recent improve-
ments in C++ have added lambda functions -- unnamed functions declared in-line that can refer to names
in the lexical scope of their creator. If available on your system, both Standard C++ Library function ob-
jects and lambda functions may be used as callbacks. Check functional. cpp in the samples directory
for numerous examples.

4.3. Understanding Threading and Message
Handlers

When you call a subscribe command, the client creates a thread that runs in the background. The command
returns, while the thread receives messages. In the simple case, the client provides an internal handler
function that populates the MessageStream. The MessageStream is used on the calling thread, so
operations on the MessageStream do not block the background thread.

For advanced subscription, AMPS calls the handler function from the background thread. Message han-
dlers provided to advanced subscriptions must be aware of the following considerations.

The client creates one background thread per client object. A message handler that is only provided to a
single client will only be called from a single thread. If your message handler will be used by multiple

14

Subscriptions

clients, then multiple threads will call your message handler. In this case, you should take care to protect
any state that will be shared between threads.

For maximum performance, do as little work in the message handler as possible. For example, if you use
the contents of the message to update an external database, a message handler that adds the relevant data
to an update queue that is processed by a different thread will typically perform better than a message
handler that does this update during the message handler.

While your message handler is running, the thread that calls your message handler is no longer receiving
messages. This makes it easier to write a message handler, because you know that no other messages are
arriving from the same subcription. However, this also means that you cannot use the same client that
called the message handler to send commands to AMPS. Instead, enqueue the command in a work queue
to be processed by a separate thread, or use a different client object to submit the commands.

The AMPS client resets and reuses the message provided to this function between calls. This improves
performance in the client, but means that if your handler function needs to preserve information contained
within the message, you must copy the information rather than just saving the message object. Otherwise,
the AMPS client cannot guarantee the state of the object or the contents of the object when your program
goes to use it.

4.4. Unsubscribing

With the synchronous interface, AMPS automatically unsubscribes to the topic when the destructor for
the MessageStreamruns. You can also explicitly call the close () method on the MessageStream
object to remove the subscription.

In the asynchronous interface, when a subscription is successfully made, messages will begin flowing to
the message handler, and the client.subscribe () call will return a string for the CommandId that
serves as the identifier for this subscription. A C17ent can have any number of active subscriptions, and
this CommandId string is used to refer to the particular subscription we have made here. For example,
to unsubscribe, we simply pass in this identifier:

Client client = ...;
// Register asynchronous subscription
std::string subId = client.execute_async(

Command ("subscribe") .setTopic("messages"),
MessageHandler (myHandlerFunction, NULL));

for (auto msg
client.execute(Command ("unsubscribe")
.setSubscriptionId(subId))

std::cout << "Response to unsubscribe : "

15

Subscriptions

<< msg.getAckType() << std::endl;
}

Example 4.4. Unsubscribing from a topic

In this example, as in the previous section, we use the client.execute_async () method to create a
subscription to the messages topic. When our application is done listening to this topic, it unsubscribes
by passing in the subId returned by subscribe (). After the subscription is removed, no more mes-
sages will flow into our myHandlerFunction ().

4.5. Understanding messages

So far, we have seen that subscribing to a topic involves creating a lambda function that receives a single
parameter, an AMPS: :Message. A Message represents a single message to or from an AMPS server
and client. Messages are received or sent for every client/server operation in AMPS. Message contains
a variety of methods:

Message contains member functions for every header field and for the message data, for both setting
and getting. In AMPS, every message has one or more header fields defined, depending on the type and
context of the message. There are many possible fields in any given message, but only a few are used
for any given message. For each header field, the Message class contains a corresponding ge t XXX ()
and setXXX () method, which may be used to retrieve and set the value of that message. For example,
the getCommandId () method retrieves the string representing the CommandId header field, and the
setBatchSize () method sets the value of the BatchSize header field. For more information on
these header fields, consult the AMPS User Guide.

In AMPS, fields sometimes need to be set to a unique identifier value. For example, when creating a new
subscription, or sending a manually constructed message, you’ll need to assign a new unique identifier
to multiple fields such as CommandId and SubscriptionId. For this purpose, Message provides
newXXX () methods for each field that generates a new unique identifier and sets the field to that new
value.

4.6. Advanced Messaging Support

The client.subscribe () function provides options for subscribing to topics even when you do not
know their exact names, and for providing a filter that works on the server to limit the messages your
application must process.

Regex topics

Regular Expression (Regex) Topics allow a regular expression to be supplied in the place of a topic name.
When you supply a regular expression, it is as if a subscription is made to every topic that matches your
expression, including topics that do not yet exist at the time of creating the subscription.

16

Subscriptions

To use a regular expression, simply supply the regular expression in place of the topic name in the sub-
scribe() call. For example:

for (auto message : client.subscribe("client.*"))

{
// receive messages for any topic that begins with 'client'
std::cout << "Received a message on topic '" <<
message.getTopic() << "' "
<< "with the data: " << message.getData() << std::endl;
}

Example 4.5. Regex topic subscription

In this example, messages on topics c Lient and c lientl would match the regular expression, and
those messages will be returned by the MessageStream . As in the example, you can use the get-
Topic () method to determine the actual topic of the message sent to the lambda function.

Content filtering

One of the most powerful features of AMPS is content filtering. With content filtering, filters based on
message content are applied at the server, so that your application and the network are not utilized by
messages that are uninteresting for your application. For example, if your application is only displaying
messages from a particular user, you can send a content filter to the server so that only messages from
that particular user are sent to the client.

To apply a content filter to a subscription, simply pass it into the client.subscribe () call:
for (auto message : ampsClient.subscribe("messages"))

{

// process messages from mom

}

Example 4.6. Using content filters

In this example, we have passed in a content filter " /sender = 'mom'". This will cause the server to
only send us messages from the messages topic that additionally have a sender field equal to mom.

For example, the AMPS server will send the following message, where /sender is mom:

{ "sender" : "mom",
"text" : "Happy Birthday!",
"reminder" : "Call me Thursday!" }

The AMPS server will not send a message with a different /sender value:

{ "sender" : "henry dave",
"text" : "Things do not change; we change." }

17

Subscriptions

Updating the Filter on a Subscription

AMPS allows you to update the filter on a subscription. When you replace a filter on the the subscrip-
tion, AMPS immediately begins sending only messages that match the updated filter. Notice that if the
subscription was entered with a command that includes a SOW query, using the rep Lace option simply
replaces the filter on the subscription. AMPS does not re-run the SOW query.

To update a the filter on a subscription, you create a subscribe command. You set the subscriptionId
of the Command to the identifier of the existing subscription, and include the replace option on the
Command. Many of the named convenience methods also accept a bookmark parameter, and replace a
subscription when the bookmark is provided and the replace option is included in the call.

4.7. Next steps

At this point, you are able to build AMPS programs in C/C++ that publish and subscribe to AMPS topics.
For an AMPS application to be truly robust, it needs to be able to handle the errors and disconnections
that occur in any distributed system. In the next chapter, we will take a closer look at error handling and
recovery, and how you can use it to make your application ready for the real world.

18

Chapter 5. Error Handling

In every distributed system, the robustness of your application depends on its ability to recover gracefully
from unexpected events. The AMPS client provides the building blocks necessary to ensure your appli-
cation can recover from the kinds of errors and special events that may occur when using AMPS.

5.1. Exceptions

Generally speaking, when an error occurs that prohibits an operation from succeeding, AMPS will throw
an exception. AMPS exceptions universally derive from AMPS: : AMPSException, so by catching AM-
PSException, you will be sure to catch anything AMPS throws. For example:

void ReadAndEvaluate(Client client)

{
// read a new payload from the user
string payload;
getline(cin, payload);
// write a new message to AMPS
if(!payload.empty()) {
try {
client.publish("UserMessage",
string("{ \"message\" : \"data\" }");
} catch (const AMPSException& exception)
{
cerr << "An AMPS exception occurred: "<<
exception.toString() << endl;
}
}
}

Example 5.1. Catching an AMPS Exception

In this example, if an error occurs the program writes the error to stderr, and the pub1ish () command
fails. However, c Lient is still usable for continued publishing and subscribing. When the error occurs,
the exception is written to the console, converting the exception to a string via the toString () method.

AMPS exception types vary based on the nature of the error that occurs. In your program, if you would
like to handle certain kinds of errors differently than others, you can catch the appropriate subclass of
AMPSException to detect those specific errors and do something different.

string CreateNewSubscription(Client client)
{
string id;
Ostring topicName;
while(id.empty())
{

19

Error Handling

topicName = AskUserForTopicName() ;
try {
®id = client.subscribe(bind(HandleMessage,
placeholders::_1),
topicName, 5000) ;

b
©catch(const BadRegexTopicException& ex)
{
DisplayError(
O "Error: bad topic name or regular " +
"expression " + topicName +"’. " +
"The error was: " + ex.toString());
// we’ll ask the user for another topic
b
Ocatch(const AMPSException& ex)
{
DisplayError(
"Error: error setting up subscription " +
"to topic " + topicName +". The error was: " +
ex.toString());
Oreturn NULL; // give up
b
b
return id;
}

Example 5.2. Catching AMPSException Subsclasses

(2]

In Example 5.2 our program is an interactive program that attempts to retrieve a topic name (or
regular expression) from the user.

If an error occurs when setting up the subscription whether or not to try again based on the subclass
of AMPSException thatis thrown. If a BadRegexTopicException, this exception is thrown
during subscription to indicate that a bad regular expression was supplied, so we would like to give
the user a chance to correct.

This line indicates that the program catches the BadRegexTopicException exception and dis-
plays a specific error to the user indicating the topic name or expression was invalid. By not returning
from the function in this catch block, the while loop runs again and the user is asked for another
topic name.

If an AMPS exception of a type other than BadRegexTopicException is thrown by AMPS, it
is caught here. In that case, the program emits a different error message to the user.

At this point the code stops attempting to subscribe to the client by the return NULL statement.

Exception Types

Each method in AMPS documents the kinds of exceptions that it can throw. For reference, Table A.1
contains a list of all of the exception types you may encounter while using AMPS, when they occur, and
what they mean.

20

Error Handling

5.2. Disconnect Handling

Every distributed system will experience occasional disconnections between one or more nodes. The reli-
ability of the overall system depends on an application’s ability to efficiently detect and recover from these
disconnections. Using the AMPS C/C++ client’s disconnect handling, you can build powerful applications
that are resilient in the face of connection failures and spurious disconnects.

AMPS disconnect handling gives you the ultimate in control and flexibility regarding how to respond to
disconnects. Your application gets to specify exactly what happens when a disconnect occurs by supplying
afunctionto client.setDisconnectHandler (), which is invoked whenever a disconnect occurs.

