
AMPS C# Development Guide

AMPS C# Development Guide
4.3

Publication date Oct 29, 2015
Copyright © 2014

All rights reserved. 60East, AMPS, and Advanced Message Processing System are trademarks of 60East Technologies, Inc. All other trademarks
are the property of their respective owners.

iii

Table of Contents
1. Introduction ... 1

1.1. Prerequisites ... 1
2. Installing the AMPS Client .. 2

2.1. Obtaining the Client .. 2
2.2. Test Connectivity to AMPS ... 2

3. Your First AMPS Program ... 3
3.1. About the Client Library ... 3
3.2. Connecting to AMPS .. 3
3.3. Connection Strings .. 5
3.4. Connection Parameters .. 7
3.5. Next Steps .. 7

4. Subscriptions ... 9
4.1. Subscribing ... 9
4.2. Asynchronous Subscribe Interface .. 10
4.3. Understanding Threading and Message Handlers .. 11
4.4. Unsubscribing ... 12
4.5. Understanding Messages .. 13
4.6. Advanced Subscriptions ... 14
4.7. Next Steps .. 15

5. Error Handling ... 16
5.1. Exceptions .. 16
5.2. Disconnect Handling ... 18
5.3. Unexpected Messages .. 21
5.4. Unhandled Exceptions ... 21
5.5. Detecting Write Failures .. 22

6. State of the World .. 24
6.1. Performing SOW Queries .. 24
6.2. SOW and Subscribe .. 25
6.3. Setting Batch Size ... 27
6.4. Managing SOW Contents .. 28

7. High Availability ... 29
7.1. Choosing an HAClient Protection Method .. 29
7.2. Connections and the ServerChooser ... 30
7.3. Heartbeats and Failure Detection .. 31
7.4. Considerations for Publishers ... 32
7.5. Considerations for Subscribers ... 33
7.6. Conclusion .. 37

8. Advanced Topics ... 38
8.1. C# Client Compatibility ... 38
8.2. Transport Filtering ... 38

9. Advanced AMPS Programming: Working With Commands ... 40
9.1. Understanding AMPS Messages .. 40
9.2. Creating and Populating the Command ... 41
9.3. Using execute ... 41
9.4. Command Cookbook ... 42

10. Utilities .. 59

AMPS C# Development Guide

iv

10.1. Composite Message Types ... 59
A. Exceptions .. 62
Index ... 64

1

Chapter 1. Introduction
This document explains how to use the C# client for AMPS. Use this document to learn how to install,
configure, develop applications on the Microsoft Windows operating system using AMPS.

1.1. Prerequisites
Before reading this book, it is important to have a good understanding of the following topics:

• Developing in C#. To be successful using this guide, you must possess a working knowledge of the
C# language. Visit http://msdn.microsoft.com for resources on learning Windows, .NET and
the C# language.

• AMPS concepts. Before reading this book, you will need to understand the basic concepts of AMPS,
such as topics, subscriptions, messages, and SOW. Consult the AMPS User's Guide to learn more about
these topics before proceeding.

You will also need an installed and running AMPS server to use the product. You can write and compile
programs that use AMPS without a running server, but you will get the most out of this guide by running
the programs against a working server.

2

Chapter 2. Installing the AMPS Client

2.1. Obtaining the Client
You must first download and install the client on your development computer. This can be accomplished
through either of the following methods:

Use the AMPS Client executable installer. For this option, download the amps-csharp-client-
<version>.exe, where <version> is replaced by the version of the client, such as amps-csharp-
client-3.3.0.exe. Double-click the *.exe file to launch the installation wizard. Once the installation
completes, you will be able to find the installed client under your computer’s Program Files directory,
in a subdirectory entitled AMPS.

Unpack the AMPS Client zip file. For this option, download the amps-csharp-client-
<version>.zip file from the http://crankuptheamps.com website, or copy it from the AM-
PS server installation directory. Save the zip file to your development computer. Right-click the amps-
csharp-client.zip file, and choose Extract to extract the contents of the zip file. You’re welcome
to extract the AMPS client to wherever suits your needs; we’ll refer to that directory as the AMPS directory
for the remainder of this guide.

2.2. Test Connectivity to AMPS
Before writing programs using AMPS, make sure connectivity to an AMPS server from this computer is
working. Launch a Windows Command Prompt and change the directory to the AMPS directory in your
AMPS installation, and use spark.exe to test connectivity to your server, for example:

./spark ping -type fix -server 192.168.1.2:9004

If you receive an error message, verify that your AMPS server is up and running, and work with your
systems administrator to determine the cause of the connectivity issues. Without connectivity to AMPS,
you will be unable to make the best use of this guide.

3

Chapter 3. Your First AMPS Program
In this chapter, we will learn more about the structure and features of the AMPS C# library, and build our
first C# program using AMPS.

3.1. About the Client Library
The AMPS client is packaged as a single managed asembly, AMPS.Client.dll You can find
AMPS.Client.dll in the AMPS/bin directory of your AMPS C# client. Every .NET application you
build will need to reference this assembly file, and the assembly must be deployed along with your appli-
cation in order for your application to function properly.

3.2. Connecting to AMPS
Let’s begin by writing a simple program that connects to an AMPS server and publishes a single message
to a topic:

using System;
using AMPS.Client;
using AMPS.Client.Exceptions;

namespace AMPSBookExamples
{
 class ConnectToAMPS
 {
 static void Main(string[] args)
 {
 using(Client client = new Client("exampleClient"))
 {
 try
 {
 client.connect("tcp://192.168.1.3:9007/amps");
 client.logon();
 client.publish("messages",
 @"{ ""message"" : ""Hello, World!"" }";
 }
 catch (AMPSException e)
 {
 Console.Error.WriteLine(e);
 }
 }
 }
 }

Your First AMPS Program

4

}

Example 3.1. Connecting to AMPS

In the preceding Example 3.1, we show the entire program; but future examples will isolate one or more
specific portions of the code. The next section describes how to build and run the application and explains
the code in further detail.

Build and Run
To build this program, create a new C# command-line project in Visual Studio and add a reference
to AMPS.Client.dll using the "Add Reference..."’ option in Visual Studio. Replace the code in
Program.cs with the code in Example 3.1, and then modify the client.connect() on line 14 with
the address and port of your AMPS server. Now, you should be able to compile and execute the code, and
if the AMPS server is running, the message Hello world is published to the messages topic. If an error
occurs, an exception will be written to the console.

If the message is published successfully, there is no output to the console. We will demonstrate how to
create a subscriber to receive messages in Chapter 4.

Examining the Code
Let us now revisit the code we listed earlier.

using System;
 using AMPS.Client;
 using AMPS.Client.Exceptions;

 namespace AMPSBookExamples
 {
 class ConnectToAMPS
 {
 static void Main(string[] args)
 {
 using(Client client = new Client("exampleClient"))
 {
 try
 {
 client.connect("tcp://192.168.1.3:9007/amps");
 client.logon()
 client.publish("messages",
 @"{ ""message"" : ""Hello, World!"" }";
 }
 catch (AMPSException e)
 {
 Console.Error.WriteLine(e);
 }

Your First AMPS Program

5

 }
 }
 }
 }

Example 3.2. Connecting to AMPS

The import statements add names into reference for convenience in typing later on in
the code. These import the names from the AMPS namespaces, AMPS.Client and
AMPS.Client.Exceptions. The AMPS.Client class contains the methods for interacting
with AMPS, and the AMPS.Client.Exceptions package contains the exception classes thrown
by AMPS when errors occur. When you use AMPS in your programs, you will be using classes from
these namespaces.
This line creates a new Client object. Client encapsulates a single connection to an AMPS
server. Methods on Client allow for connecting, disconnecting, publishing, and subscribing to
an AMPS server. The argument to the Client constructor, "exampleClient", is a name chosen
by the client to identify itself to the server. Errors relating to this connection will be logged with
reference to this name, and AMPS uses this name to help detect duplicate messages. AMPS enforces
uniqueness for client names when a transaction log is configured, and it is good practice to always
use unique client names. The using statement ensures that the connection underlying the client is
disposed of before the program exists. Client implements the .NET IDisposable interface,
making it easy to ensure that resources are freed when your Client is no longer in use. There is
no need to explicitly disconnect the Client when it is protected by a using statement.
Here, we open a try block that concludes with catch (AMPSException aex). All exceptions
in AMPS derive from AMPSException, AMPS will wrap the exception into the InnerExcep-
tion of the AMPSException you receive. For example, if the call to connect() fails because
the provided address is not reachable, the AMPSException will contain an inner exception from
the operating system, likely a SocketException from System.Net.Sockets.
At this point, we have a valid AMPS connection and can begin to use it to publish and subscribe
to messages.
The AMPS logon() command creates a named connection in AMPS.
Here, we publish a single message to AMPS on the messages topic, containing the data { "mes-
sage" : "Hello, world!" }. This JSON message is sent to the server.. Upon successful
completion of this function, the AMPS client has sent the message to the server, and subscribers to
the messages topic will receive this message.

3.3. Connection Strings
The AMPS clients use connection strings to determine the server, port, transport, and protocol to use to
connect to AMPS. Connection strings have three elements.

Figure 3.1. elements of a connection string

Your First AMPS Program

6

As shown in the figure above, connection strings have the following elements:

• Transport defines the network used to send and receive messages from AMPS. In this case, the transport
is tcp.

• Host address defines the destination on the network where the AMPS instance receives messages. The
format of the address is dependent on the transport. For tcp, the address consists of a host name and
port number. In this case, the host address is 127.0.0.1:9007.

• Protocol sets the format in which AMPS receives commands from the client. Most code uses the default
amps protocol, which sends header information in JSON format. AMPS supports the ability to devel-
op custom protocols as extension modules, and AMPS also supports legacy protocols for backward
compatibility.

This connection string works for programs connecting from the local host to a transport configured as
follows:

<AMPSConfig>
...
 <Transport>
 <Name>json-tcp</Name>
 <Type>tcp</Type>
 <InetAddr>9007</InetAddr>
 <ReuseAddr>true</ReuseAddr>
 <MessageType>json</MessageType>
 <Protocol>amps</Protocol>
 </Transport>
...
</AMPSConfig>

See the AMPS Configuration Guide for more information on configuring transports.

Providing Credentials in a Connection String
The AMPS clients support the standard format for including a user name and password in a URI, as shown
below:

tcp://user:password@host:port/protocol

When provided in this form, the default authenticator provides the username and password specified in
the URI. If you have implemented another authenticator, that authenticator controls how passwords are
provided to the AMPS server.

Your First AMPS Program

7

3.4. Connection Parameters
When specifying a URI for connection to an AMPS server, you may specify a number of transport-specific
options in the parameters section of the URI. Here is an example:

tcp://localhost:9007/amps?tcp_nodelay=true&tcp_sndbuf=100000

In this example, we have specified the AMPS instance on localhost, port 9007, connecting to a
transport that uses the amps protocol. We have also set two parameters, tcp_nodelay, a Boolean
(true/false) parameter, and tcp_sndbuf, an integer parameter. Multiple parameters may be combined
to finely tune settings available on the transport. Normally, you'll want to stick with the defaults on your
platform, but there may be some cases where experimentation and fine-tuning will yield higher or more
efficient performance.

AMPS supports the value of tcp in the connection string for TCP/IP connections, and the value of shm
in the connection string for the AMPS shared memory protocol.

Transport options
The following transport options are available:

tcp_rcvbuf (integer) Sets the system receive buffer size.

tcp_sndbuf (integer) Sets the system send buffer size.

tcp_nodelay (boolean) Enables or disables the TCP_NODELAY setting on the socket.

tcp_linger (integer) Enables and sets the SO_LINGER value for the socket.

3.5. Next Steps
Once your application is built, you will need to think about how to deploy it to addition-
al computers. With your application’s dependency on AMPS.Client.dll, you need to include
AMPS.Client.dll along with your application. The most straightforward way to accomplish this is to
install AMPS.Client.dll into the same folder as your .exe file. For example, if you distribute your
executable in a zip file that users are expected to unpack, simply include AMPS.Client.dll into that
zip file. When your executable runs, Windows will attempt to load AMPS.Client.dll from the same
directory as your executable, and if it is not found, your executable will fail to run.

If your organization develops and deploys many AMPS applications and would like more centralized con-
trol over the maintenance of these AMPS client deployments, consider installing AMPS.Client.dll
into the Global Assembly Cache ("GAC"). The GAC allows you to share one copy of an assembly—like
the AMPS client—across many applications on a computer. This technique requires that the assembly have
a strong name, and that you use an installer that places AMPS.Client.dllinto the GAC. Installing the
assembly in the GAC is not recommended unless many applications will share an AMPS client. For more

Your First AMPS Program

8

information on the GAC, visit the Microsoft Developer Network documentation on the GAC at http://
msdn.microsoft.com/en-us/library/yf1d93sz.aspx.

