
Advanced Message Processing
System (AMPS) Evaluation Guide

Advanced Message Processing System (AMPS) Evaluation Guide
5.0

Publication date May 10, 2016
Copyright © 2016

All rights reserved. 60East, AMPS, and Advanced Message Processing System are trademarks of 60East Technologies, Inc. All other trademarks
are the property of their respective owners.

iii

Table of Contents
1. Introduction to 60East Technologies AMPS ... 1

1.1. Product Overview ... 1
1.2. Software Requirements .. 2
1.3. Document Conventions ... 2
1.4. Obtaining Support .. 3

2. Getting Started ... 6
2.1. Installing AMPS .. 6
2.2. Starting AMPS ... 6
2.3. Admin View of the AMPS Server ... 7
2.4. Interacting with AMPS Using Spark .. 7
2.5. JSON Messages - A Quick Primer .. 7

3. Publish and Subscribe .. 9
3.1. Topics .. 9
3.2. Filtering Subscriptions By Content .. 11

4. State of the World (SOW) .. 13
4.1. How Does the State of the World Work? .. 13
4.2. Queries ... 14
4.3. Configuration ... 14

5. Advanced Topics ... 19
5.1. Event Logging ... 19
5.2. Message Record and Replay ... 19
5.3. Message Queues ... 19
5.4. Conflated Topics ... 20
5.5. View Topics and Aggregation ... 20
5.6. Historical SOW Query ... 20
5.7. Utilities ... 20
5.8. Monitoring Interface .. 21
5.9. High Availability .. 21

6. Next Steps ... 22
6.1. Operation and Deployment ... 22
6.2. Application Development ... 22

Index .. 23

1

Chapter 1. Introduction to 60East
Technologies AMPS

Thank you for choosing the Advanced Message Processing System (AMPS™) from 60East Technologies™. AM-
PS is more than a publish and subscribe system. It is a feature-rich platform that enables you to easily build data
intensive applications that provide previously unattainable low latency and high performance. AMPS combines a set
of capabilities that cut across traditional component divisions. 60East designed the capabilities based on the needs
of some of the most demanding data-intensive applications on the planet, and engineered the capabilities to work
together seamlessly and provide the kind of performance and latency that those applications demand.

1.1. Product Overview
AMPS, the Advanced Message Processing System, is built around an incredibly fast messaging engine that sup-
ports both publish-subscribe messaging and queuing. AMPS combines the capabilities necessary for scalable high-
throughput, low-latency messaging in realtime deployments such as in financial services. AMPS goes beyond basic
messaging to include advanced features such as high availability, historical replay, aggregation and analytics, content
filtering and continuous query, last value caching, focus tracking, and more.

Furthermore, AMPS is designed and engineered specifically for next generation computing environments. The ar-
chitecture, design and implementation of AMPS allows the exploitation of parallelism inherent in emerging mul-
ti-socket, multi-core commodity systems and the low-latency, high-bandwidth of 10Gb Ethernet and faster networks.
AMPS is designed to detect and take advantage of the capabilities of the hardware of the system on which it runs.

AMPS does more than just route and deliver messages. AMPS was designed to lower the latency in real-world
messaging deployments by focusing on the entire lifetime of a message from the message's origin to the time at which
a subscriber takes action on the message. AMPS considers the full message lifetime, rather than just the "in flight"
time, and allows you to optimize your applications to conserve network bandwidth and subscriber CPU utilization
-- typically the first elements of a system to reach the saturation point in real messaging systems.

AMPS offers both topic and content based subscription semantics, which makes it different than most other messag-
ing platforms. Some of the highlights of AMPS include:

• Topic and content based publish and subscribe

• Message queuing, including content-based filtering and configurable strategies for delivery fairness

• Client development kits for popular programming languages such as Java, C#, C++, C and Python

• Built in support for FIX, NVFIX, JSON, BSON, BFlat, Google Protocol Buffer and XML messages. AMPS also
supports uninterpreted binary messages, and allows you to create composite message types from existing message
types.