Example 5.3 shows the basics:

class MyApp

{
string _uri;
Client _client;
public:
MyApp(const string& uri) : _uri(uri), _client("myapp")
{
_uri = uri;

O _client.setDisconnectHandler (
AttemptReconnection, (void*)this);

_client.connect(uri);
_client.execute_async(Command("subscribe")
.setTopic("orders"),
bind (&MyApp: : ShowMessage, this
placeholders::_1));

}
void ShowMessage(const Message& m)
{
// display order data to the user
}

@void AttemptReconnection(Client& client,
void* userdata)

{
MyApp* app = (MyAppx) userdata;
// simple: just try to reconnect once.
client.connect(app->_uri);

}

}

Example 5.3. Supplying a Disconnect Handler

©® In Example 5.3 the setDisconnectHandler () method is called to supply a function for use
when AMPS detects a disconnect. At any time, this function may be called by AMPS to indicate

21

Error Handling

that the client has disconnected from the server, and to allow your application to choose what to do
about it. The application continues on to connect and subscribe to the orders topic.

® Our disconnect handler’s implementation begins here. In this example, we simply try to reconnect
to the original server. A more robust reconnect would have logic to limit either the total number of
connects, frequency of connects or both. Errors are likely to occur here, therefore we must have dis-
connected for a reason, but C11ient takes care of catching errors from our disconnect handler. If an
error occurs in our attempt to reconnect and an exception is thrown by connect (), then Client
will catch it and absorb it, passing it to the ExceptionlListener if registered. If the client is not
connected by the time the disconnect handler returns, AMPS throws DisconnectedException.

By creating a more advanced disconnect handler, you can implement logic to make your application even
more robust. For example, imagine you have a group of AMPS servers configured for high availability—
you could implement fail-over by simply trying the next server in the list until one is found. Example 5.4
shows a brief example.

class MyApp
{
® vector<string>& _uris;
int _currentUri;
Client _client;
public:

MyApp (vector<string>& uris)
_uris(uris), _currentUri(0),
_client("MyApp")

{
_client.setDisconnectHandler (
® &ConnectToNextUri, this);
ConnectToNextUri (this);

+
static void ConnectToNextUri(Client client, void* me)
{
MyApp* app = (MyAppx*)me;
®while(true)
{
try {
client.connect(app->_uris[app->_currentUri]);
Oclient.subscribe(...);
return;
} catch(AMPSException& e) {
app->_currentUri = (app->_currentUri + 1)
% app->_uris.size();
}
}
+
+

Example 5.4. Simple Client Failover Implementation

22

Error Handling

© Here our application is configured with a vector of AMPS server URIs to choose from, instead of a
single URI. These will be used in the ConnectToNextUri () method as explained below.

® ConnectToNextUri () isinvoked by our disconnect handler TestDisconnectHandler in
the AMPS Client when a disconnect occurs. Since our client is currently disconnected, we manually
invoke our disconnect handler to initiate the first connection.

® During a disconnect the AMPS Client invokes ConnectToNextUr1i (), which loops around our
array of URIs attempting to connect to each one until successful. In the invoke () method it at-
tempts to connect to the current URI, and if it is successful, returns immediately. If the connection
attempt fails, the exception handler for AMPSException is invoked. In the exception handler, we
advance to the next URI, display a warning message, and continue around the loop. This simplistic
handler never gives up, but in a typical implementation, you would likely stop attempting to recon-
nect at some point.

O At this point the client registers a subscription to the server we have connected to. It is important to
note that, once a new server is connected, it is the responsibility of the application to re-establish any
subscriptions placed previously. This behavior provides an important benefit to your application:
one reason for disconnect is due to a client’s inability to keep up with the rate of message flow. In
a more advanced disconnect handler, you could choose to not re-establish subscriptions that are the
cause of your application’s demise.

Using a Heartbeat to Detect Disconnection

The AMPS client includes a heartbeat feature to help applications detect disconnection from the server
within a predictiable amount of time. Without using a heartbeat, an application must rely on the operating
system to notify the application when a disconnect occurs. For applications that are simply receiving
messages, it can be impossible to tell whether a socket is disconnected or whether there are simply no
incoming messages for the client.

When you set a heartbeat, the AMPS client sends a heartbeat message to the AMPS server at a regular
interval, and waits a specified amount of time for the response. If the operating system reports an error
on send, or if the server does not respond within the specified amount of time, the AMPS client considers
the server to be disconnected.

5.3. Unexpected Messages

The AMPS C++ client handles most incoming messages and takes appropriate action. Some messages are
unexpected or occur only in very rare circumstances. The AMPS C++ client provides a way for clients to
process these messages. Rather than providing handlers for all of these unusual events, AMPS provides a
single handler function for messages that can't be handled during normal processing.

Your application registers this handler by setting the Unhand ledMessageHand Ler for the client. This
handler is called when the client receives a message that can't be processed by any other handler. This is
a rare event, and typically indicates an unexpected condition.

For example, if a client publishes a message that AMPS cannot parse, AMPS returns a failure acknowl-
edgement. This is an unexpected event, so AMPS does not include an explicit handler for this event, and
failure acknowledgements are received in the method registered as the Unhand ledMessageHand ler.

23

Error Handling

Your application is responsible for taking any corrective action needed. For example, if a message publi-
cation fails, your application can decide to republish the message, publish a compensating message, log
the error, stop publication altogether, or any other action that is appropriate.

5.4. Unhandled Exceptions

In the AMPS C++ client, exceptions can occur that are not thrown to the user. For example, when an ex-
ception is thrown from a message handler running on a background thread, AMPS does not automatically
propagate that exception to the main thread.

Instead, AMPS provides the exception to an unhandled exception handler if one is specified on the client.
The unhandled exception handler receives a reference to the exception object, and takes whatever action is
necessary. Typically, this involves logging the exception or setting an error flag that the main thread can act
on. Notice that AMPS C++ client only catches exceptions that derive from std: :exception. If your
message handler contains code that can throw exceptions that do not derive from std: :exception,
60East recommends catching these exceptions and throwing an equivalent exception that derives from
std: :exception.

For example, the unhandled exception handler below takesa std: : ostream, and logs information from
each exception to that std: :ostream.

class ExceptionlLogger : public AMPS::ExceptionlListener

{
private:
std::ostream& os_;

public:

ExceptionLogger () : os_(std::cout) {}
ExceptionLogger (std::ostream& os)

os_(os) {}
virtual void exceptionThrown(const std::exception& e)
{
os_ << e.what()
<< std::endl;
I

5.5. Detecting Write Failures

The pub 11 sh methods in the C++ client deliver the message to be published to AMPS and then return
immediately, without waiting for AMPS to return an acknowledgement. Likewise, the sowDe lete meth-
ods request deletion of SOW messages, and return before AMPS processes the message and performs the
deletion. This approach provides high performance for operations that are unlikely to fail in production.

24

Error Handling

However, this means that the methods return before AMPS has processed the command, without the abil-
ity to return an error in the event that the command fails.

The AMPS C++ client provides a Fai ledWriteHand ler that is called when the client receives an
acknowledgement that indicates a failure to persist data within AMPS. To use this functionality, you im-
plement the FailedWriteHandler interface, construct an instance of your new class, and register
that instance with the setFailedWriteHandler () function on the client. When an acknowledge-
ment returns that indicates a failed write, AMPS calls the registered handler method with information
from the acknowledgement message, supplemented with information from the client publish store if one
is available. Your client can log this information, present an error to the user, or take whatever action is
appropriate for the failure.

When no FailedWriteHandler is registered, acknowledgements that indicate errors in persisting
data are treated as unexpected messages and routed to the LastChanceMessageHand ler. In this
case, AMPS provides only the acknowledgement message and does not provide the additional information
from the client publish store.

25

Chapter 6. State of the World

AMPS State of the World (SOW) allows you to automatically keep and query the latest information about
a topic on the AMPS server, without building a separate database. Using SOW lets you build impressively
high-performance applications that provide rich experiences to users. The AMPS C++ client lets you query
SOW topics and subscribe to changes with ease.

6.1. Performing SOW Queries

To begin, we will look at a simple example of issuing a SOW query.

for (auto message : ampsClient.sow("orders" ,"/symbol == 'ROL'"))
{

if(message.getCommand() == "group_begin")

{

std::cout << "Receiving messages from the SOW." <<

std::endl ;

}

else if(message.getCommand() == "group_end")

{

std::cout << "Done receiving messages from SOW." <<
std: :endl;

}
else {
std::cout << "Received message: " << message.getData () <<
std: :endl;
}

}

Example 6.1. Basic SOW Query

In listing Example 6.1 the program invokes c lient.sow() to initiate a SOW query on the orders
topic, for all entries that have a symbol of ’'ROL’. The SOW query is requested with a batch size of 100,
meaning that AMPS will attempt to send 100 messages at a time as results are returned.

As the query executes, each matching entry in the topic at the time of the query is returned. Messages
containing the data of matching entries have a Command of value sow, so as those arrive, we write them
to the console. AMPS sends a "group_begin" message before the first SOW result, and a "group_end"
message after the last SOW result.

When the SOW query is complete, the MessageStream completes iteration and the loop completes.
There's no need to explicitly break out of the loop.

As with subscribe, the sow function also provides an asynchronous version. In this case, you provide a
message handler that will be called on a background thread:

void HandleSOW(const Message& message)

{

if (message.getCommand() == "sow")

26

State of the World

{
cout << message.getData() << endl;
}
}
void ExecuteSOWQuery(Client client)
{

Command command ("sow") ;

command.setTopic("orders")
.setFilter("/symbol="ROL'")
.setBatchSize(100) ;

client.execute_async(Command("sow")
.setTopic("orders")
.setFilter("/symbol = 'ROL'")
.setBatchSize (100)
, bind(HandleSOW, placeholders::_1));

}

Example 6.2. Asynchronous sow

In the listing for Example 6.2, the ExecuteSOWQuery () function invokes client.sow() to intiate
a SOW query on the orders topic, for all entries that have a symbol of ROL. The SOW query is requested

with a batch size of 100, meaning that AMPS will attempt to send 100 messages at a time as results are
returned.

As the query executes, the Hand LeSOW () method is invoked for each matching entry in the topic. Mes-
sages containing the data of matching entries have a Command of sow, so as those arrive, we write them
to the console.

6.2. SOW and Subscribe

Imagine an application that displays real-time information about the position and status of a fleet of deliv-
ery vans. When the application starts, it should display the current location of each of the vans along with
their current status. As vans move around the city and post other status updates, the application should
keep its display up to date. Vans upload information to the system by posting message to avan Location
topic, configured with a key of van_1id on the AMPS server.