You are now able to develop and deploy an application in C# that publishes messages to AMPS. In the
following chapters, you will learn how to subscribe to messages, use content filters, work with SOW
caches, and fine-tune messages that you send.

9

Chapter 4. Subscriptions
Messages published to a topic on an AMPS server are available to other clients via a subscription. Before
messages can be received, a client must subscribe to one or more topics on the AMPS server so that the
server will begin sending messages to the client. The server will continue sending messages to the client
until the client unsubscribes, or until the client disconnects. With content filtering, the AMPS server will
limit the messages sent to only those messages that match a client-supplied filter. In this chapter, you will
learn how to subscribe, unsubscribe, and supply filters for messages using the AMPS C# client.

4.1. Subscribing
Subscribe to an AMPS topic by calling Client.subscribe(). Here is a short example (error handling
and connection details are omitted for brevity):

class MyApp
{
 public static void Main()
 {
 using(Client client = new Client("subscribe"))
 {

 client.connect("tcp://127.0.0.1/9007/amps");
 client.logon();

 foreach(Message m in client.subscribe("messages"))
 {
 System.Console.Writeline(m.getData());
 }

 }
}

Example 4.1. Subscribing to a Topic

Here, we create a Client. We protect the Client in a using block so that the connection and
subscriptions are properly cleaned up when dispose() is called.
Here we subscribe to the topic messages. We do not provide a filter, so the subscription receives all
of the messages published to the topic, regardless of content. The foreach loop, iterates over the
messages returned by the message stream. When we no longer need to subscribe, we can break out
of the loop. When the MessageStream is disposed, the client sends an unsubscribe command
to AMPS and stops receiving messages.
Within the loop, we process the message. In this case, we simply print the contents of the message.

AMPS creates a background thread that receives the messages and copies them into the MessageStream
that you iterate over. This means that the client application as a whole can continue to receive messages
while you are doing processing work.

Subscriptions

10

The simple method described above is provided for convenience. The AMPS C# client provides conve-
nience methods for the most common forms of the commands. The client also provides an interface that
gives you precise control over the command. Using that interface, the example above becomes:

class MyApp
{
 public static void Main()
 {
 using(Client client = new Client("subscribe"))
 {

 client.connect("tcp://127.0.0.1/9007/amps");
 client.logon();

 Command command = new Command("subscribe")
 .setTopic("messages");

 foreach(Message m in client.execute(command))
 {
 System.Console.WriteLine(m.getData());
 }
 }
}

Example 4.2. Subscribing to a Topic

Here, we create a Client. We protect the Client in a using block so that the connection and
subscriptions are properly cleaned up when dispose() is called.
We create a Command object to subscribe to the messages topic.
Here we execute the command and subscribe to the topic messages. This works exactly the same
way as the command in Example 4.1. We do not provide a filter, so the subscription receives all
of the messages published to the topic, regardless of content. The foreach loop, iterates over the
messages returned by the message stream. When we no longer need to subscribe, we can break out
of the loop. When the MessageStream is disposed, the client sends an unsubscribe command
to AMPS and stops receiving messages.
Within the loop, we process the message. In this case, we simply print the contents of the message.

The Command interface allows you to precisely customize the commands you send to AMPS.

4.2. Asynchronous Subscribe Interface
The AMPS C# client also supports an asynchronous interface. In this case, you add a message handler to
the call to the subscribe. The client returns the command ID of the command submitted to AMPS, and
returns once the server has acknowledged that the command has been processed. As messages arrive,
AMPS calls your message handler directly on the background thread. This can be an advantage for some
applications. For example, if your application is highly multithreaded and copies message data to a work

Subscriptions

11

queue processed by multiple threads, there may be a performance benefit to enqueuing work directly from
the background thread.

As with the simple interface, the AMPS client provides both convenience interfaces and interfaces that
use a Command object. The following example shows how to use the asynchronous interface.

class MyApp
{
 public static void Main()
 {
 using(Client client = new Client("subscribe"))
 {

 client.connect("tcp://127.0.0.1/9007/amps");
 client.logon();

 Command command = new Command("subscribe")
 .setTopic("messages");

CommandId subscriptionId = c.execute_async(command,
 (message) => Console.WriteLine(message.Data));
 }
 }
}

Here, we create a Client. We protect the Client in a using block so that the connection and
subscriptions are properly cleaned up when dispose() is called.
Here, we call the execute_async() method, specifying the command and the message handler
to invoke with messages received in response to the command.
(message) => Console.WriteLine(message.Data) is a lambda function that acts
as our message handler. When a message is received, this lambda function is invoked, and
in this case, the Data property from message is printed to the screen. message is of type
AMPS.Client.Message.

In the asynchronous interface, the AMPS client resets and reuses the message object pro-
vided to this lambda function between calls. This improves performance in the client,
but means that if your handler function needs to preserve information contained within
the message, you must copy the information rather than just saving the message object.
Otherwise, the AMPS client cannot guarantee the state of the object or the contents of the
object when your program goes to use it.

4.3. Understanding Threading and Message
Handlers

When you call a subscribe command, the client creates a thread that runs in the background. The command
returns, while the thread receives messages. In the simple case, the client provides an internal handler

Subscriptions

12

function that populates the MessageStream. The MessageStream is used on the calling thread, so
operations on the MessageStream do not block the background thread.

For advanced subscription, AMPS calls the handler function from the background thread. Message han-
dlers provided to advanced subscriptions must be aware of the following considerations.

The client creates one background thread per client object. A message handler that is only provided to a
single client will only be called from a single thread. If your message handler will be used by multiple
clients, then multiple threads will call your message handler. In this case, you should take care to protect
any state that will be shared between threads.

For maximum performance, do as little work in the message handler as possible. For example, if you use
the contents of the message to update an external database, a message handler that adds the relevant data
to an update queue that is processed by a different thread will typically perform better than a message
handler that does this update during the message handler.

While your message handler is running, the thread that calls your message handler is no longer receiving
messages. This makes it easier to write a message handler, because you know that no other messages are
arriving from the same subcription. However, this also means that you cannot use the same client that
called the message handler to send commands to AMPS. Instead, enqueue the command in a work queue
to be processed by a separate thread, or use a different client object to submit the commands.

The AMPS client resets and reuses the message provided to this function between calls. This improves
performance in the client, but means that if your handler function needs to preserve information contained
within the message, you must copy the information rather than just saving the message object. Otherwise,
the AMPS client cannot guarantee the state of the object or the contents of the object when your program
goes to use it.

4.4. Unsubscribing
If the subscription is successfully made, messages will begin flowing to our
MessagePrinter.invoke() function, and the Client.subscribe() call will return a Com-
mandId that serves as the identifier for this subscription. A Client can have any number of active
subscriptions, and this CommandId instance is used to refer to the particular subscription we have made
here. For example, to unsubscribe, we simply pass in this identifier:

Client c = ...;

Command subscribe_command = new Command("subscribe")
 .setTopic("messages");

CommandId subscriptionId = c.execute_async(subscribe_command,
 (message) => Console.WriteLine(message));

...

Command unsubscribe_command = new Command("unsubscribe")

Subscriptions

13

 .setSubscriptionId(subscriptionId);

foreach (Message msg in client.execute(unsubscribe_command))
{
 System.Console.WriteLine("Response to unsubscribe : {0}",
 msg.AckType);
}

Example 4.3. Unsubscribing from a Topic

In this example, as in the previous section, we use the Client.subscribe() method to create a sub-
scription to the messages topic. When our application is done listening to this topic, it unsubscribes
by executing an unsubscribe command that contains the subscriptionId returned by sub-
scribe(). After the subscription is removed, no more messages will flow into our (message) lambda
function. For sample purposes, we receive the result of the unsubscribe command and print the acknowl-
edgement.

4.5. Understanding Messages
So far, we have seen that subscribing to a topic involves creating a lambda function that receives a single
parameter, an AMPS.Client.Message. A Message represents a single message to or from an AMPS
server and client. Messages are received or sent for every client/server operation in AMPS. Message-
contains a variety of methods:

Header Properties.
In AMPS, every message has one or more header fields defined, depending on the type and context of
the message. There are many possible fields in any given message, but only a few are used for any given
message. For each header field, the Message class contains a distinct, strongly typed property that allows
for retrieval and setting of that field. For example, the message.CommandId property corresponds to
the CommandId header field, the message.BatchSize property corresponds to the BatchSize
header field, and so on. For more information on these header fields, consult the AMPS User Guide.

Getter and Setter Methods.
For ease of porting Java code to C#, Message contains getXXX()/setXXX() methods corresponding
to the header properties as well.

Data Property.
Access to the data section of a message is provided via the Data property. The Data property will contain
the unparsed data of the message, so you will need to implement code for parsing the format of this payload.

Subscriptions

14

4.6. Advanced Subscriptions
Client.subscribe() provides options for subscribing to topics even when you do not know their
exact names, and for providing a filter that works on the server to limit the messages your application
must process.

Regex topics
Regular Expression (Regex) Topics allow a regular expression to be supplied in the place of a topic name.
When you supply a regular expression, it is as if a subscription is made to every topic that matches your
expression, including topics that do not yet exist at the time of creating the subscription.

To use a regular expression, simply supply the regular expression in place of the topic name in the sub-
scribe() call. For example:

Client c = ...;

foreach (Message msg in c.subscribe("client.*"))
{
 Console.WriteLine("{0}:{1}", msg.Topic,
 msg.Data);
}

Example 4.4. Regex Topic Subscription

In this example, messages on topics client and client1 would match the regular expression, and
those messages would all be received by our subscription. As in the example, you can use the Topic
property to determine the actual topic of the message sent to the lambda function.

Content Filtering
One of the most powerful features of AMPS is content filtering. With content filtering, filters based on
message content are applied at the server, so that your application and the network are not utilized by
messages that are uninteresting for your application. For example, if your application is only displaying
messages from a particular user, you can send a content filter to the server so that only messages from
that particular user are sent to the client.

To apply a content filter to a subscription, simply pass it into the Client.subscribe() call:

Client c = ...;

CommandId subscriptionId = c.subscribe(
 (m) => Console.WriteLine(m), "messages",
 "/message/sender = 'mom' ", 5000); // Timeout

Example 4.5. Using Content Filters

Subscriptions

15

In this example, we have passed in a content filter "/sender = 'mom'". This will cause the server to
only send us messages from the messages topic that additionally have a sender field equal to mom.

For example, the AMPS server will send the following message, where /sender is mom:

{ "sender" : "mom",
 "text" : "Happy Birthday!",
 "reminder" : "Call me Thursday!" }

The AMPS server will not send a message with a different /sender value:

{ "sender" : "henry dave",
 "text" : "Things do not change; we change." }

Updating the Filter on a Subscription
AMPS allows you to update the filter on a subscription. When you replace a filter on the the subscrip-
tion, AMPS immediately begins sending only messages that match the updated filter. Notice that if the
subscription was entered with a command that includes a SOW query, using the replace option simply
replaces the filter on the subscription. AMPS does not re-run the SOW query.

To update a the filter on a subscription, you create a subscribe command. You set the subscriptionId
of the Command to the identifier of the existing subscription, and include the replace option on the
Command. Many of the named convenience methods also accept a bookmark parameter, and replace a
subscription when the bookmark is provided and the replace option is included in the call.

4.7. Next Steps
At this point, you are able to build AMPS programs in C# that publish and subscribe to AMPS topics.
For an AMPS application to be truly robust, it needs to be able to handle the errors and disconnections
that occur in any distributed system. In the next chapter, we will take a closer look at error handling and
recovery, and how you can use it to make your application ready for the real world.

16

Chapter 5. Error Handling
In every distributed system, the robustness of your application depends on its ability to recover gracefully
from unexpected events. The AMPS client provides the building blocks necessary to ensure your appli-
cation can recover from the kinds of errors and special events that may occur when using AMPS.

5.1. Exceptions
Generally speaking, when an error occurs that prohibits an operation from suc-
ceeding, AMPS will throw an exception. AMPS exceptions universally derive from
AMPS.Client.Exceptions.AMPSException, so by catching AMPSException, you will be
sure to catch anything AMPS throws, for example:

 using AMPS.Client;
 using AMPS.Client.Exceptions;
 ...
 public static void ReadAndEvaluate(Client client)
 {
 // read a new payload from the user
 string payload = Console.ReadLine();

 // write a new message to AMPS
 if(!string.IsNullOrEmpty(payload)) {
 try {
 client.publish("UserMessage",
 @"{ ""data"" : """ + payload + @""" }");
 } catch (AMPSException exception)
 {
 Console.Error.WriteLine("An AMPS exception " +
 "occurred: {0}", exception);
 }
 }
 }

Example 5.1. Catching an AMPS Exception

In this example, if an error occurs the program writes the error to Console.Error, and the publish()
command fails. However, client is still usable for continued publishing and subscribing. When the
error occurs, the exception is written to the console, which implicitly calls the exception’s ToString()
method. As with most .NET exceptions, ToString() will convert the Exception into a string that in-
cludes a message, stacktrace and information on any "inner" exceptions (exception from outside of AMPS
that caused AMPS to throw an exception).