• State-of-the-World queries

• Historical State-of-the-World queries

• Easy to use command interface

• Full Perl-compatible regular expression matching

• Content filters with SQL92 WHERE clause semantics

Introduction to 60East Technologies AMPS

2

• Built-in latency statistics and client status monitoring

• Advanced subscription management, including delta publish and subscriptions and out-of-focus notifications

• Basic CEP capabilities for real-time computation and analysis

• Aggregation within topics and joins between topics, including joins between different message types

• Replication for high availability

• Fully queryable transaction log

• Message replay functionality

• Fully-integrated authentication and entitlement system, including content-based entitlement for fine-grained con-
trol

• Optional encryption (SSL) between client and server

• Extensibility API for adding message types, user-defined functions, user-specified actions, authentication, and
entitlement functionality

1.2. Software Requirements
AMPS is supported on the following platforms:

• Linux 64-bit (2.6 kernel or later) on x86 compatible processors

While 2.6 is the minimum kernel version supported, AMPS will select the most efficient mechanisms
available to it and thus reaps greater benefit from more recent kernel and CPU versions.

1.3. Document Conventions
This manual is an introduction to the 60East Technologies AMPS product. It assumes that you have a working
knowledge of Linux, and uses the following conventions.

Table 1.1. Documentation Conventions

Construct Usage

text standard document text

code inline code fragment

variable variables within commands or configuration

usage tip or extra information

usage warning

Introduction to 60East Technologies AMPS

3

Construct Usage

required required parameters in parameter tables

optional optional parameters in parameter tables

Additionally, here are the constructs used for displaying content filters, XML, code, command line, and script frag-
ments.

(expr1 = 1) OR (expr2 = 2) OR (expr3 = 3) OR (expr4 = 4) OR (expr5 = 5) OR
(expr6 = 6) OR (expr7 = 7) OR (expr8 = 8)

Command lines will be formatted as in the following example:

 find . -name *.java

1.4. Obtaining Support
For an outline of your specific support policies, please see your 60East Technologies License Agreement. Support
contracts can be purchased through your 60East Technologies account representative.

Support Steps
You can save time if you complete the following steps before you contact 60East Technologies Support:

1. Check the documentation. The problem may already be solved and documented in the User’s Guide or reference
guide for the product. 60East Technologies also provides answers to frequently asked support questions on the
support web site at http://support.crankuptheamps.com.

2. Isolate the problem.

If you require Support Services, please isolate the problem to the smallest test case possible. Capture erroneous
output into a text file along with the commands used to generate the errors.

3. Collect your information.

• Your product version number.

• Your operating system and its kernel version number.

• The expected behavior, observed behavior and all input used to reproduce the problem.

• Submit your request.

• If you have a minidump file, be sure to include that in your email to crash@crankuptheamps.com.

The AMPS version number used when reporting your product version number follows a format listed below. The
version number is composed of the following:

 MAJOR.MINOR.MAINTENANCE.HOTFIX.TIMESTAMP.TAG

http://support.crankuptheamps.com
mailto:crash@crankuptheamps.com

Introduction to 60East Technologies AMPS

4

AMPS Versioning and Certification
Each AMPS version number component has the following breakdown:

Table 1.2. Version Number Components

Component Description Minimum
Verification

MAJOR Increments when there are any backward-incompatible changes in func-
tionality, file formats, client network formats or configuration; or when
deprecated functionality is removed. May introduce major new function-
ality or include internal improvements that introduce major behavioral
changes.

Megacert

MINOR Increments when functionality is added in a backwards-compatible way,
or when functionality is deprecated. May include internal improvements,
including internal improvements that introduce minor behavioral changes
or changes to network formats used only by the AMPS server (such as
replication).

Megacert

MAINTENANCE Increments with standard bug fixing and maintenance. May introduce be-
havioral changes to fix incorrect behavior, to enhance performance, or to
enable a feature to work as intended. May include internal enhancements
that do not introduce behavioral changes.

Kilocert

HOTFIX A release for a critical defect impacting a customer. A hotfix release is
designed to be 100% compatible with the release it fixes (that is, a release
with same MAJOR.MINOR.MAINTENANCE version). May introduce
behavioral changes to fix incorrect behavior. May document previously
undocumented features or extend surface area to improve usability for
existing features.

Cert

TIMESTAMP Proprietary build timestamp. (does not af-
fect verifica-
tion level)

TAG Identifier that corresponds to precise code used in the release. (does not af-
fect verifica-
tion level)

The certification levels are defined in the following table. Notice that, in all cases, 60East will certify at a higher
level if time permits or if a change involves a critical part of AMPS (such as replication or internal utility classes
that are widely used).

Table 1.3. Certification Level Definitions

Certification Level Description Time to Certify

Megacert Performance and long-haul testing.

Full regression suite and stress-testing suite, including replication test-
ing and application scenario tests.