In this application, it is important to not only stay up-to-date on the latest information about each
van, but to ensure all of the active vans are displayed as soon as the application starts. Combining
a SOW with a subscription to the topic is exactly what is needed, and that is accomplished by the
Client.sowAndSubscribe () method. Now we will look at an example:

// processSOWMessage

// Processes a message during SOW query. Returns
// false if the SOW query 1is complete, true
// if there is no more SOW processing.

27

State of the World

bool processSOWMessage(const AMPS::Message& message)

{

if (message.getCommand() == "group_begin")

{
}

else if (message.getCommand() == "group_end")

{

std::cout << "Receiving messages from the SOW." << std::endl;

std::cout << "Done receiving messages from SOW." <<
std: :endl;
return truej;

}
else {
std::cout << "SOW message: " << message.getData() <<
std: :endl;
addVan(message) ;
}

return false;

}

// processSubscriptionMessage

//

// Process messages received on a subscription, after the SOW
// query is complete.

void processSubscribeMessage(const AMPS::Message& message)
{
if (message.getCommand() == "oof")
{
std::cout << "OOF : " << message.getReason()
<< " message to remove : "
<< message.getData() << std::endl;
removeVan(message) ;
}
else
{
std::cout << "New or updated message: " << message.getData()
<< std::endl;
addOrUpdateVan(message) ;
}

void doSowAndSubscribe (AMPS: :Client& ampsClient)
{

28

State of the World

bool sowDone = false;
std::cerr << "about to subscribe..." << std::endl;

Ofor (auto message
ampsClient.execute(
Command ("sow_and_subscribe')
.setTopic("van_location")
.setFilter("/status = '"ACTIVE'")
.setBatchSize (100)
.setOptions("oof"))

{
if (sowDone == false)
{
sowDone = processSOWMessage(message) ;
}
else
{
processSubscribeMessage (message) ;
}
}

}

Example 6.3. Using sowAndSubscribe

©® In Example 6.3 we issue a sowAndSubscribe () to begin receiving information about all of the
open orders in the system for the symbol ROL. These orders are now are returned as Messages
whose Command returns SOW.

sub- Notice here that we specified true for the oofEnabled parameter. Setting this parameter to true

ex- causes us to receive Out-of-Focus ("OOF") messages for the topic. OOF messages are sent when

oof: 727 entry that was sent to us in the past no longer matches our query. This happens when an entry is
removed from the SOW cache via a sowDelete () operation, when the entry expires (as specified
by the expiration time on the message or by the configuration of that topic on the AMPS server), or
when the entry no longer matches the content filter specified. In our case, when an order is processed
or canceled (or if the symbol changes), a Message is sent with Command set to OOF. The content
of that message is the message sent previously. We use OOF messages to remove orders from our
display as they are completed or canceled.

Now we will look at an example that uses the asynchronous form of sowAndSubscribe:
// handleMessage
//

// Handles messages for both SOW query and subscription.

void processSOWMessage(const AMPS::Message& message)

{

if (message.getCommand()

{

= "group_begin'")

29

State of the World

std::cout << "Receiving messages from the SOW." << std::endl;

return;
+
else if (message.getCommand() == "group_end")
{

std::cout << "Done receiving messages from SOW." <<
std: :endl;
return truej;

}
else 1if (message.getCommand() == "oof")
{
std::cout << "OOF : " << message.getReason()
<< " message to remove "
<< message.getData() << std::endl;
removeVan(message) ;
}
else
{

std::cout << "New or updated message: " << message.getData()
<< std::endl;
addOrUpdateVan(message) ;
}

std::string trackVanPositions(AMPS::Client& ampsClient)
{

std::cerr << "about to subscribe..." << std::endl;

return ampsClient.execute_async(

Command ("sow_and_subscribe')
.setTopic("van_location")
.setFilter("/status = 'ACTIVE'")
.setBatchSize (100)

.setOptions("oof"),
bind (processSOWMessage(placeholders::_1));

Example 6.4. Asynchronous SOW and Subscribe

In Example 6.4, the trackVanPositions function invokes sowAndSubscribe to begin tracking
vans, and returns the subscription ID. The application can later use this to unsubscribe.

The two forms have the same result. However, one form performs processing on a background thread, and
blocks the client from receiving messages while that processing happens, while the other form processes

30

State of the World

messages on the calling thread and allows the background thread to continue to receive messages while
processing occurs. In both cases, the application receives and processes the same messages.

6.3. Setting Batch Size

The AMPS clients include a batch size parameter that specifies how many messages the AMPS server
will return to the client in a single batch. The 60East clients set a batch size of 10 by default. This batch
size works well for common message sizes and network configurations.

Adjusting the batch size may produce better network utilitization and produce better performance overall
for the application. The larger the batch size, the more messages AMPS will send to the network layer at
a time. This can result in fewer packets being sent, and therefore less overhead in the network layer. The
effect on performance is generally most noticeable for small messages, where setting a larger batch size
will allow several messages to fit into a single packet. For larger messages, a batch size may still improve
performance, but the improvement is less noticeable.

In general, 60East recommends setting a batch size that is large enough to produce few partially-filled
packets. Bear in mind that AMPS holds the messages in memory while batching them, and the client
must also hold the messages in memory while receiving the messages. Using batch sizes that require
large amounts of memory for these operations can reduce overall application peformance, even if network
utilization is good.

6.4. Managing SOW Contents

AMPS allows application to manage the contents of the SOW by explicitly deleting messages that are
no longer relevant. For example, if a particular delivery van is retired from service, the application can
remove the record for the van by deleting the record for the van.

The client provides the following functions for deleting records from the SOW.

* sowDelete accepts a filter, and deletes all messages that match the filter

¢ sowDeleteByKeys accepts a set of SOW keys as a comma-delimited string and deletes messages
for those keys, regardless of the contents of the messages. SOW keys are provided in the header of a

SOW message, and is the internal identifier AMPS uses for that SOW message

* sowDeleteByData accepts a topic and message, and deletes the SOW record that would be updated
by that message

Most applications use sowDelete, since this is the most useful and flexible method for removing
items from the SOW. In some cases, particularly when working with extremely large SOW databases,
sowDeleteByKeys can provide better performance.

In either case, AMPS sends an OOF message to all subscribers who have received updates for the messages
removed, as described in the previous section.

31

State of the World

The simple form of the sowDelete command returns a MessageStream that receives the response. This
response is an acknowledgement message that contains information on the delete command. For example,
the following snippet simply prints informational text with the number of messages deleted:

for (auto msg : client.sowDelete("sow_topic",
"/id in (42, 64, 37)"))

{
std::cout << "Got a " << msg.getCommand()
<< " message containing " << msg.getAckType()
<< ": deleted " << msg.getMatches() << " entries."
<< std::endl;
}

The sowDe lete command can also be sent asychronously, in a version that requires a message handler.
The message handler is written to receive sow_de Lete response messages from AMPS:.

void HandleSOwWDelete(const Message& message)
{
std::cout << "Got a " << msg.getCommand()
<< " message containing " << msg.getAckType()
<< ": deleted " << msg.getMatches() << " entries."
<< std::endl;

client.execute_async(Command("sow_delete")
.setTopic("sow_topic")
.setFilter("/id in (42, 64, 37)")
, bind(HandleSOwWDelete, placeholders::_1));

32

Chapter 7. High Availability

The AMPS Client provides an easy way to create highly-available applications using AMPS, via the
HAClient class. Using HACl1ient allows applications to automatically:

* Recover from temporary disconnects between client and server.

+ Failover from one server to another when a server becomes unavailable.

» Ensure no messages are lost or duplicated after a reconnect or failover.

* (Optional) Persist messages and bookmarks on disk for protection against client failure.

Many of these features require specific configuration settings on your AMPS instance(s). This chapter
mentions these features, but you can find full documentation for these settings and server features in the
User Guide.

7.1. Choosing an HAClient Protection
Method

Use the HAClient class to create a highly-available connection to one or more AMPS instances. HA-
Client derives from Client and offers the same methods, but also adds protection against network,
server, and client outages. Most code written with C1ient will also work with HAClient, and major
differences involve constructing and connecting the HAC lient.

The HAClient provides protection from disconnection using Stores. As the name implies, stores hold
information about the state of the client. There are two types of store:

* A bookmark store tracks received messages, and is used to resume subscriptions.
A publish store tracks published messages, and is used to ensure that messages are persisted in AMPS.

The AMPS client provides a memory-backed version of each store and a filed-backed version of each
store. An HAClient can use either a memory backed store or a file backed store for protection. Each
method provides resilience to different failures:

» Memory-backed stores protect against disconnection from AMPS by storing messages and bookmarks
in your process’ address space. This is the highest performance option for working with AMPS in a
highly available manner. The trade-off with this method is there is no protection from a crash or failure of
your client application. If your application is terminated prematurely or, if the application terminates at
the same time as an AMPS instance failure or network outage, then messages may be lost or duplicated.

+ File-backed stores protect against client failure and disconnection from AMPS by storing messages
and bookmarks on disk. To use this protection method, the create_fi le_backed method requests
additional arguments for the two files that will be used for both bookmark storage and message storage.

33

High Availability

If these files exist and are non-empty (as they would be after a client application is restarted), the
HAClient loads their contents and ensures synchronization with the AMPS server once connected.
The performance of this option depends heavily on the speed of the device on which these files are
placed. When the files do not exist (as they would the first time a client starts on a given system), the
HAClient creates and initializes the files, and in this case the client does not have a point at which
to resume the subscription or messages to republish.

The store interface is public, and an application can create and provide a custom store as necessary. While
clients provide convenience methods for creating file-backed and memory-backed HAC1ient objects
with the appropriate stores, you can also create and set the stores in your application code.

In this example, we create two clients, one for less-important” messages that uses memory for its store,
and one which uses a pair of files for its store:

HAClient memoryClient = HAClient::createMemoryBacked(
"lessImportantMessages");

HAClient diskClient = HAClient::createFileBacked(
"morelImportantMessages",
"/mnt/fastDisk/moreImportantMessages.outgoing",
"/mnt/fastDisk/moreImportantMessages.incoming");

Example 7.1. HAClient creation examples

While this chapter presents the built-in file and memory-based stores, the AMPS C/

@ C++ Client provides open interfaces that allow development of custom persistent
message stores. You can implement the Store and BookmarkStore interfaces
in your code, and then pass instances of those to setPublishStore() or set-
BookmarkStore () methods in your C lient. Instructions on developing a cus-
tom store are beyond the scope of this document; please refer to the AMPS Client
HA Whitepaper for more information.