Error Handling

17

AMPS exception types vary, based on the nature of the error that occurs. In your program, if you would
like to handle certain kinds of errors differently than others, then you can catch the appropriate subclass
of AMPSException to detect those specific errors and do something different.

 public CommandId CreateNewSubscription(Client client)
 {
 CommandId id = null;
 string topicName;
 while(id == null)
 {
 topicName = AskUserForTopicName();
 try {
 Command command = new Command("subscribe")
 .setTopic(topicName);

 id = client.execute_async(
 command, (x)=>HandleMessage(x)));
 }
 catch(BadRegexTopicException ex)
 {
 DisplayError(
 string.Format(
 "Error: bad topic name or regular " +
 "expression ’{0}’. The error was: {1}",
 topicName, ex.Message));
 // we’ll ask the user for another topic
 }
 catch(AMPSException ex)
 {
 DisplayError(
 string.Format(
 "Error: error setting up subscription " +
 "to topic ’{0}’. The error was: {1}",
 topicName, ex.Message));
 return null; // give up
 }
 }
 return id;
 }

Example 5.2. Catching AMPSException Subclasses

In Example 5.2 our program is an interactive program that attempts to retrieve a topic name (or
regular expression) from the user.
If an error occurs when setting up the subscription whether or not to try again based on the subclass
of AMPSException that is thrown. If a BadRegexTopicException, this exception is thrown
during subscription to indicate that a bad regular expression was supplied, so we would like to give
the user a chance to correct.

Error Handling

18

This line indicates that the program catches the BadRegexTopicException exception and dis-
plays a specific error to the user, indicating the topic name or expression was invalid. By not return-
ing from the function in this catch block, the while loop runs again and the user is asked for another
topic name.
If an AMPS exception of a type other than BadRegexTopicException is thrown by AMPS, it
is caught here. In that case, the program emits a different error message to the user.
At this point the code stops attempting to subscribe to the client by the return null statement.

Exception Types
Each method in AMPS documents the kinds of exceptions that it throws. For reference, Table A.1 contains
a list of all of the exception types you may encounter while using AMPS, when they occur, and what
they mean.

5.2. Disconnect Handling
Every distributed system will experience occasional disconnections between one or more nodes. The reli-
ability of the overall system depends on an application’s ability to efficiently detect and recover from these
disconnections. Using the AMPS C# client’s disconnect handling, you can build powerful applications
that are resilient in the face of connection failures and spurious disconnects.

AMPS disconnect handling gives you the ultimate in control and flexibility regarding how to respond to
disconnects. Your application gets to specify exactly what happens when an exception occurs by supplying
a function to Client.setDisconnectHandler(), which is invoked whenever a disconnect occurs.

Example 5.3 shows the basics:

 public class MyApp
 {
 string _uri;
 public MyApp(string uri)
 {
 _uri = uri;
 Client client = new Client("sampleClient");
 client.setDisconnectHandler(
 AttemptReconnection);
 client.connect(uri);
 client.subscribe((m) =>
 ShowMessage(m), "orders", 5000) ;
 }

 public void ShowMessage(Message m)
 {
 // display order data to the user

Error Handling

19

 ...
 }

 public void AttemptReconnection(Client client)
 {
 // simple: just sleep and reconnect
 System.Threading.Thread.Sleep(5000);
 client.connect(_uri);
 }
 }

Example 5.3. Supplying a Disconnect Handler

In Example 5.3 the setDisconnectHandler() method is called to supply a function for use
when AMPS detects a disconnect. At any time, this function may be called by AMPS to indicate
that the client has disconnected from the server, and to allow your application to choose what to do
about it. The application continues on to connect and subscribe to the orders topic.
Our disconnect handler’s implementation begins here. In this example, we simply try to reconnect
to the original server after a 5000 millisecond pause. Errors are likely to occur here—therefore we
must have disconnected for a reason—but Client takes care of catching errors from our disconnect
handler. If an error occurs in our attempt to reconnect and an exception is thrown by connect(),
then Client will catch it and absorb it, passing it to the ExceptionListener if registered.
If the client is not connected by the time the disconnect handler returns, AMPS throws Discon-
nectedException.

By creating a more advanced disconnect handler, you can implement logic to make your application even
more robust. For example, imagine you have a group of AMPS servers configured for high availability—
you could implement fail-over by simply trying the next server in the list until one is found. Example 5.4
shows a brief example.

 public class MyApp
 {
 string[] _uris;
 int _currentUri = 0;
 public MyApp(string[] uris)
 {
 _uris = uri;
 Client client = new Client(...);
 client.setDisconnectHandler(
 ConnectToNextUri(client));
 ConnectToNextUri(client);
 }
 private void ConnectToNextUri(Client client)
 {
 while(true)
 {
 try {

Error Handling

20

 client.connect(_uris[_currentUri]);
 client.subscribe(
 (x)=>MySubscriptionHandler(x),
 "orders", 5000);
 return;
 } catch(AMPSException e) {
 _currentUri = (_currentUri + 1) % _uris.Length;
 ShowWarning(
 "Connection failed: {0}. Failing " +
 " over to {1}",
 e.ToString(), _uris[_currentUri]);
 }
 }
 }
 }

Example 5.4. Simple Client Failover Implementation

Here our application is configured with an array of AMPS server URIs to choose from, instead of a
single URI. These will be used in the ConnectToNextUri() method as explained below.
ConnectToNextUri() is invoked by our disconnect handler, TestDisconnectHandler.
Since our client is currently disconnected, we manually invoke our disconnect handler to initiate the
first connection.
In our disconnect handler, we invoke ConnectToNextUri(), which loops around our array of
URIs attempting to connect to each one. In the invoke() method it attempts to connect to the
current URI, and if it is successful, returns immediately. If the connection attempt fails, the exception
handler for AMPSException is invoked. In the exception handler, we advance to the next URI,
display a warning message, and continue around the loop. This simplistic handler never gives up,
but in a typical implementation, you would likely stop attempting to reconnect at some point.
At this point the registers a subscription to the server we have connected to. It is important to note
that, once a new server is connected, it the responsibility of the application to re-establish any sub-
scriptions placed previously. This behavior provides an important benefit to your application: one
reason for disconnect is due to a client’s inability to keep up with the rate of message flow. In a more
advanced disconnect handler, you could choose to not re-establish subscriptions that are the cause
of your application’s demise.

Using a Heartbeat to Detect Disconnection
The AMPS client includes a heartbeat feature to help applications detect disconnection from the server
within a predictiable amount of time. Without using a heartbeat, an application must rely on the operating
system to notify the application when a disconnect occurs. For applications that are simply receiving
messages, it can be impossible to tell whether a socket is disconnected or whether there are simply no
incoming messages for the client.

When you set a heartbeat, the AMPS client sends a heartbeat message to the AMPS server at a regular
interval, and waits a specified amount of time for the response. If the operating system reports an error
on send, or if the server does not respond within the specified amount of time, the AMPS client considers
the server to be disconnected.

Error Handling

21

5.3. Unexpected Messages
The AMPS C# client handles most incoming messages and takes appropriate action. Some messages are
unexpected or occur only in very rare circumstances. The AMPS C# client provides a way for clients to
process these messages. Rather than providing handlers for all of these unusual events, AMPS provides a
single handler function for messages that can't be handled during normal processing.

Your application registers this handler by setting the lastChanceMessageHandler for the client.
This handler is called when the client receives a message that can't be processed by any other handler.
This is a rare event, and typically indicates an unexpected condition.

For example, if a client publishes a message that AMPS cannot parse, AMPS returns a failure acknowl-
edgement. This is an unexpected event, so AMPS does not include an explicit handler for this event, and
failure acknowledgements are received in the method registered as the lastChanceMessageHan-
dler.

Your application is responsible for taking any corrective action needed. For example, if a message publi-
cation fails, your application can decide to republish the message, publish a compensating message, log
the error, stop publication altogether, or any other action that is appropriate.

5.4. Unhandled Exceptions
In the AMPS C# client, exceptions can occur that are not thrown to the user. For example, when an
exception occurs in the process of reading subscription data from the AMPS server, the exception occurs
on a thread inside of AMPS. Consider the following example:

 public class MyApp
 {
 ...
 public static void WaitToBePoked(Client client)
 {
 client.subscribe(
 x=>Console.WriteLine("Hey! {0} poked you!",
 x.UserId),
 "pokes",
 string.Format("/Pokee LIKE '{0}-.*'",
 System.Environment.UserName),
 5000);
 Console.ReadKey();
 }
 }

Example 5.5. Where do exceptions go?

In this example, we set up a simple subscription to wait for messages on the pokes topic, whose Pokee
tag begins with our user name. When messages arrive, we print a message out to the console, but otherwise
our application waits for a key to be pressed.

Error Handling

22

Inside of the AMPS client, the client creates a new thread of execution that reads data from the server,
and invokes message handlers and disconnect handlers when those events occur. When exceptions occur
inside this thread, however, there is no caller for them to be thrown to, and by default they are ignored.

In applications where it is important to deal with every issue that occurs in using AMPS, you can set an
ExceptionHandler via Client.setExceptionHandler() that receives these otherwise-un-
handled exceptions. Making the modifications shown in Example 5.6 to our previous example will allow
those exceptions to be caught and handled. In this case we are simply printing those caught exceptions
out to the console.

 public class MyApp
 {
 ...
 public static void WaitToBePoked(Client client)
 {
 client.setExceptionListener(
 ex=>Console.Error.WriteLine(ex));
 client.subscribe(
 x=>Console.WriteLine("Hey! {0} poked you!",
 x.UserId),
 "pokes",
 string.Format("/Pokee LIKE ’{0}-.*’",
 System.Environment.UserName),
 5000);
 Console.ReadKey();
 }
 }

Example 5.6. Exception Listener

In this example we have added a call to client.setExceptionHandler(), registering a simple
function that writes the text of the exception out to the console. Even though our application waits for a
user to press a key, messages to the console will still be produced, both as incoming poke topics arrive,
and as issues arise inside of AMPS.

5.5. Detecting Write Failures
The publish methods in the C# client deliver the message to be published to AMPS and then return im-
mediately, without waiting for AMPS to return an acknowledgement. Likewise, the sowDelete meth-
ods request deletion of SOW messages, and return before AMPS processes the message and performs the
deletion. This approach provides high performance for operations that are unlikely to fail in production.
However, this means that the methods return before AMPS has processed the command, without the abil-
ity to return an error in the event that the command fails.

The AMPS C# client provides a FailedWriteHandler that is called when the client receives an ac-
knowledgement that indicates a failure to persist data within AMPS. To use this functionality, you imple-

Error Handling

23

ment the FailedWriteHandler interface, construct an instance of your new class, and register that
instance with the setFailedWriteHandler() function on the client. When an acknowledgement
returns that indicates a failed write, AMPS calls the registered handler method with information from the
acknowledgement message, supplemented with information from the client publish store if one is avail-
able. Your client can log this information, present an error to the user, or take whatever action is appro-
priate for the failure.

When no FailedWriteHandler is registered, acknowledgements that indicate errors in persisting
data are treated as unexpected messages and routed to the LastChanceMessageHandler. In this
case, AMPS provides only the acknowledgement message and does not provide the additional information
from the client publish store.

24

Chapter 6. State of the World
AMPS State of the World (SOW) allows you to automatically keep and query the latest information about
a topic on the AMPS server, without building a separate database. Using SOW lets you build impressively
high-performance applications that provide rich experiences to users. The AMPS C# client lets you query
SOW topics and subscribe to changes with ease.

6.1. Performing SOW Queries
To begin, we will look at a simple example of issuing a SOW query.

public void ExecuteSOWQuery(Client client)
{

 foreach (Message m in client.sow("messages-sow",
 "/id > 20"))
 {
 if (m.Command == Message.Command.BeginGroup)
 {
 System.Console.WriteLine("--- Begin SOW Results ---");
 }
 if (m.Command == Message.Command.EndGroup)
 {
 System.Console.WriteLine("--- End SOW Results ---");
 }
 if (m.Command == Message.Command.SOW)
 {
 System.Console.WriteLine(m.Data);
 }
 }
}

Example 6.1. Basic SOW Query

In Example 6.1 the ExecuteSOWQuery() function invokes Client.sow() to initiate a SOW query
on the orders topic, for all entries that have a symbol of ’ROL’.

As the query executes, the body of the loop is invoked for each matching entry in the topic. Messages
containing the data of matching entries have a Command of value sow; as those arrive, we write them to
the console. AMPS sends a begin_group message at the beginning of the results and an end_group
message at the end of the results. We use those messages to delimit the results of the query.