Full unit testing suite, including new unit tests to verify correct behavior
of bugfixes in this release.

less than 2 weeks

Introduction to 60East Technologies AMPS

5

Certification Level Description Time to Certify

Kilocert Full regression suite and stress-testing suite, including replication test-
ing and application scenario tests.

Full unit testing suite, including new unit tests to verify correct behavior
of bugfixes in this release.

less than 1 week

Cert Full unit testing suite, including new unit tests to verify correct behavior
of bugfixes in this release. Replication testing suite if release affects
replication code.

4 hours

Contacting 60East Technologies Support
 Please contact 60East Technologies Support Services according to the terms of your 60East Technologies License
Agreement.

Support is offered through the United States:

Toll-free: (888) 206-1365
International: (702) 979-1323
FAX: (888) 216-8502
Web: http://www.crankuptheamps.com
E-Mail: sales@crankuptheamps.com
Support: support@crankuptheamps.com

http://www.crankuptheamps.com
mailto:sales@crankuptheamps.com
mailto:support@crankuptheamps.com

6

Chapter 2. Getting Started
This chapter is for users who are new to AMPS and want to get up and running on a simple instance of AMPS.
This chapter will walk new users through the file structure of an AMPS installation, configuring a simple AMPS
instance and running the demonstration tools provided as part of the distribution to show how a simple publisher
can send messages to AMPS.

2.1. Installing AMPS
To install AMPS, unpack the distribution for your platform where you want the binaries and libraries to be stored.
For the remainder of this guide, the installation directory will be referred to as $AMPSDIR as if an environment
variable with that name was set to the correct path.

Within $AMPSDIR the following sub-directories listed in Table 2.1.

Table 2.1. AMPS Distribution Directories

Directory Description

bin AMPS engine binaries and utilities

docs Documentation

lib Library dependencies

sdk Include files for the AMPS extension API

AMPS client libraries are available as a separate download from the AMPS web site. See the AMPS
developer page at http://www.crankuptheamps.com/developer to download the latest libraries.

2.2. Starting AMPS
The AMPS Engine binary is named ampServer and is found in $AMPSDIR/bin. Start the AMPS engine with
a single command line argument that includes a valid path to an AMPS configuration file. You use the configura-
tion file to enable and configure the AMPS features that your application will use. This guide discusses the most
commonly-used configuration options for each feature, and the full set of options is described in the AMPS Config-
uration Guide.

The AMPS server can generate a sample configuration file with the --sample-config option. For example, you
can save the sample configuration file to $AMPSDIR/amps_config.xml with the following command line:

$AMPSDIR/bin/ampServer --sample-config > $AMPSDIR/amps_config.xml

Once you have a configuration file saved to $AMPSDIR/amps_config.xml you can start AMPS with that file
as follows:

$AMPSDIR/bin/ampServer $AMPSDIR/amps_config.xml

The sample configuration file generated by AMPS includes a very minimal configuration. The client evaluation kits
include a sample configuration file that sets up AMPS to work with the samples, and the AMPS Configuration Guide
contains a full description of the configuration items with sample configuration snippets.

http://www.crankuptheamps.com/developer

Getting Started

7

AMPS uses the current working directory for storing files (logs and persistence) for any relative paths
specified in the configuration. While this is important for real deployments, the demo configuration
used in this chapter does not persist anything, so you can safely start AMPS from any working directory
using this configuration.

On older processor architectures, ampServer will start the ampServer-compat binary. The am-
pServer-compat binary avoids using hardware instructions that are not available on these systems.

You can also set the AMPS_PLATFORM_COMPAT environment variable to force ampServer to start
the ampServer-compat binary. 60East recommends using this option only on systems that do not
support the hardware instructions used in the standard binary. The ampServer-compat binary will
not perform as well as ampServer, since it uses fewer hardware optimizations.

If your first start-up is successful, you should see AMPS display a simple message similar to the following to let
you know that your instance has started correctly.

AMPS 5.0.X.X.973814.e1a57f7 - Copyright (c) 2006-2016 60East Technologies
 Inc.
(Built: 2015-02-15T00:26:45Z)
For all support questions: support@crankuptheamps.com

If you see this, congratulations! You have successfully cranked up the AMPS!

2.3. Admin View of the AMPS Server
When AMPS has been started correctly, you can get an indication as to whether AMPS is running or not by connecting
to its admin port with a browser at http://<host>:<port> where <host> is the host the AMPS instance is
running on and <port> is the administration port configured in the configuration file.