7.2. Connections and the ServerChooser

Unlike Client, the HAClient attempts to keep itself connected to an AMPS instance at all times, by
automatically reconnecting or failing over when it detects disconnect. When you are using the Client
directly, your disconnect handler usually takes care of reconnection. HAC L ient, on the other hand, pro-
vides a disconnect handler that automatically reconnects to the current server or to the next available server.

To inform the HAC L7 ent of the addresses of the AMPS instances in your system, you pass a Server—
Chooser instance to the HAClient. ServerChooser acts as a smart enumerator over the servers
available: HAClient calls ServerChooser methods to inquire about what server should be connect-
ed, and calls methods to indicate whether a given server succeeded or failed.

The AMPS C/C++ Client provides a simple implementation of ServerChooser, called Default-
ServerChooser, that you can use in applications with simple requirements around choosing which

34

High Availability

server to connect with. Or, you can implement ServerChooser yourself for more advanced logic, such
as choosing a backup server based on your network topology.

In either case, you must provide a ServerChooser to HAClient to get started, and then invoke con-
nectAndLogon () to create the first connection. If no ServerChooser is provided, the HAClient
throws an exception:

HAClient myClient = HAClient::createMemoryBacked/(
"myClient");

// primary.amps.xyz.com is the primary AMPS -dinstance, and
// secondary.amps.xyz.com is the secondary

ServerChooser chooser (new DefaultServerChooser());
chooser.add("tcp://primary.amps.xyz.com:12345/fix");
chooser.add("tcp://secondary.amps.xyz.com:12345/fix");
myClient.setServerChooser (chooser) ;
myClient.connectAndLogon() ;

myClient.disconnect();

Example 7.2. HAClient logon

Similar to Client, HAClient remains connected to the server until disconnect() is called.
Unlike Client, HAClient automatically attempts to reconnect to your server if it detects a dis-
connect, and, if that server cannot be connected, fails over to the next server provided by the
ServerChooser. In this example, the call to connectAndLogon() attempts to connect and
log in to primary.amps.xyz.com, and returns if that is successful. If it cannot connect, it tries
secondary.amps.xyz.com, and continues trying servers from the ServerChooser until a con-
nection is established. Likewise, if it detects a disconnection while the client is in use, HAClient at-
tempts to reconnect to the server it was most recently connected with, and, if that is not possible, it moves
on to the next server provided by the ServerChooser.

7.3. Heartbeats and Failure Detection

Use of the HAClient allows your application to quickly recover from detected connection failures.
By default, connection failure detection occurs when AMPS receives an operating system error on the
connection. This system may result in unpredictable delays in detecting a connection failure on the client,
particularly when failures in network routing hardware occur, and the client primarily acts as a subscriber.

The heartbeat feature of the AMPS client allows connection failure to be detected quickly. Heartbeats
ensure that regular messages are sent between the AMPS client and server on a predictable schedule. The
AMPS client and server both assume disconnection has occurred if these regular heartbeats cease, ensuring
disconnection is detected in a timely manner. To utilize heartbeat, call the setHeartbeat method on
ClientorHACLlient:

35

High Availability

HAClient client = HAClient::createMemoryBacked/(
"importantStuff");

client.connectAndLogon();
client.setHeartbeat(3);

setHeartbeat takes one parameter: the heartbeat interval. The heartbeat interval specifies the period-
icity of heartbeat messages sent by the server: the value 3 indicates messages are sent on a three-second
interval. If the client receives no messages in a six second window (two heartbeat intervals), the connection
is assumed to be dead, and the HAC1ient attempts reconnection. An additional variant of setHeart-
beat allows the idle period to be set to a value other than two heartbeat intervals.

7.4. Considerations for Publishers

Publishing with an HAC 1 i ent is nearly identical to regular publishing; you simply call the publish ()
method with your message’s topic and data. The AMPS client sends these messages asynchronously for
maximum performance, but, before exiting or terminating your connection, you should ensure that the
server has received all of your messages. The AMPS server occasionally sends persisted acknowledge-
ment messages that indicate messages it has successfully received and persisted. For safety, your applica-
tion should wait until it has successfully received the final acknowledgement from the AMPS instance.
Use the unpersistedCount () method in the Store to determine how many messages remain un-
acknowledged by the AMPS instance, as in the following example:

HAClient pub = HAClient.createMemoryBacked(
"importantStuff");

pub.connectAndLogon() ;
std::string topic = "loggedTopic";
std:string data = ...;
for(size_t i = 0; i < MESSAGE_COUNT; i++)
{

pub.publish(topic, data);
}

// We think we are done, but the server may not

// have acknowledged us yet.

while(pub.getPublishStore() .unpersistedCount() > 0)

{
printf(("waiting for final ack from the server...");
sleep(1000) ;

ks

pub.disconnect();

Example 7.3. HA Publisher

36

High Availability

In this example, the client sends each message immediately when publish () is called, but if AMPS
becomes unavailable between the final publish () and the disconnect (), then the client may not
have received an acknowledgement for all of the published messages. It is possible that not every message
has been received or persisted by the AMPS server. By waiting until unpersistedCount () becomes
0, the application ensures that it has received acknowledgement for every message published. If a dis-
connect or failover occurs while waiting, HAC L ient automatically reconnects and correlates its internal
store with the AMPS server (via the client sequence number returned in the acknowledgement message
from the logon), replaying any messages the AMPS server might need in order to be consistent.

AMPS uses the name of the HAC1lient to determine the origin of messages. For
A the AMPS server to correctly identify duplicate messages, each instance of an ap-
plication that publishes messages must use a distinct name.

If your application crashes or is terminated by an outside force, some published messages may not have
been persisted in the AMPS server. If you use the file-based store (in other words, the store created by
using HAClient.createFileBacked()), then the HACL1ient will recover the messages, and once
logged on, correlate the message store to what the AMPS server has received, re-publishing any missing
messages. This occurs automatically when HAC 17 entconnects, without any explicit consideration in
your code, other than ensuring that the same file name is passed to createFileBacked () if recovery
is desired.

AMPS provides persisted acknowledgement messages for topics that do not have a
A transaction log enabled; however, the level of durability provided for topics with no
transaction log is minimal. Learn more about transaction logs in the User Guide.

7.5. Considerations for Subscribers

HAClient provides two important features for applications that subscribe to one or more topics: re-
subscription, and a bookmark store to track the correct point at which to resume a bookmark subscription.

Resubscription With Asynchronous Message Process-
ing
Any asynchronous subscription placed using an HAC L1 ent is automatically reinstated after a disconnect
or a failover. These subscriptions are placed in an in-memory SubscriptionManager, which is creat-
ed automatically when the HAC1i ent is instantiated. Most applications will use this built-in subscription
manager, but for applications that create a varying number of subscriptions, you may wish to implement
SubscriptionManager to store subscriptions in a more durable place. Note that these subscriptions

contain no message data, but rather simply contain the the parameters of the subscription itself (for in-
stance, the command, topic, message handler, options, and filter).

When a re-subscription occurs, the AMPS C++ Client re-executes the command as originally submitted,
including the original topic, options, and so on. AMPS sends the subscriber any messages for the specified
topic (or topic expression) that gets published after the subscription is placed.

37

High Availability

Resubscription With Synchronous Message Process-
ing
The HAC 11 ent (starting with the AMPS C++ Client version 4.3.1.1) does not track synchronous message
processing subscriptions in the SubscriptionManager. The reason for this is to preserve the iterator

semantics. That is, once the MessageStream indicates that there are no more elements in the stream,
it does not suddenly produce more elements.

To resubscribe when the HAC 11 ent fails over, you can simply reissue the subscription. For example, the
snippet below re-issues the subscribe command when the message stream ends:

bool still_need_to_process = true;

while (still_need_to_process == true)
' for (auto message : client.subscribe("messages"))
' // process messages
// check condition on still_need_to_process
. if (still_need_to_process == false) break;

// end of stream, for a subscribe this means
// that the connection is likely closed.

Bookmark Stores

In cases where it is critical not to miss a single message, it is important to be able to resume a subscription
at the exact point that a failure occurred. In this case, simply recreating a subscription isn't sufficient. Even
though the subscription is recreated, the subscriber may have been disconnected at precisely the wrong
time, and will not see the message.

To ensure delivery of every message from a topic or set of topics, the AMPS HAClient includes a
BookmarkStore that, combined with the bookmark subscription and transaction log functionality in the
AMPS server, ensures that clients receive any messages that might have been missed. The client stores the
bookmark associated with each message received, and tracks whether the application has processed that
message; if a disconnect occurs, the client uses the BookmarkStore to determine the correct resubscription
point, and sends that bookmark to AMPS when it re-subscribes. AMPS then replays messages from its
transaction log from the point after the specified bookmark, thus ensuring the client is completely up-
to-date.

HACLient helps you to take advantage of this bookmark mechanism through the BookmarkStore in-
terface and bookmarkSubscribe () method on Client. When you create subscriptions with book-

38

High Availability

markSubscribe (), whenever a disconnection or failover occurs, your application automatically re-
subscribes to the message after the last message it processed. HAClients created by createFile-
Backed () additionally store these bookmarks on disk, so that the application can restart with the appro-
priate message if the client application fails and restarts.

To take advantage of bookmark subscriptions, do the following:

* Ensure the topic(s) to be subscribed are included in a transaction log. See the User Guide for information
on how to specify the contents of a transaction log.

* Use bookmarkSubscribe () instead of subscribe () when creating a subscription, and decide
how the application will manage subscription identifiers (SubIds).

* Usethe BookmarkStore.discard() method in message handlers to indicate when a message has
been fully processed by the application.

The following example creates a bookmark subscription against a transaction-logged topic, and fully
processes each message as soon as it is delivered:

HAClient client = HAClient::createFileBacked(
"aClient",
"/logs/aClient.publishlLog",
"/logs/aClient.subscribelog");

namespace MyMessageHandler

{
public void invoke(const Message& message, voidx data)
{
client.getBookmarkStore() .discard(message) ;
}
}

AMPS: :Command command ("subscribe'");
command.setTopic("myTopic")
.setSubscriptionId("MySubId")
.setBookmark (AMPS: :Client: :BOOKMARK_RECENT()) ;

std::string commandID =
client.execute_async(Command("subscribe")
.setTopic("myTopic")
.setSubscriptionId("MySubId")

.setBookmark (AMPS: :Client: :BOOKMARK_RECENT()),
AMPS: :MessageHandler (MyMessageHandler: :invoke, (voidx)
(&client)));

Example 7.4. HAClient Subscription

39

High Availability

In this example, the client is a file-backed client, meaning that arriving bookmarks will be stored in a
file (Client.subscribelog). Storing these bookmarks in a file allows the application to restart the
subscription from the last message processed, in the event of either server or client failure.