As with subscribe, the sow command also provides an asynchronous version, as well as versions that
accept a Command. For example, the listing below shows an asychronous SOW command that specifies
the batch size, or the maximum number of records that AMPS will return at a time.

private void HandleSOW(Message message)

State of the World

25

{
 if (message.Command == Message.Commands.SOW)
 {
 Console.WriteLine(message.Data);
 }
}

public void ExecuteSOWQuery(Client client)
{
 Command command = new Command(Message.Commands.SOW)
 .setTopic("messages-sow")
 .setFilter("/id > 20")
 .setBatchSize(100);

 client.execute_async(command, message => HandleSOW(message));

}

Example 6.2. Asynchronous SOW Query

In Example 6.2 the ExecuteSOWQuery() function invokes Client.execute_async() to initiate
a SOW query on the messages-sow topic, for all entries that have an id greater than 20. The SOW
query is requested with a batch size of 100, meaning that AMPS will attempt to send 100 messages at a
time as results are returned.

As the query executes, the HandleSOW() method is invoked for each matching entry in the topic. Mes-
sages containing the data of matching entries have a Command of value sow; as those arrive, we write
them to the console.

6.2. SOW and Subscribe
Imagine an application that displays real-time information about the position and status of a fleet of deliv-
ery vans. When the application starts, it should display the current location of each of the vans, along with
their current status. As vans move around the city and post other status updates, the application should
keep its display up to date. Vans upload information to the system by posting message to a van location
topic, configured with a key of van_id on the AMPS server.

In this application, it is important to not only stay up-to-date on the latest information about each van,
but to ensure all of the active vans are displayed as soon as the application starts. Combining a SOW
with a subscription to the topic is exactly what is needed, and that is accomplished by the AMPS
sow_and_subscribe command. Now we will look at an example:

private void UpdateVanPosition(Message message)
{
 switch (message.Command) {
 case Message.Commands.SOW:
 case Message.Commands.Publish:
 AddOrUpdateVan(message);

State of the World

26

 break;
 case Message.Commands.OOF:
 RemoveVan(message);
 break;
 }
}

public void SubscribeToVanLocation(Client client) {
 Command command = new Command("sow")
 .setTopic("van_location")
 .setFilter("/status = 'ACTIVE'")
 .setBatchSize(100)
 .setOptions("oof");

 foreach (Message msg in client.execute(command))
 {
 updateVanPosition(message);
 }

}

public void addOrUpdateVan(message) {
 // use information in the message to add the van or update
 // the van position
}

public void removeVan(message) {
 // use information in the message to remove information on
 // the van position
}

Example 6.3. Using sowAndSubscribe

In Example 6.3, we issue a sow_and_subscribe command to begin receiving information about
all of the active delivery vans in the system. All of the vans in the system now are returned as
Message objects with a Command of sow. Updates to the vans, or new vans entering the system,
are received as Message objects with a Command of publish.
For each of these messages we call AddOrUpdateVan(), that presumably adds the van to our
application’s display. As vans send updates to the AMPS server, those are also received by the client
because of the subscription placed by sowAndSubscribe(). Our application does not need to
distinguish between updates and the original set of vans we found via the SOW query, so we use
addOrUpdateVan() to display the new position of vans as well.
Notice here that we specified an Option of “oof”. Including this option causes us to receive Out-
of-Focus ("OOF") messages for topic. OOF messages are sent when an entry that was sent to us in
the past no longer matches our query. This happens when an entry is removed from the SOW cache
via a sowDelete() operation, when the entry expires (as specified by the expiration time on the
message or by the configuration of that topic on the AMPS server), or when the entry no longer
matches the content filter specified. In our case, if a van’s status changes to something other than
ACTIVE, it no longer matches the content filter, and becomes out of focus. When this occurs, a

State of the World

27

Message is sent with Command set to oof. We use OOF messages to remove vans from the display
as they become inactive, expire, or are deleted.

Now we will look at an example that uses the asynchronous form of execute to place a sow_and_subscribe
command:

private void UpdateVanPosition(Message message)
{
 switch (message.Command) {
 case Message.Commands.SOW:
 case Message.Commands.Publish:
 AddOrUpdateVan(message);
 break;
 case Message.Commands.OOF:
 RemoveVan(message);
 break;
 }
}

public void SubscribeToVanLocation(Client client) {
 Command command = new Command("sow")
 .setTopic("van_location")
 .setFilter("/status = 'ACTIVE'")
 .setBatchSize(100)
 .setOptions("oof");

 client.execute_async(command, msg => UpdateVanPosition(msg));
}

Example 6.4. Asynchronous SOW and Subscribe

6.3. Setting Batch Size
The AMPS clients include a batch size parameter that specifies how many messages the AMPS server
will return to the client in a single batch. The 60East clients set a batch size of 10 by default. This batch
size works well for common message sizes and network configurations.

Adjusting the batch size may produce better network utilitization and produce better performance overall
for the application. The larger the batch size, the more messages AMPS will send to the network layer at
a time. This can result in fewer packets being sent, and therefore less overhead in the network layer. The
effect on performance is generally most noticeable for small messages, where setting a larger batch size
will allow several messages to fit into a single packet. For larger messages, a batch size may still improve
performance, but the improvement is less noticeable.

In general, 60East recommends setting a batch size that is large enough to produce few partially-filled
packets. Bear in mind that AMPS holds the messages in memory while batching them, and the client

State of the World

28

must also hold the messages in memory while receiving the messages. Using batch sizes that require
large amounts of memory for these operations can reduce overall application peformance, even if network
utilization is good.

6.4. Managing SOW Contents
AMPS allows application to manage the contents of the SOW by explicitly deleting messages that are
no longer relevant. For example, if a particular delivery van is retired from service, the application can
remove the record for the van by deleting the record for the van.

The client provides the following methods for deleting records from the SOW:

• sowDelete accepts a filter, and deletes all messages that match the filter

• sowDeleteByKeys accepts a set of SOW keys as a comma-delimited string and deletes messages
for those keys, regardless of the contents of the messages. SOW keys are provided in the header of a
SOW message, and is the internal identifier AMPS uses for that SOW message

• sowDeleteByData accepts a message, and deletes the record that would be updated by that message

Most applications use sowDelete, since this is the most useful and flexible method for removing
items from the SOW. In some cases, particularly when working with extremely large SOW databases,
sowDeleteByKeys can provide better performance.

Regardless of the command used, AMPS sends an OOF message to all subscribers who have received
updates for the messages removed, as described in the previous section.

The simple form of the sowDelete command returns a MessageStream that receives the response.
This response is an acknowledgement message that contains information on the delete command. For
example, the following snippet simply prints informational text with the number of messages deleted:

foreach (Message msg in client.SowDelete("sow_topic",
 "/id IN (42, 64, 37)")
{
 System.Console.WriteLine("Got an {0} containing {1} : " +
 "deleted {2} messages.",
 msg.Command,
 msg.AckType,
 msg.Matches);
}

In either case, AMPS sends an OOF message to all subscribers who have received updates for the messages
removed, as described in the previous section.

29

Chapter 7. High Availability
The AMPS C# Client provides an easy way to create highly-available applications using AMPS, via the
HAClient class. Using HAClient allows applications to automatically:

• Recover from temporary disconnects between client and server.

• Failover from one server to another when a server becomes unavailable.

• Ensure no messages are lost or duplicated after a reconnect or failover.

• (Optional) Persist messages and bookmarks on disk for protection against client failure.

Many of these features require specific configuration settings on your AMPS instance(s). This chapter
mentions these features, but you can find full documentation for these settings and server features in the
User Guide.

7.1. Choosing an HAClient Protection
Method

Use the HAClient class to create a highly-available connection to one or more AMPS instances. HA-
Client derives from Client and offers the same methods, but also adds protection against network,
server, and client outages. Most code written with Client will also work with HAClient, and major
differences involve constructing and connecting the HAClient.

The HAClient provides protection from disconnection using Stores. As the name implies, stores hold
information about the state of the client. There are two types of store:

• A bookmark store tracks received messages, and is used to resume subscriptions.

• A publish store tracks published messages, and is used to ensure that messages are persisted in AMPS.

The AMPS client provides a memory-backed version of each store and a filed-backed version of each
store. An HAClient can use either a memory backed store or a file backed store for protection. Each
method provides resilience to different failures:

• Memory-backed stores protect against disconnection from AMPS by storing messages and bookmarks
in your process’ address space. This is the highest performance option for working with AMPS in a
highly available manner. The trade-off with this method is there is no protection from a crash or failure of
your client application. If your application is terminated prematurely or, if the application terminates at
the same time as an AMPS instance failure or network outage, then messages may be lost or duplicated.

• File-backed stores protect against client failure and disconnection from AMPS by storing messages
and bookmarks on disk. To use this protection method, the create_file_backed method requests
additional arguments for the two files that will be used for both bookmark storage and message storage.
If these files exist and are non-empty (as they would be after a client application is restarted), the
HAClient loads their contents and ensures synchronization with the AMPS server once connected.

High Availability

30

The performance of this option depends heavily on the speed of the device on which these files are
placed. When the files do not exist (as they would the first time a client starts on a given system), the
HAClient creates and initializes the files, and in this case the client does not have a point at which
to resume the subscription or messages to republish.

The store interface is public, and an application can create and provide a custom store as necessary. While
clients provide convenience methods for creating file-backed and memory-backed HAClient objects
with the appropriate stores, you can also create and set the stores in your application code.

In this example, we create two clients, one for ”less-important” messages that uses memory for its store,
and one which uses a pair of files for its store:

HAClient memoryClient = HAClient.createMemoryBacked(
 "lessImportantMessages");
HAClient diskClient = HAClient.createFileBacked(
 "moreImportantMessages",
 "/mnt/fastDisk/moreImportantMessages.outgoing",
 "/mnt/fastDisk/moreImportantMessages.incoming");

Example 7.1. HAClient creation examples

While this chapter presents the built-in file and memory-based stores, the AMPS C#
Client provides open interfaces that allow development of custom persistent mes-
sage stores. You can implement the Store and BookmarkStore interfaces in
your code, and then pass instances of those to setPublishStore() or set-
BookmarkStore() methods in your Client. Instructions on developing a cus-
tom store are beyond the scope of this document; please refer to the AMPS Client
HA Whitepaper for more information.

7.2. Connections and the ServerChooser
Unlike Client, the HAClient attempts to keep itself connected to an AMPS instance at all times, by
automatically reconnecting or failing over when it detects disconnect. When you are using the Client
directly, your disconnect handler usually takes care of reconnection. HAClient, on the other hand, pro-
vides a disconnect handler that automatically reconnects to the current server or to the next available server.

To inform the HAClient of the addresses of the AMPS instances in your system, you pass a Server-
Chooser instance to the HAClient. ServerChooser acts as a smart enumerator over the servers
available: HAClient calls ServerChooser methods to inquire about what server should be connect-
ed, and also calls methods to indicate whether a given server succeeded or failed.

The AMPS C# Client provides a simple implementation of ServerChooser, called Default-
ServerChooser, which you can use in applications with simple requirements around choosing which
server to connect with. Or, you can implement ServerChooser yourself for more advanced logic,
such as choosing a backup server based on your network topology. In either case, you must provide a
ServerChooser to HAClient to get started, and then invoke connectAndLogon() to create the
first connection:

High Availability

31

HAClient myClient = HAClient.createMemoryBacked(
 "myClient");

// primary.amps.xyz.com is the primary AMPS instance, and
// secondary.amps.xyz.com is the secondary
DefaultServerChooser chooser =
 new DefaultServerChooser();
chooser.add("tcp://primary.amps.xyz.com:12345/fix");
chooser.add("tcp://secondary.amps.xyz.com:12345/fix");
myClient.setServerChooser(chooser);
myClient.connectAndLogon();
...
myClient.disconnect();

Example 7.2. HAClient logon

Similar to Client, HAClient remains connected to the server until disconnect() is called.
Unlike Client, HAClient automatically attempts to reconnect to your server if it detects a dis-
connect and, if that server cannot be connected, fails over to the next server provided by the
ServerChooser. In this example, the call to connectAndLogon() attempts to connect and
log in to primary.amps.xyz.com, and returns if that is successful. If it cannot connect, it tries
secondary.amps.xyz.com, and continues trying servers from the ServerChooser until a con-
nection is established. Likewise, if it detects a disconnection while the client is in use, HAClient attempts
to reconnect to the server with which it was most recently connected; if that is not possible, it moves on
to the next server provided by the ServerChooser.

While this chapter presents the built-in file and memory-based stores, the AMPS C#
Client provides open interfaces that allow development of custom persistent mes-
sage stores. You can implement the Store and BookmarkStore interfaces in
your code, and then pass instances of those to setPublishStore() or set-
BookmarkStore() methods in your Client. Instructions on developing a cus-
tom store are beyond the scope of this document; please refer to the AMPS Client
HA Whitepaper for more information.

7.3. Heartbeats and Failure Detection
Use of the HAClient allows your application to quickly recover from detected connection failures.
By default, connection failure detection occurs when AMPS receives an operating system error on the
connection. This system may result in unpredictable delays in detecting a connection failure on the client,
particularly when failures in network routing hardware occur, and the client primarily acts as a subscriber.