For optimum performance, it is critical to discard every message once its processing

@ is complete. If a message is never discarded, it remains in the bookmark store. Dur-
ing re-subscription, HAC L ient always restarts the bookmark subscription with the
oldest undiscarded message, and then filters out any more recent messages that have
been discarded. If an old message remains in the store, but is no longer important for
the application’s functioning, the client and the AMPS server will incur unnecessary
network, disk, and CPU activity.

In Example 7.4 all parameters after the bookmark are optional. However, all options before — and includ-
ing the bookmark — are required when creating a bookmarkSubscribe ().

The last parameter, subId, specifies an identifier to be used for this subscription. Passing NULL causes
HAClient to generate one and return it, like most other C1ient functions. However, if you wish to
resume a subscription from a previous point after the application has terminated and restarted, the appli-
cation must pass the same subscription ID as during its previous run. Passing a different subscription ID
bypasses any recovery mechanisms, creating an entirely new subscription. When you use an existing sub-
scription ID, the HACLient locates the last-used bookmark for that subscription in the local store, and
attempts to re-subscribe from that point.

The subTd is also required to be unique when used within a single client, but can be the same in different
clients. Internally, AMPS tracks subscriptions in each client, thus each identifier for each subscription
within a client must be unique. The same subId can be reused across unique clients simultaneously
without causing problems.

* Client: :BOOKMARK_NOW () specifies that the subscription should begin from the moment the serv-
er receives the subscription request. This results in the same messages being delivered as if you had
invoked subscribe () instead, except that the messages will be accompanied by bookmarks. This is
also the behavior that results if you supply an invalid bookmark.

* Client::BOOKMARK_EPOCH () specifies that the subscription should begin from the beginning of
the AMPS transaction log.

* Client: :BOOKMARK_RECENT () specifies that the subscription should begin from the last-used
message in the associated BookmarkStore, or, if this subscription has not been seen before, to be-
gin with EPOCH. This is the most common value for this parameter, and is the value used in the pre-
ceding example. By using MOST_RECENT, the application automatically resumes from wherever the
subscription left off, taking into account any messages that have already been processed and discarded.

When the HAClient re-subscribes after a disconnection and reconnection, it always uses
MOST_RECENT, ensuring that the continued subscription always begins from the last message used be-
fore the disconnect, so that no messages are missed.

40

High Availability

7.6. Conclusion

With only a few changes, most AMPS applications can take advantage of the HAC1ient and associated
classes to become more highly-available and resilient. Using the PublishStore, publishers can en-
sure that every message published has actually been persisted by AMPS. Using BookmarkStore, sub-
scribers can make sure that there are no gaps or duplicates in the messages received. HAC1ient makes
both kinds of applications more resilient to network and server outages and temporary issues, and, by using
the file-based HAC L7 ent, clients can recover their state after an unexpected termination or crash. Though
HAClient provides useful defaults for the Store, BookmarkStore, SubscriptionManager,
and ServerChooser, you can customize any or all of these to the specific needs of your application
and architecture.

41

Chapter 8. Advanced AMPS
Programming: Working with Commands

The AMPS clients provide named convenience methods for core AMPS functionality. These named meth-
ods work by creating messages and sending those messages to AMPS. All communication with AMPS
occurs through messages.

You can use the Command object to customize the messages that AMPS sends. This is useful for more
advanced scenarios where you need precise control over AMPS, in cases where you need to use an earlier
verison of the client to communicate with a more recent version of AMPS, or in cases where a named
method is not available.

8.1. Understanding AMPS Messages

AMPS messages are represented in the client as AMPS.Message objects. The Message object is generic,
and can represent any type of AMPS message, including both outgoing and incoming messages. This
section includes a brief overview of elements common to AMPS command message. Full details of com-
mands to AMPS are provided in the AMPS Command Reference Guide.

All AMPS command messages contain the following elements:

» Command. The command tells AMPS how to interpret the message. Without a command, AMPS will
reject the message. Examples of commands include publish, subscribe, and sow.

+ CommandId. The command id, together with the name of the client, uniquely identifies a command to
AMPS. The command ID can be used later on to refer to the command or the results of the command.
For example, the command id for a subscribe message becomes the identifier for the subscription.
The AMPS client provides a command id when the command requires one and no command id is set.

Most AMPS messages contain the following fields:

+ Topic. The topic that the command applies to, or a regular expression that identifies a set of topics
that the command applies to. For most commands, the topic is required. Commands such as logon,
start_timer, and stop_timer do not apply to a specific topic, and do not need this field.

» Ack Type. The ack typetells AMPS how to acknowledge the message to the client. Each command has
a default acknowledgement type that AMPS uses if no other type is provided.

* Options. The options are a comma-separated list of options that affect how AMPS processes and
responds to the message.

Beyond these fields, different commands include fields that are relevant to that particular command. For
example, SOW queries, subscriptions, and some forms of SOW deletes accept the Filter field, which
specifies the filter to apply to the subscription or query. As another example, publish commands accept
the Expiration field, which sets the SOW expiration for the message.

42

Advanced AMPS Programming: Working with Commands

For full details on the options available for each command and the acknowledgement messages returned
by AMPS, see the AMPS Command Reference Guide.

8.2. Creating and Populating the Command

To create a command, you simply construct a command object of the appropriate type:
AMPS: :Command command ("sow") ;

Once created, you set the appropriate fields on the command. For example, the following code creates a
publish message, setting the command, topic, data to publish, and an expiration for the message:

AMPS: :Command command ("sow"
.setTopic("messages-sow")
.setFilter("/id > 20");

When sent to AMPS using the execute () method, AMPS performs a SOW query from the topic mes-
sages—sow using a filter of /id > 20. The results of sending this message to AMPS are no different
than using the form of the sow method that sets these fields.

8.3. Using execute

Once you've created a message, use the execute method to send the message to AMPS. One form
of the execute method allows you to provide a message handler to process response messages. The
execute_async method sends the message to AMPS and processes any response on a background
thread.

For example, the following snippet sends the command created above:
client.execute(command) ;

You can also provide a message handler to receive acknowledgements, statistics, or the results of subscrip-
tions and SOW queries. In this case, AMPS creates a background thread. The call to execute_async
returns immediately on the main thread, and messages are received in the background thread:

void handleMessages(const AMPS::Message& m, voidx user_data)
{
// print acknowledgement type and reason for sample purposes.
std::cout << m.getAckType() << " : " << m.getReason() <<
std: :endl;
}

client.execute_async(command, AMPS::MessageHandler (handleMessages,
NULL)) ;

43

Advanced AMPS Programming: Working with Commands

While this message handler simply prints the ack type and reason for sample purposes, message handlers
in production applications are typically designed with a specific purpose. For example, your message
handler may fill a work queue, or check for success and throw an exception if the command failed.

Notice that the pub 11 sh command does not provide typically return results other than acknowledgement
messages. To send a publish command, use the executeAsync () method with a NULL message
handler:

client.executeAsync(publishCmd, NULL);

8.4. Command Cookbook

This section is a quick guide to commonly used AMPS commands. For the full range of options on AMPS
commands, see the AMPS Command Reference.

Publishing

This section presents common recipes for publishing to a topic in AMPS using the Command or Message
interfaces. This section provides information on how to configure the request to AMPS. You can adapt
this information to your application and the specific interface you are using.

The AMPS server does not return a stream of messages in response to a pub 17 sh command.

AMPS pub 17 sh commands do not return a stream of messages. A publish command is most
often used with asynchronous message processing, while passing an empty handler. To use
these commands with the synchronous message processing interface, add a CommandId to
the Command

Basic Publish

In its simplest form, a subscription needs only the topic to publish to and the data to publish. The AMPS
client automatically constructs the necessary AMPS headers and formats the full pub1ish command.

In many cases, a publisher only needs to use the basic publish command.

Table 8.1. Basic Publish

Header Comment

Topic Sets the topic to publish to. The topic specified must
be a literal topic name. Regular expression charac-
ters in the topic name are not interpreted.

44

Advanced AMPS Programming: Working with Commands

Header Comment
Some topics in AMPS, such as views and conflat-
ed topics, cannot be published to directly. Instead, a
publisher must publish to the underlying topics.

Data The data to publish to the topic. The AMPS client
does not interpret, escape, or validate this data: the
data is provided to the server verbatim.

Publish With Correlationld

AMPS provides publishers with a header field that can be used to contain arbitrary data, the Correla-
tionId.

Table 8.2. Publish With CorrelationId

Header Comment

Topic Sets the topic to publish to. The topic specified must
be a literal topic name. Regular expression charac-
ters in the topic name are not interpreted.

Some topics in AMPS, such as views and conflat-
ed topics, cannot be published to directly. Instead, a
publisher must publish to the underlying topics.

Data The data to publish to the topic. The AMPS client
does not interpret, escape, or validate this data: the
data is provided to the server verbatim.

CorrelationId The CorrelationId to provide on the mes-
sage. AMPS provides the CorrelationId to
subscribers. The CorrelationId has no signifi-
cance for AMPS.

The CorrelationId may only contain charac-
ters that are valid in base-64 encoding.

Publish With Explicit SOW Key

When publishing to a SOW topic that is configured to require an explicit SOW key, the publisher needs
to set the SowKey header on the message.

Table 8.3. Publish with Explicit SOW Key

Header Comment

Topic Sets the topic to publish to. The topic specified must
be a literal topic name. Regular expression charac-
ters in the topic name are not interpreted.

45

Advanced AMPS Programming: Working with Commands

Header Comment
Some topics in AMPS, such as views and conflat-
ed topics, cannot be published to directly. Instead, a
publisher must publish to the underlying topics.

Data The data to publish to the topic. The AMPS client
does not interpret, escape, or validate this data: the
data is provided to the server verbatim.

SowKey The SOW Key to use for this message. This head-
er is only supported for publishes to a topic that re-
quires an explicit SOW Key.

Subscribing

This section presents common recipes for subscribing to a topic in AMPS using the Command or Mes~-
sage interfaces. This section provides information on how to configure the request to AMPS. You can
adapt this information to your application and the specific interface you are using.

Basic Subscription

In its simplest form, a subscription needs only the topic to subscribe to.

Table 8.4. Basic Subscription

Header Comment

Topic Sets the topic to subscribe to. All messages from the
topic will be delivered on this subscription. The top-
ic specified can be the literal topic name, or a regu-
lar expression that matches multiple topics.

Basic Subscription With Options

In its simplest form, a subscription needs only the topic to subscribe to. To add options to the subscription,
set the Options header on the Command.

Table 8.5. Basic Subscription with Options

Header Comment

Topic Sets the topic to subscribe to. All messages from the
topic will be delivered on this subscription. The top-
ic specified can be the literal topic name, or a regu-
lar expression that matches multiple topics.

Options A comma-delimited set of options for this com-
mand. See the AMPS Command Reference for
a description of supported options.

46

Advanced AMPS Programming: Working with Commands

Content Filtered Subscription

To provide a content filter on a subscription, set the Fi 1 ter property on the command. The AMPS User
Guide provides details on the filter syntax.

Table 8.6. Content Filtered Subscription

Header Comment

Topic Sets the topic to subscribe to. The topic provided can
be either the exact name of the topic, or a regular
expression that matches the names of the topics for
the subscription.

Filter Sets the content filter to be applied to the subscrip-
tion. Only messages that match the content filter will
be provided to the subscription.

Bookmark Subscription

To create a bookmark subscription, set the Bookmark property on the command. The property can be
either a specific bookmark, a timestamp, or one of the client-provided constants. The AMPS User Guide
provides details on creating timestamps. Notice that the MOST_RECENT constant tells the AMPS client
to find the appropriate message in the client bookmark store and begin the subscription at that point. In
this case, the client sends that bookmark value to AMPS. The Bookmark option is only supported for
topics that are recorded in an AMPS transaction log.

Table 8.7. Bookmark Subscription

Header Comment

Topic Sets the topic to subscribe to. The topic provided can
be either the exact name of the topic, or a regular
expression that matches the names of the topics for
the subscription.

Bookmark Sets the point in the transaction log at which the sub-
scription will begin. The bookmark provided can be
a specific AMPS bookmark, a timestamp, or one of
the client-provided constants.

AMPS also accepts a comma-delimited list of book-
marks. In this case, AMPS begins the subscription
from whichever of the bookmarks is earliest in the
transaction log.

Bookmark Subscription With Content Filter

To create a bookmark subscription, set the Bookmark property on the command. The property can be
either a specific bookmark, a timestamp, or one of the client-provided constants. The AMPS User Guide
provides details on creating timestamps. Notice that the MOST_RECENT constant tells the AMPS client

47

Advanced AMPS Programming: Working with Commands

to find the appropriate message in the client bookmark store and begin the subscription at that point. In
this case, the client sends that bookmark value to AMPS.

To add a filter to a bookmark subscription, set the Fi Lter property on the command. The AMPS User

Guide provides details on the filter syntax.

Table 8.8. Bookmark Subscription With Content Filter

Header
Topic

Bookmark

Filter

Comment

Sets the topic to subscribe to. The topic provided can
be either the exact name of the topic, or a regular
expression that matches the names of the topics for
the subscription.

Sets the point in the transaction log at which the sub-
scription will begin. The bookmark provided can be
a specific AMPS bookmark, a timestamp, or one of
the client-provided constants.

AMPS also accepts a comma-delimited list of book-
marks. In this case, AMPS begins the subscription
from whichever of the bookmarks is earliest in the
transaction log.

Sets the content filter to be applied to the subscrip-
tion. Only messages that match the content filter will
be provided to the subscription.

Replacing the Filter on a Subscription

To replace the content filter on a subscription, provide the SubTId of the subscription to be replaced, add
the rep lace option, and set the Fi L ter property on the command with the new filter. The AMPS User

Guide provides details on the filter syntax.

Table 8.9. Replacing the Filter on a Subscription

Header
Topic

SubId

Options

Filter

Comment

Sets the topic to subscribe to. The topic provided can
be either the exact name of the topic, or a regular
expression that matches the names of the topics for
the subscription.

The identifier for the subscription to update. The
SubTd is the CommandId for the original sub-
scribe command.

A comma-separated list of options. To replace the
filter on a subscription, include replace in the list
of options.

Sets the content filter to be applied to the subscrip-

tion. Only messages that match the content filter will
be provided to the subscription.

48

Advanced AMPS Programming: Working with Commands

SOW Query

This section presents common recipes for querying a SOW topic in AMPS using the Command or Mes-
sage interfaces. This section provides information on how to configure the request to AMPS. You can
adapt this information to your application and the specific interface you are using.

Basic SOW Query

In its simplest form, a SOW query needs only the topic to query.

Table 8.10. Basic SOW Query

Header Comment

Topic Sets the topic to query. The SOW query returns all
messages in the SOW. The topic specified can be
the literal topic name, or a regular expression that
matches multiple topics.

Basic SOW With Options

In its simplest form, a SOW needs only the topic to subscribe to. To add options to the subscription, set
the Options header on the Command.

Table 8.11. Basic SOW Query with Options

Header Comment

Topic Sets the topic to query. The SOW query returns all
messages in the SOW. The topic specified can be
the literal topic name, or a regular expression that
matches multiple topics.

Options A comma-delimited set of options for this com-
mand. See the AMPS Command Reference for
a description of supported options.

SOW Query With Ordered Results

In its simplest form, a SOW needs only the topic to subscribe to. To return the results in a specific order,
provide an ordering expression in the OrderBy header.

Table 8.12. Basic SOW Query with Ordered Results

Header Comment

Topic Sets the topic to query. The SOW query returns all
messages in the SOW. The topic specified can be

49

Advanced AMPS Programming: Working with Commands

Header Comment
the literal topic name, or a regular expression that
matches multiple topics.

OrderBy Orders the results returned as specified. Requires a
comma-separated list of identifiers of the form:

/field [ASC | DESC]

For example, to sort in descending order by or-
derDate so that the most recent orders are first,
and ascending order by customerName for orders
with the same date, you might use a specifier such
as:

/orderDate DESC, /customerName ASC

If no sort order is specified for an identifer, AMPS
defaults to ascending order.

SOW Query With TopN Results

In its simplest form, a SOW needs only the topic to subscribe to. To return only a specific number of
records, provide the number of records to return in the TopN header.

Table 8.13. SOW Query with TopN Results

Header Comment

Topic Sets the topic to query. The SOW query returns all
messages in the SOW. The topic specified can be
the literal topic name, or a regular expression that
matches multiple topics.

TopN The maximum number of records to return. AMPS
uses the OrderBy header to determine the order of
the records.

If no OrderBy header is provided, records are re-
turned in an indeterminate order. In most cases, us-
ing an OrderBy header when you use the TopN
header will guarantee that you get the records of in-
terest.

OrderBy Orders the results returned as specified. Requires a
comma-separated list of identifiers of the form:

/field [ASC | DESC]

For example, to sort in descending order by or-
derDate so that the most recent orders are first,
and ascending order by customerName for orders

50

Advanced AMPS Programming: Working with Commands

Header Comment

with the same date, you might use a specifier such
as:

/orderDate DESC, /customerName ASC

If no sort order is specified for an identifer, AMPS
defaults to ascending order.

Content Filtered SOW Query

To provide a content filter on a SOW query, set the Fi Lter property on the command. The AMPS User
Guide provides details on the filter syntax.

Table 8.14. Content Filtered SOW Query Subscription

Header Comment

Topic Sets the topic to query. The topic specified can be
the literal topic name, or a regular expression that
matches multiple topics.

Filter Sets the content filter to be applied to the query. On-
ly messages that match the content filter will be re-
turned in response to the query.

Historical SOW Query

To create a historical SOW query, set the Bookmar k property on the command. The property can be either
a specific bookmark or a timestamp. The AMPS User Guide provides details on creating timestamps.

This command is only supported on SOW topics that have History enabled.

Table 8.15. Historical SOW Query

Header Comment

Topic Sets the topic to query. The topic specified can be
the literal topic name, or a regular expression that
matches multiple topics.

Bookmark Sets the historical point in the SOW at which to
query. The query returns the saved state of the
records in the SOW as of the point in time specified
in this header.

Historical SOW Query With Content Filter

To create a historical SOW query, set the Bookmark property on the command. The property can be
either a specific bookmark or a timestamp. The AMPSUser Guide provides details on creating timestamps.

51

Advanced AMPS Programming: Working with Commands

To add a filter to the query, set the Filter property on the command. The AMPS User Guide provides
details on the filter syntax.

This command is only supported on SOW topics that have History enabled.

Table 8.16. Historical SOW Query With Content Filter

Header Comment

Topic Sets the topic to query. The topic specified can be
the literal topic name, or a regular expression that
matches multiple topics.

Bookmark Sets the historical point in the SOW at which to
query. The query returns the saved state of the
records in the SOW as of the point in time specified
in this header.

Filter Sets the content filter to be applied to the query. On-
ly messages that match the content filter will be pro-
vided to the query.

SOW Query for Specific Records

AMPS allows a consumer to query for specific records as identified by a set of SowKeys. For topics
where AMPS assigns the SowKey, the SowKey for the record is the AMPS-assigned identifier. For topics
configured to require a user-provided SowKey, the SowKey for the record is the original key provided
when the record was published. The AMPS User Guide provides more details on SOW keys.

Table 8.17. SOW Query by SOW Key

Header Comment

Topic Sets the topic to query. The topic specified can be
the literal topic name, or a regular expression that
matches multiple topics.

SowKeys A comma-delimited list of SowKey values. AMPS
returns only the records specified in this list.

For example, a valid format for a list of keys would
be:

1853097931817257202,10402779940201650075,2236

SOW and Subscribe

This section presents common recipes for atomic sow and subscribe in AMPS using the Command or
Message interfaces. This section provides information on how to configure the request to AMPS. You
can adapt this information to your application and the specific interface you are using.

52

Advanced AMPS Programming: Working with Commands

Basic SOW and Subscribe

In its simplest form, a SOW and Subscribe needs only the topic to subscribe to.

Table 8.18. Basic SOW and Subscribe

Header
Topic

Comment

Sets the topic to query and subscribe to. The topic
specified can be the literal topic name, or a regular
expression that matches multiple topics.

SOW and Subscribe With Options

In its simplest form, a SOW and subscribe command needs only the topic to subscribe to. To add options
to the subscription, set the Options header on the Command.

Table 8.19. Basic SOW and Subscribe with Options

Header
Topic

Options

Comment

Sets the topic to query and subscribe to. The topic
specified can be the literal topic name, or a regular
expression that matches multiple topics.

A comma-delimited set of options for this com-
mand. See the AMPS Command Reference for
a full description of supported options.

The most common options for this command are:

oof Request out of order noti-
fications

timestamp Include timestamps on
messages

Content Filtered SOW and Subscribe

To provide a content filter on a SOW and Subscribe, set the Filter property on the command. The
AMPS User Guide provides details on the filter syntax.

Table 8.20. Content Filtered SOW and Subscribe

Header
Topic

Comment

Sets the topic to query and subscribe to. The topic
specified can be the literal topic name, or a regular
expression that matches multiple topics.