The heartbeat feature of the AMPS client allows connection failure to be detected quickly. Heartbeats
ensure that regular messages are sent between the AMPS client and server on a predictable schedule. The
AMPS client and server both assume disconnection has occurred if these regular heartbeats cease, ensuring

High Availability

32

disconnection is detected in a timely manner. To utilize heartbeat, call the setHeartbeat method on
Client or HAClient:

HAClient client = HAClient.createMemoryBacked(
 "importantStuff");
...
client.connectAndLogon();
client.setHeartbeat(3);
...

Method setHeartbeat takes one parameter: the heartbeat interval. The heartbeat interval specifies the
periodicity of heartbeat messages sent by the server: the value 3 indicates messages are sent on a three-
second interval. If the client receives no messages in a six-second window (two heartbeat intervals), the
connection is assumed to be dead, and the HAClient attempts reconnection. An additional variant of
setHeartbeat allows the idle period to be set to a value other than two heartbeat intervals.

7.4. Considerations for Publishers
Publishing with an HAClient is nearly identical to regular publishing; you simply call the publish()
method with your message’s topic and data. The AMPS client sends these messages asynchronously for
maximum performance; but before exiting or terminating your connection, you should ensure that the
server has received all of your messages. The AMPS server occasionally sends persisted acknowledge-
ment messages that indicate messages it has successfully received and persisted. For safety, your applica-
tion should wait until it has successfully received the final acknowledgement from the AMPS instance.
Use the unpersistedCount() method in the Store to determine how many messages remain un-
acknowledged by the AMPS instance, as in the following example:

HAClient pub = HAClient.createMemoryBacked(
 "importantStuff");
...
pub.connectAndLogon();
String topic = "loggedTopic";
String data = ...;
for(int i = 0; i < MESSAGE_COUNT; i++)
{
 pub.publish(topic, data);
}

// We think we are done, but the server may not
// have acknowledged us yet.
while(pub.getPublishStore().unpersistedCount() > 0)
{
 Console.WriteLine("waiting for final ack from "+
 "the server...");

High Availability

33

 Thread.Sleep(1000);
}
pub.disconnect();

Example 7.3. HA Publisher

In this example, the client sends each message immediately when publish() is called, but if AMPS
becomes unavailable between the final publish() and the disconnect(), the client may not have
received an acknowledgement for all of the published messages. It is possible that not every message has
been received or persisted by the AMPS server. By waiting until unpersistedCount() becomes 0,
the application ensures that it has received acknowledgement for every message published. If a disconnect
or failover occurs while waiting, HAClient automatically reconnects and correlates its internal store
with the AMPS server (via the client sequence number returned in the acknowledgement message from
the logon), replaying any messages the AMPS server might need in order to be consistent.

If your application crashes or is terminated by an outside force, some published messages may not have
been persisted in the AMPS server. If you use the file-based store (in other words, the store created by using
HAClient.createFileBacked()), the HAClient will recover the messages, and once logged on,
correlate the message store to what the AMPS server has received, re-publishing any missing messages.
This occurs automatically when HAClientconnects, without any explicit consideration in your code,
other than ensuring that the same file name is passed to createFileBacked() if recovery is desired.

AMPS provides persisted acknowledgement messages for topics that do not have a
transaction log enabled; however, the level of durability provided for topics with no
transaction log is minimal. Learn more about transaction logs in the User Guide.

7.5. Considerations for Subscribers
HAClient provides two important features for applications that subscribe to one or more topics: re-
subscription, and a bookmark store to track the correct point at which to resume a bookmark subscription.

Resubscription With Asynchronous Message Process-
ing

Any asynchronous subscription placed using an HAClient is automatically reinstated after a disconnect
or a failover. These subscriptions are placed in an in-memory SubscriptionManager, which is creat-
ed automatically when the HAClient is instantiated. Most applications will use this built-in subscription
manager, but for applications that create a varying number of subscriptions, you may wish to implement
SubscriptionManager to store subscriptions in a more durable place. Note that these subscriptions
contain no message data, but rather simply contain the the parameters of the subscription itself (for in-
stance, the command, topic, message handler, options, and filter).

When a re-subscription occurs, the AMPS C# Client re-executes the command as originally submitted,
including the original topic, options, and so on. AMPS sends the subscriber any messages for the specified
topic (or topic expression) that gets published after the subscription is placed.

High Availability

34

Resubscription With Synchronous Message Process-
ing

The HAClient (starting with the AMPS C# Client version 4.3.1.1) does not track synchronous message
processing subscriptions in the SubscriptionManager. Once the MessageStream indicates that
there are no more elements in the stream, you can consider the stream to be closed. The MessageStream
does not suddenly produce more elements.

To resubscribe when the HAClient fails over, you can simply reissue the subscription. For example, the
snippet below re-issues the subscribe command when the message stream ends:

boolean still_need_to_process = true;

while (still_need_to_process == true)
{
 MessageStream ms = client.subscribe("topic");
 try
 {
 for (Message m : ms)
 {
 // process message

 // check condition on still_need_to_process
 if (still_need_to_process == false) break;
 }
 // end of stream, for a subscribe this means
 // that the connection is likely closed.
 }
 finally
 {
 if (ms != null) ms.close();
 }
}

Bookmark Stores
In cases where it is critical not to miss a single message, it is important to be able to resume a subscription
at the exact point that a failure occurred. In this case, simply recreating a subscription isn't sufficient. Even
though the subscription is recreated, the subscriber may have been disconnected at precisely the wrong
time, and will not see the message.

To ensure delivery of every message from a topic or set of topics, the AMPS HAClient includes a
BookmarkStore that, combined with the bookmark subscription and transaction log functionality in the
AMPS server, ensures that clients receive any messages that might have been missed. The client stores the
bookmark associated with each message received, and tracks whether the application has processed that
message; if a disconnect occurs, the client uses the BookmarkStore to determine the correct resubscription

High Availability

35

point, and sends that bookmark to AMPS when it re-subscribes. AMPS then replays messages from its
transaction log from the point after the specified bookmark, thus ensuring the client is completely up-
to-date.

HAClient helps you to take advantage of this bookmark mechanism through the BookmarkStore in-
terface and bookmarkSubscribe() method on Client. When you create subscriptions with book-
markSubscribe(), whenever a disconnection or failover occurs, your application automatically re-
subscribes to the message after the last message it processed. HAClients created by createFile-
Backed() additionally store these bookmarks on disk, so that the application can restart with the appro-
priate message if the client application fails and restarts.

To take advantage of bookmark subscriptions, do the following:

• Ensure the topic(s) to be subscribed are included in a transaction log. See the User Guide for information
on how to specify the contents of a transaction log.

• Use bookmarkSubscribe() instead of subscribe() when creating a subscription(), and
decide how the application will manage subscription identifiers (SubIds).

• Use the BookmarkStore.discard() method in message handlers to indicate when a message has
been fully processed by the application.

The following example creates a bookmark subscription against a transaction-logged topic, and fully
processes each message as soon as it is delivered:

final HAClient client = HAClient.createFileBacked(
 "aClient",
 "/logs/aClient.publishLog",
 "/logs/aClient.subscribeLog");

class MyMessageHandler implements MessageHandler
{
 public void invoke(Message message)
 {
 ...
 client.getBookmarkStore().discard(
 message.getSubIdRaw(),
 message.getBookmarkSeqNo());
 ...
 }
}

...

// Set the commandId to a previously saved GUID.
Guid cmdIdGuid = new Guid("0066e1dc-9cfd-4b02-934b-2376a52cb412");
String cmdIdData = Convert.ToBase64String(cmdIdGuid.ToByteArray(), 0,
 16);

High Availability

36

CommandId cmdId = new CommandId();
cmdId.set(System.Text.Encoding.UTF8.GetBytes(cmdIdData), 0, 24);

Command command = new Command("subscribe")
 .setTopic("myTopic")
 .setSubscriptionId(cmdId)
 .setBookMark(Client.Bookmarks.MOST_RECENT);

client.execute_async(command, new MyMessageHandler());

Example 7.4. HAClient Subscription

In this example, the client is a file-backed client, meaning that arriving bookmarks will be stored in a
file (Client.subscribeLog). Storing these bookmarks in a file allows the application to restart the
subscription from the last message processed, in the event of either server or client failure.

For optimum performance, it is critical to discard every message once its processing
is complete. If a message is never discarded, it remains in the bookmark store. Dur-
ing re-subscription, HAClient always restarts the bookmark subscription with the
oldest undiscarded message, and then filters out any more recent messages that have
been discarded. If an old message remains in the store, but is no longer important for
the application’s functioning, the client and the AMPS server will incur unnecessary
network, disk, and CPU activity.

The subscriptionId parameter specifies an identifier to be used for this subscription. Passing null,
or leaving the field unset, causes HAClient to generate a subscription ID, like most other Client
functions. However, if you wish to resume a subscription from a previous point after the application
has terminated and restarted, the application must pass the same subscription ID as during its previous
run. Passing a different subscription ID bypasses any recovery mechanisms, creating an entirely new
subscription. When you use an existing subscription ID, the HAClient locates the last-used bookmark
for that subscription in the local store, and attempts to re-subscribe from that point.

• Client.Bookmarks.NOW specifies that the subscription should begin from the moment the server
receives the subscription request. This results in the same messages being delivered as if you had in-
voked subscribe() instead, except that the messages will be accompanied by bookmarks. This is
also the behavior that results if you supply an invalid bookmark.

• Client.Bookmarks.EPOCH specifies that the subscription should begin from the beginning of the
AMPS transaction log.

• Client.Bookmarks.MOST_RECENT specifies that the subscription should begin from the last-
used message in the associated BookmarkStore. Alternatively, if this subscription has not been seen
before, to begin with EPOCH. This is the most common value for this parameter, and is the value used in
the preceding example. By using MOST_RECENT, the application automatically resumes from wher-
ever the subscription left off, taking into account any messages that have already been processed and
discarded.

When the HAClient re-subscribes after a disconnection and reconnection, it always uses
MOST_RECENT, ensuring that the continued subscription always begins from the last message used be-
fore the disconnect, so that no messages are missed.

High Availability

37

7.6. Conclusion
With only a few changes, most AMPS applications can take advantage of the HAClient and associated
classes to become more highly-available and resilient. Using the PublishStore, publishers can en-
sure that every message published has actually been persisted by AMPS. Using BookmarkStore, sub-
scribers can make sure that there are no gaps or duplicates in the messages received. HAClient makes
both kinds of applications more resilient to network and server outages and temporary issues, and, by using
the filebased HAClient, clients can recover their state after an unexpected termination or crash. Though
HAClient provides useful defaults for the Store, BookmarkStore, SubscriptionManager,
and ServerChooser, you can customize any or all of these to the specific needs of your application
and architecture.

38

Chapter 8. Advanced Topics

8.1. C# Client Compatibility
AMPS clients are available for many languages. Many AMPS customers write clients using a variety of
languages, often both Java and C#. While Java and C# are fundamentally different languages, they share
enough syntax that it can be straightforward to port code between the two, and especially from Java to C#.

To aid in conversion from Java to C# (and from C# to Java), the C# client has a number of features that
make it a little easier to bring code from Java to C#:

• getXXX()/setXXX() Java-style getters and setters are provided corresponding to properties on the
Message class. For example, given a variable message of type Message, the code:

string userName = message.UserName

and

string userName = message.getUserName()

are equivalent.

• C# Parameters that take lambda functions also take an interface type. The AMPS Java client defines
interfaces such as ClientMessageHandler that your application implements, with a single in-
voke() method that is called when an event occurs. In C#, the AMPS client uses lambda functions
and delegates to provide equivalent functionality. However, the same *Handler interfaces exist in C#,
and instead of passing a lambda function, you may also implement these interfaces and pass in derived
classes. While doing so would be inconvenient in C#, providing this symmetry allows your Java and
C# to be ported interchangeably.

• Java-style method name conventions are used throughout AMPS. In .NET, method names often begin
with a capitalized first letter (e.g. Connect() instead of connect()). However, the C# AMPS client
retains the capitalization style of the Java client where possible, making porting straightforward.

8.2. Transport Filtering
The AMPS C# client offers the ability to filter incoming and outgoing messages in the format they are
sent and received on the network. This allows you to inspect or modify outgoing messages before they are
sent to the network, and incoming messages as they arrive from the network. To create a transport filter,
you implement the interface TransportFilter, construct an instance of the filter class, and install the
filter with the setTransportFilter method on the transport.

The AMPS C# client does not validate any changes made by the transport filter. This interface is most
useful for application debugging or transport development.

Advanced Topics

39

The client includes a sample filter, TransportTraceFilter, that simply writes incoming and out-
going buffers to a TextWriter.

40

Chapter 9. Advanced AMPS
Programming: Working With Commands

The AMPS clients provide named methods for core AMPS functionality. These named methods work by
creating messages and sending those messages to AMPS. All communication with AMPS occurs through
messages.

You can use the Command object to customize the messages that the AMPS client sends. This can be
useful for more advanced scenarios, where you need precise control over AMPS, in cases where you need
to use an earlier version of the client to communicate with a more recent version of AMPS, or in cases
where a named method is not available.

9.1. Understanding AMPS Messages
AMPS messages are represented in the client as AMPS.Message objects. The Message object is generic,
and can represent any type of AMPS message, including both outgoing and incoming messages. This
section includes a brief overview of elements common to AMPS command message. Full details of com-
mands to AMPS are provided in the AMPS Command Reference Guide.

All AMPS command messages contain the following elements:

• Command. The command tells AMPS how to interpret the message. Without a command, AMPS will
reject the message. Examples of commands include publish, subscribe, and sow.

• CommandId. The command id, together with the name of the client, uniquely identifies a command to
AMPS. The command ID can be used later on to refer to the command or the results of the command.
For example, the command id for a subscribe message becomes the identifier for the subscription.
The AMPS client provides a command id when the command requires one and no command id is set.

Most AMPS messages contain the following fields:

• Topic. The topic that the command applies to, or a regular expression that identifies a set of topics
that the command applies to. For most commands, the topic is required. Commands such as logon,
start_timer, and stop_timer do not apply to a specific topic, and do not need this field.

• Ack Type. The ack type tells AMPS how to acknowledge the message to the client. Each command has
a default acknowledgement type that AMPS uses if no other type is provided.

• Options. The options are a comma-separated list of options that affect how AMPS processes and
responds to the message.

Beyond these fields, different commands include fields that are relevant to that particular command. For
example, SOW queries, subscriptions, and some forms of SOW deletes accept the Filter field, which
specifies the filter to apply to the subscription or query. As another example, publish commands accept
the Expiration field, which sets the SOW expiration for the message.

Advanced AMPS Programming: Working With Commands

41

For full details on the options available for each command and the acknowledgement messages returned
by AMPS, see the AMPS Command Reference Guide.

9.2. Creating and Populating the Command
To create a command, you simply allocate a message object of the appropriate type:

Command command = new Command("sow");

Once created, you set the appropriate fields on the message. For example, the following code creates a
publish message, setting the command, topic, data to publish, and an expiration for the message:

Command command = new Command("sow")
 .setTopic("messages-sow")
 .setFilter("/id > 20");

When sent to AMPS using the execute() method, AMPS performs a SOW query from the topic mes-
sages-sow using a filter of /id > 20. The results of sending this message to AMPS are no different
than using the form of the sow method that sets these fields.

9.3. Using execute
Once you've created a message, use the execute method to send the message to AMPS. One form of
the execute method allows you to provide a message handler to process response messages. The other
form of the execute met:hod simply sends the message to AMPS, and processes any response on a
background thread.

For example, the following snippet sends the message created above:

client.execute(message);

You can also provide a message handler to receive acknowledgements, statistics, or the results of sub-
scriptions and SOW queries. In this case, AMPS creates a background thread. The call to send returns
immediately on the main thread, and messages are received in the background thread.

To send a message and use an asynchronous message handler, pass the handler and the message to
execute_async(). For example, the following snippet uses a lambda expression to create a simple
message handler, passing that message handler and the message to execute_async().

client.execute_async(command, (m) => Console.WriteLine(m.getAckType()
 + " : " + m.getReason));

While this message handler simply prints the ack type and reason for sample purposes, message handlers
in production applications are typically designed with a specific purpose. For example, your message
handler may fill a work queue, or check for success and throw an exception if the command failed.

Advanced AMPS Programming: Working With Commands

42

Notice that the publish command does not provide typically return results other than acknowledgement
messages. To send a publish command, use the executeAsync() method with a null message han-
dler:

client.executeAsync(publishCmd, null);

9.4. Command Cookbook
This section is a quick guide to commonly used AMPS commands. For the full range of options on AMPS
commands, see the AMPS Command Reference.

Publishing
This section presents common recipes for publishing to a topic in AMPS using the Command or Message
interfaces. This section provides information on how to configure the request to AMPS. You can adapt
this information to your application and the specific interface you are using.

The AMPS server does not return a stream of messages in response to a publish command.

AMPS publish commands do not return a stream of messages. A publish command is most
often used with asynchronous message processing, while passing an empty handler. To use
these commands with the synchronous message processing interface, add a CommandId to
the Command

Basic Publish
In its simplest form, a subscription needs only the topic to publish to and the data to publish. The AMPS
client automatically constructs the necessary AMPS headers and formats the full publish command.

In many cases, a publisher only needs to use the basic publish command.

Table 9.1. Basic Publish

Header Comment
Topic Sets the topic to publish to. The topic specified must

be a literal topic name. Regular expression charac-
ters in the topic name are not interpreted.

Some topics in AMPS, such as views and conflat-
ed topics, cannot be published to directly. Instead, a
publisher must publish to the underlying topics.

Data The data to publish to the topic. The AMPS client
does not interpret, escape, or validate this data: the
data is provided to the server verbatim.

Advanced AMPS Programming: Working With Commands

43

Publish With CorrelationId

AMPS provides publishers with a header field that can be used to contain arbitrary data, the Correla-
tionId.

Table 9.2. Publish With CorrelationId

Header Comment
Topic Sets the topic to publish to. The topic specified must

be a literal topic name. Regular expression charac-
ters in the topic name are not interpreted.

Some topics in AMPS, such as views and conflat-
ed topics, cannot be published to directly. Instead, a
publisher must publish to the underlying topics.

Data The data to publish to the topic. The AMPS client
does not interpret, escape, or validate this data: the
data is provided to the server verbatim.

CorrelationId The CorrelationId to provide on the mes-
sage. AMPS provides the CorrelationId to
subscribers. The CorrelationId has no signifi-
cance for AMPS.

The CorrelationId may only contain charac-
ters that are valid in base-64 encoding.

Publish With Explicit SOW Key
When publishing to a SOW topic that is configured to require an explicit SOW key, the publisher needs
to set the SowKey header on the message.

Table 9.3. Publish with Explicit SOW Key

Header Comment
Topic Sets the topic to publish to. The topic specified must

be a literal topic name. Regular expression charac-
ters in the topic name are not interpreted.

Some topics in AMPS, such as views and conflat-
ed topics, cannot be published to directly. Instead, a
publisher must publish to the underlying topics.

Data The data to publish to the topic. The AMPS client
does not interpret, escape, or validate this data: the
data is provided to the server verbatim.

SowKey The SOW Key to use for this message. This head-
er is only supported for publishes to a topic that re-
quires an explicit SOW Key.

Advanced AMPS Programming: Working With Commands

44

Subscribing
This section presents common recipes for subscribing to a topic in AMPS using the Command or Mes-
sage interfaces. This section provides information on how to configure the request to AMPS. You can
adapt this information to your application and the specific interface you are using.

Basic Subscription
In its simplest form, a subscription needs only the topic to subscribe to.

Table 9.4. Basic Subscription

Header Comment
Topic Sets the topic to subscribe to. All messages from the

topic will be delivered on this subscription. The top-
ic specified can be the literal topic name, or a regu-
lar expression that matches multiple topics.

Basic Subscription With Options
In its simplest form, a subscription needs only the topic to subscribe to. To add options to the subscription,
set the Options header on the Command.

Table 9.5. Basic Subscription with Options

Header Comment
Topic Sets the topic to subscribe to. All messages from the

topic will be delivered on this subscription. The top-
ic specified can be the literal topic name, or a regu-
lar expression that matches multiple topics.

Options A comma-delimited set of options for this com-
mand. See the AMPS Command Reference for
a description of supported options.

Content Filtered Subscription

To provide a content filter on a subscription, set the Filter property on the command. The AMPS User
Guide provides details on the filter syntax.

Table 9.6. Content Filtered Subscription

Header Comment
Topic Sets the topic to subscribe to. The topic provided can

be either the exact name of the topic, or a regular
expression that matches the names of the topics for
the subscription.

Advanced AMPS Programming: Working With Commands

45

Header Comment

Filter Sets the content filter to be applied to the subscrip-
tion. Only messages that match the content filter will
be provided to the subscription.

Bookmark Subscription

To create a bookmark subscription, set the Bookmark property on the command. The property can be
either a specific bookmark, a timestamp, or one of the client-provided constants. The AMPS User Guide
provides details on creating timestamps. Notice that the MOST_RECENT constant tells the AMPS client
to find the appropriate message in the client bookmark store and begin the subscription at that point. In
this case, the client sends that bookmark value to AMPS. The Bookmark option is only supported for
topics that are recorded in an AMPS transaction log.

Table 9.7. Bookmark Subscription

Header Comment
Topic Sets the topic to subscribe to. The topic provided can

be either the exact name of the topic, or a regular
expression that matches the names of the topics for
the subscription.

Bookmark Sets the point in the transaction log at which the sub-
scription will begin. The bookmark provided can be
a specific AMPS bookmark, a timestamp, or one of
the client-provided constants.

AMPS also accepts a comma-delimited list of book-
marks. In this case, AMPS begins the subscription
from whichever of the bookmarks is earliest in the
transaction log.

Bookmark Subscription With Content Filter

To create a bookmark subscription, set the Bookmark property on the command. The property can be
either a specific bookmark, a timestamp, or one of the client-provided constants. The AMPS User Guide
provides details on creating timestamps. Notice that the MOST_RECENT constant tells the AMPS client
to find the appropriate message in the client bookmark store and begin the subscription at that point. In
this case, the client sends that bookmark value to AMPS.

To add a filter to a bookmark subscription, set the Filter property on the command. The AMPS User
Guide provides details on the filter syntax.

Table 9.8. Bookmark Subscription With Content Filter

Header Comment
Topic Sets the topic to subscribe to. The topic provided can

be either the exact name of the topic, or a regular

Advanced AMPS Programming: Working With Commands

46

Header Comment
expression that matches the names of the topics for
the subscription.

Bookmark Sets the point in the transaction log at which the sub-
scription will begin. The bookmark provided can be
a specific AMPS bookmark, a timestamp, or one of
the client-provided constants.

AMPS also accepts a comma-delimited list of book-
marks. In this case, AMPS begins the subscription
from whichever of the bookmarks is earliest in the
transaction log.

Filter Sets the content filter to be applied to the subscrip-
tion. Only messages that match the content filter will
be provided to the subscription.

Replacing the Filter on a Subscription

To replace the content filter on a subscription, provide the SubId of the subscription to be replaced, add
the replace option, and set the Filter property on the command with the new filter. The AMPS User
Guide provides details on the filter syntax.

Table 9.9. Replacing the Filter on a Subscription

Header Comment
Topic Sets the topic to subscribe to. The topic provided can

be either the exact name of the topic, or a regular
expression that matches the names of the topics for
the subscription.

SubId The identifier for the subscription to update. The
SubId is the CommandId for the original sub-
scribe command.

Options A comma-separated list of options. To replace the
filter on a subscription, include replace in the list
of options.

Filter Sets the content filter to be applied to the subscrip-
tion. Only messages that match the content filter will
be provided to the subscription.

SOW Query
This section presents common recipes for querying a SOW topic in AMPS using the Command or Mes-
sage interfaces. This section provides information on how to configure the request to AMPS. You can
adapt this information to your application and the specific interface you are using.

Advanced AMPS Programming: Working With Commands

47

Basic SOW Query
In its simplest form, a SOW query needs only the topic to query.

Table 9.10. Basic SOW Query

Header Comment
Topic Sets the topic to query. The SOW query returns all

messages in the SOW. The topic specified can be
the literal topic name, or a regular expression that
matches multiple topics.

Basic SOW With Options
In its simplest form, a SOW needs only the topic to subscribe to. To add options to the subscription, set
the Options header on the Command.

Table 9.11. Basic SOW Query with Options

Header Comment
Topic Sets the topic to query. The SOW query returns all

messages in the SOW. The topic specified can be
the literal topic name, or a regular expression that
matches multiple topics.

Options A comma-delimited set of options for this com-
mand. See the AMPS Command Reference for
a description of supported options.

SOW Query With Ordered Results
In its simplest form, a SOW needs only the topic to subscribe to. To return the results in a specific order,
provide an ordering expression in the OrderBy header.

Table 9.12. Basic SOW Query with Ordered Results

Header Comment
Topic Sets the topic to query. The SOW query returns all

messages in the SOW. The topic specified can be
the literal topic name, or a regular expression that
matches multiple topics.

OrderBy Orders the results returned as specified. Requires a
comma-separated list of identifiers of the form:

/field [ASC | DESC]

Advanced AMPS Programming: Working With Commands

48

Header Comment
For example, to sort in descending order by or-
derDate so that the most recent orders are first,
and ascending order by customerName for orders
with the same date, you might use a specifier such
as:

/orderDate DESC, /customerName ASC

If no sort order is specified for an identifer, AMPS
defaults to ascending order.