53

Advanced AMPS Programming: Working with Commands

Header
Filter

Comment

Sets the content filter to be applied to the query. On-
ly messages that match the content filter will be re-
turned in response to the query.

Historical SOW and Subscribe

To create a historical SOW query with a subscription, set the Bookmark property on the command. The
property can be either a specific bookmark or a timestamp. The AMPS User Guide provides details on
creating timestamps. This command is only supported on SOW topics that are recorded in an AMPS
transaction log. If the Bookmar k provided is a value other than NOW (O | 1 |), the SOW topic must have

History enabled.

Table 8.21. Historical SOW and Subscribe

Header
Topic

Bookmark

Comment

Sets the topic to query and subscribe to. The topic
specified can be the literal topic name, or a regular
expression that matches multiple topics.

Sets the historical point in the SOW at which to
query. The query returns the saved state of the
records in the SOW as of the point in time specified
in this header.

Historical SOW and Subscribe With Content Filter

To create a historical SOW query with a subscription, set the Bookmar k property on the command. The
property can be either a specific bookmark or a timestamp. The AMPS User Guide provides details on
creating timestamps. This command is only supported on SOW topics that are recorded in an AMPS
transaction log. If the Bookmar k provided is a value other than NOW (O | 1 |), the SOW topic must have

History enabled.

Table 8.22. Historical SOW and Subscribe With Content Filter

Header
Topic

Bookmark

Filter

Comment

Sets the topic to query. The topic specified can be
the literal topic name, or a regular expression that
matches multiple topics.

Sets the historical point in the SOW at which to
query. The query returns the saved state of the
records in the SOW as of the point in time specified
in this header.

Sets the content filter to be applied to the query. On-
ly messages that match the content filter will be pro-
vided to the query.

54

Advanced AMPS Programming: Working with Commands

Delta Publishing

This section presents common recipes for publishing to a topic in AMPS using the Command or Message
interfaces. This section provides information on how to configure the request to AMPS. You can adapt
this information to your application and the specific interface you are using.

Basic Delta Publish

In its simplest form, a subscription needs only the topic to publish to and the data to publish. The AM-
PS client automatically constructs the necessary AMPS headers and formats the full delta_publish

command.

In many cases, a publisher only needs to use the basic delta publish command.

Table 8.23. Basic Delta Publish

Header
Topic

Data

Comment

Sets the topic to publish to. The topic specified must
be a literal topic name. Regular expression charac-
ters in the topic name are not interpreted.

Some topics in AMPS, such as views and conflat-
ed topics, cannot be published to directly. Instead, a
publisher must publish to the underlying topics.

The data to publish to the topic. The AMPS client
does not interpret, escape, or validate this data: the
data is provided to the server verbatim.

Delta Publish With Correlationld

AMPS provides publishers with a header field that can be used to contain arbitrary data, the Correla-
tionId. A delta publish message can be used to update the CorrelationId as well as the data within

the message.

Table 8.24. Delta Publish With CorrelationId

Header
Topic

Data

Comment

Sets the topic to publish to. The topic specified must
be a literal topic name. Regular expression charac-
ters in the topic name are not interpreted.

Some topics in AMPS, such as views and conflat-
ed topics, cannot be published to directly. Instead, a
publisher must publish to the underlying topics.

The data to publish to the topic. The AMPS client
does not interpret, escape, or validate this data: the
data is provided to the server verbatim.

55

Advanced AMPS Programming: Working with Commands

Header Comment

CorrelationId The CorrelationId to provide on the mes-
sage. AMPS provides the CorrelationId to
subscribers. The CorrelationId has no signifi-
cance for AMPS.

The CorrelationId may only contain charac-
ters that are valid in base-64 encoding.

Delta Publish With Explicit SOW Key

When publishing to a SOW topic that is configured to require an explicit SOW key, the publisher needs
to set the SowKey header on the message.

Table 8.25. Delta Publish with Explicit SOW Key

Header Comment

Topic Sets the topic to publish to. The topic specified must
be a literal topic name. Regular expression charac-
ters in the topic name are not interpreted.

Some topics in AMPS, such as views and conflat-
ed topics, cannot be published to directly. Instead, a
publisher must publish to the underlying topics.

Data The data to publish to the topic. The AMPS client
does not interpret, escape, or validate this data: the
data is provided to the server verbatim.

SowKey The SOW Key to use for this message. This head-
er is only supported for publishes to a topic that re-
quires an explicit SOW Key.

Delta Subscribing

This section presents common recipes for subscribing to a topic in AMPS using the Command or Mes—
sage interfaces. This section provides information on how to configure the request to AMPS. You can
adapt this information to your application and the specific interface you are using.

Basic Delta Subscription

In its simplest form, a delta subscription needs only the topic to subscribe to.

Table 8.26. Basic Delta Subscription

Header Comment

Topic Sets the topic to subscribe to. All messages from the
topic will be delivered on this subscription. The top-

56

Advanced AMPS Programming: Working with Commands

Header Comment

ic specified can be the literal topic name, or a regu-
lar expression that matches multiple topics.

Basic Delta Subscription With Options

In its simplest form, a subscription needs only the topic to subscribe to. To add options to the subscription,
set the Options header on the Command.

Table 8.27. Basic Delta Subscription

Header Comment

Topic Sets the topic to subscribe to. All messages from the
topic will be delivered on this subscription. The top-
ic specified can be the literal topic name, or a regu-
lar expression that matches multiple topics.

Options A comma-delimited set of options for this com-
mand. See the AMPS Command Reference for
a description of supported options.

Content Filtered Delta Subscription

To provide a content filter on a subscription, set the Fi 1 ter property on the command. The AMPS User
Guide provides details on the filter syntax.

Table 8.28. Content Filtered Subscription

Header Comment

Topic Sets the topic to subscribe to. The topic provided can
be either the exact name of the topic, or a regular
expression that matches the names of the topics for
the subscription.

Filter Sets the content filter to be applied to the subscrip-
tion. Only messages that match the content filter will
be provided to the subscription.

Bookmark Delta Subscription

To create a bookmark subscription, set the Bookmark property on the command. The property can be
either a specific bookmark, a timestamp, or one of the client-provided constants. The AMPS User Guide
provides details on creating timestamps. Notice that the MOST_RECENT constant tells the AMPS client
to find the appropriate message in the client bookmark store and begin the subscription at that point. In
this case, the client sends that bookmark value to AMPS.

57

Advanced AMPS Programming: Working with Commands

Table 8.29. Bookmark Subscription

Header
Topic

Bookmark

Comment

Sets the topic to subscribe to. The topic provided can
be either the exact name of the topic, or a regular
expression that matches the names of the topics for
the subscription.

Sets the point in the transaction log at which the sub-
scription will begin. The bookmark provided can be
a specific AMPS bookmark, a timestamp, or one of
the client-provided constants.

AMPS also accepts a comma-delimited list of book-
marks. In this case, AMPS begins the subscription
from whichever of the bookmarks is earliest in the
transaction log.

Bookmark Delta Subscription With Content Filter

To create a bookmark subscription, set the Bookmark property on the command. The property can be
either a specific bookmark, a timestamp, or one of the client-provided constants. The AMPS User Guide
provides details on creating timestamps. Notice that the MOST_RECENT constant tells the AMPS client
to find the appropriate message in the client bookmark store and begin the subscription at that point. In
this case, the client sends that bookmark value to AMPS.

To add a filter to a bookmark subscription, set the Fi lter property on the command. The AMPS User

Guide provides details on the filter syntax.

Table 8.30. Bookmark Delta Subscription With Content Filter

Header
Topic

Bookmark

Filter

Comment

Sets the topic to subscribe to. The topic provided can
be either the exact name of the topic, or a regular
expression that matches the names of the topics for
the subscription.

Sets the point in the transaction log at which the sub-
scription will begin. The bookmark provided can be
a specific AMPS bookmark, a timestamp, or one of
the client-provided constants.

AMPS also accepts a comma-delimited list of book-
marks. In this case, AMPS begins the subscription
from whichever of the bookmarks is earliest in the
transaction log.

Sets the content filter to be applied to the subscrip-
tion. Only messages that match the content filter will
be provided to the subscription.

Advanced AMPS Programming: Working with Commands

SOW and Delta Subscribe

This section presents common recipes for atomic sow and delta subscribe in AMPS using the Command
or Message interfaces. This section provides information on how to configure the request to AMPS. You
can adapt this information to your application and the specific interface you are using.

Basic SOW and Delta Subscribe

In its simplest form, a SOW and Delta Subscribe needs only the topic to subscribe to.

Table 8.31. Basic SOW Query

Header Comment

Topic Sets the topic to query and subscribe to. The topic
specified can be the literal topic name, or a regular
expression that matches multiple topics.

SOW and Delta Subscribe With Options

In its simplest form, a SOW and subscribe command needs only the topic to subscribe to. To add options
to the subscription, set the Options header on the Command.

Table 8.32. Basic SOW and Delta Subscribe with Options

Header Comment

Topic Sets the topic to query and subscribe to. The topic
specified can be the literal topic name, or a regular
expression that matches multiple topics.

Options A comma-delimited set of options for this com-
mand. See the AMPS Command Reference for
a full description of supported options.

The most common options for this command are:

oof Request out of order noti-
fications

timestamp Include timestamps on
messages

Content Filtered SOW and Delta Subscribe

To provide a content filter on a SOW and Delta Subscribe, set the Fi lter property on the command.
The AMPS User Guide provides details on the filter syntax.

59

Advanced AMPS Programming: Working with Commands

Table 8.33. Content Filtered SOW and Delta Subscribe

Header
Topic

Filter

Comment

Sets the topic to query and subscribe to. The topic
specified can be the literal topic name, or a regular
expression that matches multiple topics.

Sets the content filter to be applied to the query. On-
ly messages that match the content filter will be re-
turned in response to the query.

Historical SOW and Subscribe

To create a historical SOW query with a subscription, set the Bookmark property on the command. The
property can be either a specific bookmark or a timestamp. The AMPS User Guide provides details on
creating timestamps. This command is only supported on SOW topics that are recorded in an AMPS
transaction log. If the Bookmar k provided is a value other than NOW (O | 1 |), the SOW topic must have

History enabled.

Table 8.34. Historical SOW and Subscribe

Header
Topic

Bookmark

Comment

Sets the topic to query and subscribe to. The topic
specified can be the literal topic name, or a regular
expression that matches multiple topics.

Sets the historical point in the SOW at which to
query. The query returns the saved state of the
records in the SOW as of the point in time specified
in this header.