SOW Query With TopN Results
In its simplest form, a SOW needs only the topic to subscribe to. To return only a specific number of
records, provide the number of records to return in the TopN header.

Table 9.13. SOW Query with TopN Results

Header Comment
Topic Sets the topic to query. The SOW query returns all

messages in the SOW. The topic specified can be
the literal topic name, or a regular expression that
matches multiple topics.

TopN The maximum number of records to return. AMPS
uses the OrderBy header to determine the order of
the records.

If no OrderBy header is provided, records are re-
turned in an indeterminate order. In most cases, us-
ing an OrderBy header when you use the TopN
header will guarantee that you get the records of in-
terest.

OrderBy Orders the results returned as specified. Requires a
comma-separated list of identifiers of the form:

/field [ASC | DESC]

For example, to sort in descending order by or-
derDate so that the most recent orders are first,
and ascending order by customerName for orders
with the same date, you might use a specifier such
as:

/orderDate DESC, /customerName ASC

If no sort order is specified for an identifer, AMPS
defaults to ascending order.

Advanced AMPS Programming: Working With Commands

49

Content Filtered SOW Query

To provide a content filter on a SOW query, set the Filter property on the command. The AMPS User
Guide provides details on the filter syntax.

Table 9.14. Content Filtered SOW Query Subscription

Header Comment
Topic Sets the topic to query. The topic specified can be

the literal topic name, or a regular expression that
matches multiple topics.

Filter Sets the content filter to be applied to the query. On-
ly messages that match the content filter will be re-
turned in response to the query.

Historical SOW Query

To create a historical SOW query, set the Bookmark property on the command. The property can be either
a specific bookmark or a timestamp. The AMPS User Guide provides details on creating timestamps.

This command is only supported on SOW topics that have History enabled.

Table 9.15. Historical SOW Query

Header Comment
Topic Sets the topic to query. The topic specified can be

the literal topic name, or a regular expression that
matches multiple topics.

Bookmark Sets the historical point in the SOW at which to
query. The query returns the saved state of the
records in the SOW as of the point in time specified
in this header.

Historical SOW Query With Content Filter

To create a historical SOW query, set the Bookmark property on the command. The property can be
either a specific bookmark or a timestamp. The AMPS User Guide provides details on creating timestamps.
To add a filter to the query, set the Filter property on the command. The AMPS User Guide provides
details on the filter syntax.

This command is only supported on SOW topics that have History enabled.

Table 9.16. Historical SOW Query With Content Filter

Header Comment
Topic Sets the topic to query. The topic specified can be

the literal topic name, or a regular expression that
matches multiple topics.

Advanced AMPS Programming: Working With Commands

50

Header Comment

Bookmark Sets the historical point in the SOW at which to
query. The query returns the saved state of the
records in the SOW as of the point in time specified
in this header.

Filter Sets the content filter to be applied to the query. On-
ly messages that match the content filter will be pro-
vided to the query.

SOW Query for Specific Records

AMPS allows a consumer to query for specific records as identified by a set of SowKeys. For topics
where AMPS assigns the SowKey, the SowKey for the record is the AMPS-assigned identifier. For topics
configured to require a user-provided SowKey, the SowKey for the record is the original key provided
when the record was published. The AMPS User Guide provides more details on SOW keys.

Table 9.17. SOW Query by SOW Key

Header Comment
Topic Sets the topic to query. The topic specified can be

the literal topic name, or a regular expression that
matches multiple topics.

SowKeys A comma-delimited list of SowKey values. AMPS
returns only the records specified in this list.

For example, a valid format for a list of keys would
be:

1853097931817257202,10402779940201650075,22363879930342650852

SOW and Subscribe
This section presents common recipes for atomic sow and subscribe in AMPS using the Command or
Message interfaces. This section provides information on how to configure the request to AMPS. You
can adapt this information to your application and the specific interface you are using.

Basic SOW and Subscribe
In its simplest form, a SOW and Subscribe needs only the topic to subscribe to.

Table 9.18. Basic SOW and Subscribe

Header Comment
Topic Sets the topic to query and subscribe to. The topic

specified can be the literal topic name, or a regular
expression that matches multiple topics.

Advanced AMPS Programming: Working With Commands

51

SOW and Subscribe With Options
In its simplest form, a SOW and subscribe command needs only the topic to subscribe to. To add options
to the subscription, set the Options header on the Command.

Table 9.19. Basic SOW and Subscribe with Options

Header Comment
Topic Sets the topic to query and subscribe to. The topic

specified can be the literal topic name, or a regular
expression that matches multiple topics.

Options A comma-delimited set of options for this com-
mand. See the AMPS Command Reference for
a full description of supported options.

The most common options for this command are:

oof Request out of order noti-
fications

timestamp Include timestamps on
messages

Content Filtered SOW and Subscribe

To provide a content filter on a SOW and Subscribe, set the Filter property on the command. The
AMPS User Guide provides details on the filter syntax.

Table 9.20. Content Filtered SOW and Subscribe

Header Comment
Topic Sets the topic to query and subscribe to. The topic

specified can be the literal topic name, or a regular
expression that matches multiple topics.

Filter Sets the content filter to be applied to the query. On-
ly messages that match the content filter will be re-
turned in response to the query.

Historical SOW and Subscribe

To create a historical SOW query with a subscription, set the Bookmark property on the command. The
property can be either a specific bookmark or a timestamp. The AMPS User Guide provides details on
creating timestamps. This command is only supported on SOW topics that are recorded in an AMPS
transaction log. If the Bookmark provided is a value other than NOW (0|1|), the SOW topic must have
History enabled.

Advanced AMPS Programming: Working With Commands

52

Table 9.21. Historical SOW and Subscribe

Header Comment
Topic Sets the topic to query and subscribe to. The topic

specified can be the literal topic name, or a regular
expression that matches multiple topics.

Bookmark Sets the historical point in the SOW at which to
query. The query returns the saved state of the
records in the SOW as of the point in time specified
in this header.

Historical SOW and Subscribe With Content Filter

To create a historical SOW query with a subscription, set the Bookmark property on the command. The
property can be either a specific bookmark or a timestamp. The AMPS User Guide provides details on
creating timestamps. This command is only supported on SOW topics that are recorded in an AMPS
transaction log. If the Bookmark provided is a value other than NOW (0|1|), the SOW topic must have
History enabled.

Table 9.22. Historical SOW and Subscribe With Content Filter

Header Comment
Topic Sets the topic to query. The topic specified can be

the literal topic name, or a regular expression that
matches multiple topics.

Bookmark Sets the historical point in the SOW at which to
query. The query returns the saved state of the
records in the SOW as of the point in time specified
in this header.

Filter Sets the content filter to be applied to the query. On-
ly messages that match the content filter will be pro-
vided to the query.

Delta Publishing
This section presents common recipes for publishing to a topic in AMPS using the Command or Message
interfaces. This section provides information on how to configure the request to AMPS. You can adapt
this information to your application and the specific interface you are using.

Basic Delta Publish
In its simplest form, a subscription needs only the topic to publish to and the data to publish. The AM-
PS client automatically constructs the necessary AMPS headers and formats the full delta_publish
command.

Advanced AMPS Programming: Working With Commands

53

In many cases, a publisher only needs to use the basic delta publish command.

Table 9.23. Basic Delta Publish

Header Comment
Topic Sets the topic to publish to. The topic specified must

be a literal topic name. Regular expression charac-
ters in the topic name are not interpreted.

Some topics in AMPS, such as views and conflat-
ed topics, cannot be published to directly. Instead, a
publisher must publish to the underlying topics.

Data The data to publish to the topic. The AMPS client
does not interpret, escape, or validate this data: the
data is provided to the server verbatim.

Delta Publish With CorrelationId

AMPS provides publishers with a header field that can be used to contain arbitrary data, the Correla-
tionId. A delta publish message can be used to update the CorrelationId as well as the data within
the message.

Table 9.24. Delta Publish With CorrelationId

Header Comment
Topic Sets the topic to publish to. The topic specified must

be a literal topic name. Regular expression charac-
ters in the topic name are not interpreted.

Some topics in AMPS, such as views and conflat-
ed topics, cannot be published to directly. Instead, a
publisher must publish to the underlying topics.

Data The data to publish to the topic. The AMPS client
does not interpret, escape, or validate this data: the
data is provided to the server verbatim.

CorrelationId The CorrelationId to provide on the mes-
sage. AMPS provides the CorrelationId to
subscribers. The CorrelationId has no signifi-
cance for AMPS.

The CorrelationId may only contain charac-
ters that are valid in base-64 encoding.

Delta Publish With Explicit SOW Key
When publishing to a SOW topic that is configured to require an explicit SOW key, the publisher needs
to set the SowKey header on the message.

Advanced AMPS Programming: Working With Commands

54

Table 9.25. Delta Publish with Explicit SOW Key

Header Comment
Topic Sets the topic to publish to. The topic specified must

be a literal topic name. Regular expression charac-
ters in the topic name are not interpreted.

Some topics in AMPS, such as views and conflat-
ed topics, cannot be published to directly. Instead, a
publisher must publish to the underlying topics.

Data The data to publish to the topic. The AMPS client
does not interpret, escape, or validate this data: the
data is provided to the server verbatim.

SowKey The SOW Key to use for this message. This head-
er is only supported for publishes to a topic that re-
quires an explicit SOW Key.

Delta Subscribing
This section presents common recipes for subscribing to a topic in AMPS using the Command or Mes-
sage interfaces. This section provides information on how to configure the request to AMPS. You can
adapt this information to your application and the specific interface you are using.

Basic Delta Subscription
In its simplest form, a delta subscription needs only the topic to subscribe to.

Table 9.26. Basic Delta Subscription

Header Comment
Topic Sets the topic to subscribe to. All messages from the

topic will be delivered on this subscription. The top-
ic specified can be the literal topic name, or a regu-
lar expression that matches multiple topics.

Basic Delta Subscription With Options
In its simplest form, a subscription needs only the topic to subscribe to. To add options to the subscription,
set the Options header on the Command.

Table 9.27. Basic Delta Subscription

Header Comment
Topic Sets the topic to subscribe to. All messages from the

topic will be delivered on this subscription. The top-

Advanced AMPS Programming: Working With Commands

55

Header Comment
ic specified can be the literal topic name, or a regu-
lar expression that matches multiple topics.

Options A comma-delimited set of options for this com-
mand. See the AMPS Command Reference for
a description of supported options.

Content Filtered Delta Subscription

To provide a content filter on a subscription, set the Filter property on the command. The AMPS User
Guide provides details on the filter syntax.

Table 9.28. Content Filtered Subscription

Header Comment
Topic Sets the topic to subscribe to. The topic provided can

be either the exact name of the topic, or a regular
expression that matches the names of the topics for
the subscription.

Filter Sets the content filter to be applied to the subscrip-
tion. Only messages that match the content filter will
be provided to the subscription.

Bookmark Delta Subscription

To create a bookmark subscription, set the Bookmark property on the command. The property can be
either a specific bookmark, a timestamp, or one of the client-provided constants. The AMPS User Guide
provides details on creating timestamps. Notice that the MOST_RECENT constant tells the AMPS client
to find the appropriate message in the client bookmark store and begin the subscription at that point. In
this case, the client sends that bookmark value to AMPS.

Table 9.29. Bookmark Subscription

Header Comment
Topic Sets the topic to subscribe to. The topic provided can

be either the exact name of the topic, or a regular
expression that matches the names of the topics for
the subscription.

Bookmark Sets the point in the transaction log at which the sub-
scription will begin. The bookmark provided can be
a specific AMPS bookmark, a timestamp, or one of
the client-provided constants.

AMPS also accepts a comma-delimited list of book-
marks. In this case, AMPS begins the subscription

Advanced AMPS Programming: Working With Commands

56

Header Comment
from whichever of the bookmarks is earliest in the
transaction log.

Bookmark Delta Subscription With Content Filter

To create a bookmark subscription, set the Bookmark property on the command. The property can be
either a specific bookmark, a timestamp, or one of the client-provided constants. The AMPS User Guide
provides details on creating timestamps. Notice that the MOST_RECENT constant tells the AMPS client
to find the appropriate message in the client bookmark store and begin the subscription at that point. In
this case, the client sends that bookmark value to AMPS.

To add a filter to a bookmark subscription, set the Filter property on the command. The AMPS User
Guide provides details on the filter syntax.

Table 9.30. Bookmark Delta Subscription With Content Filter

Header Comment
Topic Sets the topic to subscribe to. The topic provided can

be either the exact name of the topic, or a regular
expression that matches the names of the topics for
the subscription.

Bookmark Sets the point in the transaction log at which the sub-
scription will begin. The bookmark provided can be
a specific AMPS bookmark, a timestamp, or one of
the client-provided constants.

AMPS also accepts a comma-delimited list of book-
marks. In this case, AMPS begins the subscription
from whichever of the bookmarks is earliest in the
transaction log.