Historical SOW and Delta Subscribe With Content Filter

To create a historical SOW query with a subscription, set the Bookmar k property on the command. The
property can be either a specific bookmark or a timestamp. The AMPS User Guide provides details on
creating timestamps. This command is only supported on SOW topics that are recorded in an AMPS
transaction log. If the Bookmar k provided is a value other than NOW (O | 1 |), the SOW topic must have

History enabled.

Table 8.35. Historical SOW and Delta Subscribe With Content Filter

Header
Topic

Bookmark

Comment

Sets the topic to query. The topic specified can be
the literal topic name, or a regular expression that
matches multiple topics.

Sets the historical point in the SOW at which to
query. The query returns the saved state of the
records in the SOW as of the point in time specified
in this header.

60

Advanced AMPS Programming: Working with Commands

Header Comment

Filter Sets the content filter to be applied to the query. On-
ly messages that match the content filter will be pro-
vided to the query.

61

Chapter 9. Utilities

The AMPS C++ client includes a set of utilities and helper classes to make working with AMPS easier.

9.1. Composite Message Types

The client provides a pair of classes for creating and parsing composite message types.

* CompositeMessageBuilder allows you to assemble the parts of a composite message and then
serialize them in a format suitable for AMPS.

* CompositeMessageParser extracts the individual parts of a composite message type

Building Composite Messages

To build a composite message, create an instance of CompositeMessageBui lder, and populate the
parts. The CompositeMessageBui lder copies the parts provided, in order, to the underlying mes-
sage. The builder simply writes to an internal buffer with the appropriate formatting, and does not allow
you to update or change the individual parts of a message once they've been added to the builder.

The snippet below shows how to build a composite message that includes a JSON part, constructed as a
string, and a binary part consisting of the bytes from a standard vector.

std::string json_part("{\"data\":\"sample\"}");

std: :vector<double> data;

// populate data

// Create the payload for the composite message.

AMPS: : CompositeMessageBuilder builder;

builder.append(json_part.str());

builder.append(reinterpret_cast<const char*>(data.data()),
data.size() * sizeof(double));

// send the message

std::string topic("messages");

ampsClient.publish(topic.c_str(), topic.length(),
builder.data(), builder.length());

62

Utilities

Parsing Composite Messages

To parse a composite message, create an instance of CompositeMessageParser, then use the
parse () method to parse the message provided by the AMPS client. The CompositeMessageParser
gives you access to each part of the message as a sequence of bytes.

For example, the following snippet parses and prints messages that contain a JSON part and a binary part
that contains an array of doubles.

for (auto message : ampsClient.subscribe("messages"))

{

parser.parse(message);

// First part is JSON
std::string json_part = std::string(parser.getPart(0));

// Second part is the raw bytes for a vector<double>
AMPS::Field binary = parser.getPart(l);

std: :vector<double> vec;
double *array_start = (doublex)binary.data();
double *array_end = array_start + (binary.len() / sizeof(double));

vec.insert(vec.end(), array_start, array_end);

// Print the contents of the message

std::cout << "Received message with " << parser.size() << " parts"
<< std::endl
<< "\t" << json_part
<< std::endl;

for (auto d : vec)
std::cout << d << " "y

std::cout << std::endl;

}

Notice that the receiving application is written with explicit knowledge of the structure and content of
the composite message type.

63

Chapter 10. Advanced Topics

10.1. Transport Filtering

The AMPS C/C++ client offers the ability to filter incoming and outgoing messages in the format they are
sent and received on the network. This allows you to inspect or modify outgoing messages before they
are sent to the network, and incoming messages as they arrive from the network.

To create a transport filter, you create a function with the following signature

void amps_tcp_filter_function(const unsigned charx data,size_t
len,short direction, voidx userdata);

You then register the filter by calling amps_tcp_set_filter_function with a pointer to the func-
tion and a pointer to the data to be provided in the userdata parameter of the callback.

For example, the following filter function simply prints the data provided to the standard output:

void amps_tcp_trace_filter_function(const unsigned char* data,
size_t len,
short direction,
voidx userdata)

{
// Output the direction marker
if (direction == 0)
{
std::cout << "OUTGOING ---> ";
}
else
{
std::cout << "INCOMING ---> ";
}
// Output the data
std::cout << std::string(data, len) << std::endl;
}

Registering the function is a matter of calling the amps_set_transport_filter_function with the transport
to filter, as shown below:

// client is an existing Client object

amps_tcp_set_filter_function(amps_client_get_transport(client.getHandle()),
&s_tcp_trace_filter_function,

64

Advanced Topics

(voidx)NULL) ;

The snippet above gets the underlying C client handle from the C++ class, retrieves the transport handle
associated with the client handle, and the installs the filter for that transport.

65

Appendix A. Exceptions

The following table details each of the exception types thrown by AMPS.

Table A.1. Exceptions supported in Client and HAClient

Exception

AlreadyConnected

AMPS

Authentication

BadFilter

BadRegexTopic

Command

Connection

ConnectionRefused

Disconnected

InvalidTopic

InvalidTransportOptions

InvalidURI

MessageType

MessageTypeNotFound

NamelnUse

When

Connecting

Anytime
Anytime

Subscribing

Subscribing

Anytime

Anytime

Connecting

Anytime

SOW query

Connecting

Connecting

Connecting

Connecting

Connecting

Notes

Thrown when connect () is called on
a Client that is already connected.

Base class for all AMPS exceptions.

Indicates an authentication failure oc-
curred on the server.

This typically indicates a syntax error in
a filter expression.

Indicates a malformed regular expression
was found in the topic name.

Base class for all exceptions relating to
commands sent to AMPS.

Base class for all exceptions relating to
the state of the AMPS connection.

The connection was actively refused by
the server. Validate that the server is run-
ning, that network connectivity is avail-
able, and the settings on the client match
those on the server.

No connection is available when AMPS
needed to send data to the server or the
user's disconnect handler threw an excep-
tion.

A SOW query was attempted on a topic
not configured for SOW on the server.

An invalid option or option value was
specified in the URI.

The URI string provided to connect ()
was formatted improperly.

The class for a given transport's message
type was not found in AMPS.

The message type specified in the URI
was not found in AMPS.

The client name (specified when instan-
tiating Client) is already in use on the
server.

66

Exceptions

Exception

RetryOperation

Stream

SubscriptionAlreadyExistsException

TimedOut
TransportType
Unknown

UsageException

When
Anytime

Anytime

Subscribing

Anytime

Connecting

Anytime

Changing the prop-
erties of an object.

Notes

An error occurred that caused processing
of the last command to be aborted. Try
issuing the command again.

Indicates that data corruption has oc-
curred on the connection between the
client and server. This usually indicates
an internal error inside of AMPS -- con-
tact AMPS support.

A subscription has been requested using
the same CommandId as another sub-
scription. Create a unique CommandId
for every subscription.

A timeout occurred waiting for a re-
sponse to a command.

Thrown when a transport type is selected
in the URI that is unknown to AMPS.

Thrown when an internal error occurs.
Contact AMPS support immediately.

Thrown when the object is not in a valid
state for setting the properties. For ex-
ample, some properties of a Client (such
as the BookmarkStore used) cannot be
changed while that client is connected to
AMPS.

67

	AMPS C/C++ Development Guide
	Table of Contents
	Chapter 1. Introduction
	1.1. Prerequisites
	1.2. C & C++ Support Matrix

	Chapter 2. Installing the AMPS Client
	2.1. Obtaining the Client
	2.2. Explore the client
	lib
	src
	inc
	samples
	spark

	2.3. Build the Client
	2.4. Test Connectivity to AMPS

	Chapter 3. Your First AMPS Program
	3.1. Connecting to AMPS
	Build and run
	Examining the code

	3.2. Using the C client
	3.3. Connection Strings
	Providing Credentials in a Connection String

	3.4. Connection Parameters
	Transport options

	3.5. Next steps

	Chapter 4. Subscriptions
	4.1. Subscribing
	4.2. Asynchronous Subscribe Interface
	4.3. Understanding Threading and Message Handlers
	4.4. Unsubscribing
	4.5. Understanding messages
	4.6. Advanced Messaging Support
	Regex topics
	Content filtering
	Updating the Filter on a Subscription

	4.7. Next steps

	Chapter 5. Error Handling
	5.1. Exceptions
	Exception Types

	5.2. Disconnect Handling
	Using a Heartbeat to Detect Disconnection

	5.3. Unexpected Messages
	5.4. Unhandled Exceptions
	5.5. Detecting Write Failures

	Chapter 6. State of the World
	6.1. Performing SOW Queries
	6.2. SOW and Subscribe
	6.3. Setting Batch Size
	6.4. Managing SOW Contents

	Chapter 7. High Availability
	7.1. Choosing an HAClient Protection Method
	7.2. Connections and the ServerChooser
	7.3. Heartbeats and Failure Detection
	7.4. Considerations for Publishers
	7.5. Considerations for Subscribers
	7.6. Conclusion

	Chapter 8. Advanced AMPS Programming: Working with Commands
	8.1. Understanding AMPS Messages
	8.2. Creating and Populating the Command
	8.3. Using execute
	8.4. Command Cookbook
	Publishing
	Basic Publish
	Publish With CorrelationId
	Publish With Explicit SOW Key

	Subscribing
	Basic Subscription
	Basic Subscription With Options
	Content Filtered Subscription
	Bookmark Subscription
	Bookmark Subscription With Content Filter
	Replacing the Filter on a Subscription

	SOW Query
	Basic SOW Query
	Basic SOW With Options
	SOW Query With Ordered Results
	SOW Query With TopN Results
	Content Filtered SOW Query
	Historical SOW Query
	Historical SOW Query With Content Filter
	SOW Query for Specific Records

	SOW and Subscribe
	Basic SOW and Subscribe
	SOW and Subscribe With Options
	Content Filtered SOW and Subscribe
	Historical SOW and Subscribe
	Historical SOW and Subscribe With Content Filter

	Delta Publishing
	Basic Delta Publish
	Delta Publish With CorrelationId
	Delta Publish With Explicit SOW Key

	Delta Subscribing
	Basic Delta Subscription
	Basic Delta Subscription With Options
	Content Filtered Delta Subscription
	Bookmark Delta Subscription
	Bookmark Delta Subscription With Content Filter

	SOW and Delta Subscribe
	Basic SOW and Delta Subscribe
	SOW and Delta Subscribe With Options
	Content Filtered SOW and Delta Subscribe
	Historical SOW and Subscribe
	Historical SOW and Delta Subscribe With Content Filter

	Chapter 9. Utilities
	9.1. Composite Message Types
	Building Composite Messages
	Parsing Composite Messages

	Chapter 10. Advanced Topics
	10.1. Transport Filtering

	Appendix A. Exceptions