Filter Sets the content filter to be applied to the subscrip-
tion. Only messages that match the content filter will
be provided to the subscription.

SOW and Delta Subscribe
This section presents common recipes for atomic sow and delta subscribe in AMPS using the Command
or Message interfaces. This section provides information on how to configure the request to AMPS. You
can adapt this information to your application and the specific interface you are using.

Basic SOW and Delta Subscribe
In its simplest form, a SOW and Delta Subscribe needs only the topic to subscribe to.

Advanced AMPS Programming: Working With Commands

57

Table 9.31. Basic SOW Query

Header Comment
Topic Sets the topic to query and subscribe to. The topic

specified can be the literal topic name, or a regular
expression that matches multiple topics.

SOW and Delta Subscribe With Options
In its simplest form, a SOW and subscribe command needs only the topic to subscribe to. To add options
to the subscription, set the Options header on the Command.
Table 9.32. Basic SOW and Delta Subscribe with Options

Header Comment
Topic Sets the topic to query and subscribe to. The topic

specified can be the literal topic name, or a regular
expression that matches multiple topics.

Options A comma-delimited set of options for this com-
mand. See the AMPS Command Reference for
a full description of supported options.

The most common options for this command are:

oof Request out of order noti-
fications

timestamp Include timestamps on
messages

Content Filtered SOW and Delta Subscribe

To provide a content filter on a SOW and Delta Subscribe, set the Filter property on the command.
The AMPS User Guide provides details on the filter syntax.
Table 9.33. Content Filtered SOW and Delta Subscribe

Header Comment
Topic Sets the topic to query and subscribe to. The topic

specified can be the literal topic name, or a regular
expression that matches multiple topics.

Filter Sets the content filter to be applied to the query. On-
ly messages that match the content filter will be re-
turned in response to the query.

Historical SOW and Subscribe

To create a historical SOW query with a subscription, set the Bookmark property on the command. The
property can be either a specific bookmark or a timestamp. The AMPS User Guide provides details on

Advanced AMPS Programming: Working With Commands

58

creating timestamps. This command is only supported on SOW topics that are recorded in an AMPS
transaction log. If the Bookmark provided is a value other than NOW (0|1|), the SOW topic must have
History enabled.

Table 9.34. Historical SOW and Subscribe

Header Comment
Topic Sets the topic to query and subscribe to. The topic

specified can be the literal topic name, or a regular
expression that matches multiple topics.

Bookmark Sets the historical point in the SOW at which to
query. The query returns the saved state of the
records in the SOW as of the point in time specified
in this header.

Historical SOW and Delta Subscribe With Content Filter

To create a historical SOW query with a subscription, set the Bookmark property on the command. The
property can be either a specific bookmark or a timestamp. The AMPS User Guide provides details on
creating timestamps. This command is only supported on SOW topics that are recorded in an AMPS
transaction log. If the Bookmark provided is a value other than NOW (0|1|), the SOW topic must have
History enabled.

Table 9.35. Historical SOW and Delta Subscribe With Content Filter

Header Comment
Topic Sets the topic to query. The topic specified can be

the literal topic name, or a regular expression that
matches multiple topics.

Bookmark Sets the historical point in the SOW at which to
query. The query returns the saved state of the
records in the SOW as of the point in time specified
in this header.

Filter Sets the content filter to be applied to the query. On-
ly messages that match the content filter will be pro-
vided to the query.

59

Chapter 10. Utilities
The AMPS C# client includes a set of utilities and helper classes to make working with AMPS easier.

10.1. Composite Message Types
The client provides a pair of classes for creating and parsing composite message types.

• CompositeMessageBuilder allows you to assemble the parts of a composite message and then
serialize them in a format suitable for AMPS.

• CompositeMessageParser extracts the individual parts of a composite message type

Building Composite Messages
To build a composite message, create an instance of CompositeMessageBuilder, and populate the
parts. The CompositeMessageBuilder copies the parts provided, in order, to the underlying mes-
sage. The builder simply writes to an internal buffer with the appropriate formatting, and does not allow
you to update or change the individual parts of a message once they've been added to the builder.

The snippet below shows how to build a composite message that includes a JSON part, constructed as a
string, and a binary part consisting of the bytes from a List.

StringBuilder sb = new StringBuilder();
sb.append("{\"data\":\"sample\"}");

List<Double> theData = new List<Double>();
// populate theData
...

// Create a byte array from the data: this is
// what the program will send.
byte[] outBytes = null;
using (MemoryStream stream = new MemoryStream())
{
 BinaryFormatter format = new BinaryFormatter();
 format.Serialize(stream,theData);
 outBytes = stream.ToArray();
}

// Create the payload for the composite message.
CompositeMessageBuilder builder;

Utilities

60

// Construct the composite
CompositeMessageBuilder builder = new CompositeMessageBuilder();
builder.append(sb.ToString());
builder.append(outBytes, 0, outBytes.Length);

// send the message

Field outMessage = new Field();
builder.setField(outMessage);

topic = "messages";

byte[] topicBytes =
 System.Text.Encoding.UTF8.GetBytes(topic.ToCharArray());

client.publish(topicBytes, 0, topicBytes.Length,
 outMessage.buffer, 0, outMessage.length);

Parsing Composite Messages
To parse a composite message, create an instance of CompositeMessageParser, then use the
parse() method to parse the message provided by the AMPS client. The CompositeMessagePars-
er gives you access to each part of the message as a sequence of bytes.

For example, the following snippet parses and prints messages that contain a JSON part and a binary part
that contains an array of doubles.

foreach(Message message in client.subscribe("messages"))
{
 int parts = parser.parse(message);
 string json = parser.getString(0);
 Field binary = new Field();
 parser.getField(1, binary);

 List<double> theData = new List<double>();
 using (MemoryStream stream = new MemoryStream())
 {
 BinaryFormatter format = new BinaryFormatter();
 stream.Write(binary.buffer, binary.position, binary.length);
 stream.Seek(0, SeekOrigin.Begin);
 theData = (List<double>)format.Deserialize(stream);
 }

 System.Console.WriteLine("Received message with " + parts + "
 parts");
 System.Console.WriteLine(json);
 foreach (double d in theData)
 {

Utilities

61

 System.Console.Write(d + " ");
 }
 System.Console.WriteLine();
}

Notice that the receiving application is written with explicit knowledge of the structure and content of
the composite message type.

62

Appendix A. Exceptions
The following table details each of the exception types thrown by AMPS.

Table A.1. Exceptions supported in Client and HAClient

Exception When Notes
AlreadyConnectedException Connecting Thrown when connect() is called on

a Client that is already connected.

AMPSException Anytime Base class for all AMPS exceptions.

AuthenticationException Anytime Indicates an authentication failure oc-
curred on the server.

BadFilterException Subscribing This typically indicates a syntax error in
a filter expression.

BadRegexTopicException Subscribing Indicates a malformed regular expression
was found in the topic name.

CommandException Anytime Base class for all exceptions relating to
commands sent to AMPS.

ConnectionException Anytime Base class for all exceptions relating to
the state of the AMPS connection.

ConnectionRefusedException Connecting The connection was actively refused by
the server. Validate that the server is run-
ning, that network connectivity is avail-
able, and the settings on the client match
those on the server.

DisconnectedException Anytime No connection is available when AMPS
needed to send data to the server or the
user's disconnect handler threw an excep-
tion.

InvalidTopicException SOW query A SOW query was attempted on a topic
not configured for SOW on the server.

InvalidTransportOptionsEx-
ception

Connecting An invalid option or option value was
specified in the URI.

InvalidURIException Connecting The URI string provided to connect()
was formatted improperly.

MessageTypeException Connecting The class for a given transport's message
type was not found in AMPS.

MessageTypeNotFoundExcep-
tion

Connecting The message type specified in the URI
was not found in AMPS.

NameInUseException Connecting The client name (specified when instan-
tiating Client) is already in use on the
server.

Exceptions

63

Exception When Notes
RetryOperationException Anytime An error occurred that caused processing

of the last command to be aborted. Try
issuing the command again.

StreamException Anytime Indicates that data corruption has oc-
curred on the connection between the
client and server. This usually indicates
an internal error inside of AMPS -- con-
tact AMPS support.

SubscriptionAlreadyExist-
sException

Subscribing A subscription has been requested using
the same CommandId as another sub-
scription. Create a unique CommandId
for every subscription.

TimedOutException Anytime A timeout occurred waiting for a re-
sponse to a command.

TransportTypeException Connecting Thrown when a transport type is selected
in the URI that is unknown to AMPS.

UnknownException Anytime Thrown when an internal error occurs.
Contact AMPS support immediately.

64

Index
A
AMPSException, 16
assemblies, 7

B
BadRegexTopicException, 18
base class for exceptions, 5

C
commands

sow_and_subscribe, 26
connection parameters, 7

tcp_linger, 7
tcp_nodelay, 7
tcp_rcvbuf, 7
tcp_sndbuf, 7

createFileBacked(), 29
create_memory_backed(), 29

D
DisconnectedException, 19
downloading client, 2

F
failover, 19

G
Global Assembly Cache, 7

I
IDisposable, 5
import statements, 5

M
Method

createMemoryBacked(), 29
create_file_backed(), 29

methods
logon(), 5

P
publish failures, 22

S
setDisconnectHandler() method, 18

SO_LINGER, 7

T
tcp_linger, 7
tcp_nodelay, 7, 7
tcp_rcvbuf, 7
tcp_sndbuf, 7, 7

U
using statement, 5

	AMPS C# Development Guide
	Table of Contents
	Chapter 1. Introduction
	1.1. Prerequisites

	Chapter 2. Installing the AMPS Client
	2.1. Obtaining the Client
	2.2. Test Connectivity to AMPS

	Chapter 3. Your First AMPS Program
	3.1. About the Client Library
	3.2. Connecting to AMPS
	Build and Run
	Examining the Code

	3.3. Connection Strings
	Providing Credentials in a Connection String

	3.4. Connection Parameters
	Transport options

	3.5. Next Steps

	Chapter 4. Subscriptions
	4.1. Subscribing
	4.2. Asynchronous Subscribe Interface
	4.3. Understanding Threading and Message Handlers
	4.4. Unsubscribing
	4.5. Understanding Messages
	Header Properties.
	Getter and Setter Methods.
	Data Property.

	4.6. Advanced Subscriptions
	Regex topics
	Content Filtering
	Updating the Filter on a Subscription

	4.7. Next Steps

	Chapter 5. Error Handling
	5.1. Exceptions
	Exception Types

	5.2. Disconnect Handling
	Using a Heartbeat to Detect Disconnection

	5.3. Unexpected Messages
	5.4. Unhandled Exceptions
	5.5. Detecting Write Failures

	Chapter 6. State of the World
	6.1. Performing SOW Queries
	6.2. SOW and Subscribe
	6.3. Setting Batch Size
	6.4. Managing SOW Contents

	Chapter 7. High Availability
	7.1. Choosing an HAClient Protection Method
	7.2. Connections and the ServerChooser
	7.3. Heartbeats and Failure Detection
	7.4. Considerations for Publishers
	7.5. Considerations for Subscribers
	7.6. Conclusion

	Chapter 8. Advanced Topics
	8.1. C# Client Compatibility
	8.2. Transport Filtering

	Chapter 9. Advanced AMPS Programming: Working With Commands
	9.1. Understanding AMPS Messages
	9.2. Creating and Populating the Command
	9.3. Using execute
	9.4. Command Cookbook
	Publishing
	Basic Publish
	Publish With CorrelationId
	Publish With Explicit SOW Key

	Subscribing
	Basic Subscription
	Basic Subscription With Options
	Content Filtered Subscription
	Bookmark Subscription
	Bookmark Subscription With Content Filter
	Replacing the Filter on a Subscription

	SOW Query
	Basic SOW Query
	Basic SOW With Options
	SOW Query With Ordered Results
	SOW Query With TopN Results
	Content Filtered SOW Query
	Historical SOW Query
	Historical SOW Query With Content Filter
	SOW Query for Specific Records

	SOW and Subscribe
	Basic SOW and Subscribe
	SOW and Subscribe With Options
	Content Filtered SOW and Subscribe
	Historical SOW and Subscribe
	Historical SOW and Subscribe With Content Filter

	Delta Publishing
	Basic Delta Publish
	Delta Publish With CorrelationId
	Delta Publish With Explicit SOW Key

	Delta Subscribing
	Basic Delta Subscription
	Basic Delta Subscription With Options
	Content Filtered Delta Subscription
	Bookmark Delta Subscription
	Bookmark Delta Subscription With Content Filter

	SOW and Delta Subscribe
	Basic SOW and Delta Subscribe
	SOW and Delta Subscribe With Options
	Content Filtered SOW and Delta Subscribe
	Historical SOW and Subscribe
	Historical SOW and Delta Subscribe With Content Filter

	Chapter 10. Utilities
	10.1. Composite Message Types
	Building Composite Messages
	Parsing Composite Messages

	Appendix A. Exceptions
	Index