When successful, a hierarchy of information regarding the instance will be displayed. If you've started AMPS using
the sample configuration file, try connecting to http://localhost:8085/amps. For more information on the
monitoring capabilities, please see the AMPS Monitoring Reference Guide, available from the 60East documentation
site at http://docs.crankuptheamps.com/.

2.4. Interacting with AMPS Using Spark
AMPS provides the spark utility as a command line interface to interacting with an AMPS server. spark provides
many of the capabilities of the AMPS client libraries through this interface. The utility lets you execute commands
like 'subscribe', 'publish', 'sow', 'sow_and_subscribe' and 'sow_delete'.

You can read more about spark in the spark chapter of the AMPS User Guide. Other useful tools for troubleshoot-
ing AMPS are described in the AMPS Utilities Guide.

2.5. JSON Messages - A Quick Primer
AMPS includes support for a wide variety of message types, as well as the ability to develop custom message types
and to send binary payloads. This section focuses on JSON as the main message type used for samples in this guide.
We use JSON for the guide because the format is simple, easily readable, and already in use in many environments.

Getting Started

8

JSON format is a simple, standardized message format. JSON has two basic constructs:

• objects that consist of key / value pairs

• arrays of values

JSON supports hierarchical construction: the value for a key can be a single value, an array of values, or another set
of key/value pairs. For example, the following JSON message includes two nested sets of key value pairs. Notice
that a key only needs to be unique within each set of values -- the name value for the ship does not conflict with
the name value for the character.

{ "id" : 73,
 "character" :
 { "name" : "Han Solo",
 "occupation" : "smuggler",
 "ship" :
 { "name" : "Millennium Falcon",
 "speed" : ".5 past light speed",
 "cargo" :
 ["widgets", "baskets", "spice"]
 }
 }
}

Many AMPS applications use JSON as the payload. In addition, the amps protocol used by most AMPS applications
represents commands to AMPS in a JSON-format header. For example, a publish command might look like:

{"c":"publish","t":"test-topic"}{ "id" : 1, "message" : "Hello, World!" }

The command to AMPS, using the amps protocol, is a JSON document which contains the header information for
AMPS -- in this case, a publish to the topic test-topic. The header is followed by the message body, the
payload of the command.

While the amps protocol is implemented as JSON, you can use any message type with the amps protocol: the header
for the command will still be JSON, while the body can be in the message type of your choice, as in the sample
below, which publishes to an XML topic:

{ "c":"publish","t":"xml-topic"}<example><id>1</id><message>Hello, world!</
message></example>

The AMPS client libraries create and parse AMPS headers. For example, the publish method in the AMPS client
libraries creates the appropriate header for a publish command based on the provided parameters.

Your applications use the Message and Command interfaces of the AMPS client libraries to work with the AMPS
headers. There is no need for your application to parse or serialize the AMPS headers directly.

The AMPS client libraries handle creating and parsing AMPS headers. They do not parse or interpret
the payload data on received Message, instead returning the payload as a string.

9

Chapter 3. Publish and Subscribe
AMPS is a publish and subscribe message delivery system, which routes messages from publishers to subscribers.
“Pub/Sub” systems, as they are often called, are a key part of most enterprise message buses, where publishers
broadcast messages without necessarily knowing all of the subscribers that will receive them. This decoupling of the
publishers from the subscribers allows maximum flexibility when adding new data sources or consumers.

PUBLISHER
Topic: LN_ORDERS

Ticker: IBM|Price:125

SUBSCRIBER
Topic: LN_ORDERS

AMPS

SUBSCRIBER
Filter: Ticker = = "MSFT"

SUBSCRIBER 2
Filter: Ticker = = "IBM"

Figure 3.1. Publish and Subscribe

AMPS can route messages from publishers to subscribers using a topic identifier and/or content within the message's
payload. For example, in Figure 3.1, there is a Publisher sending AMPS a message pertaining to the LN_ORDERS
topic. The message being sent contains information on Ticker “IBM” with a Price of 125, both of these properties are
contained within the message payload itself (i.e., the message content). AMPS routes the message to Subscriber 1
because it is subscribing to all messages on the LN_ORDERS topic. Similarly, AMPS routes the message to Subscriber
2 because it is subscribed to any messages having the Ticker equal to “IBM”. Subscriber 3 is looking for a different
Ticker value and is not sent the message.

3.1. Topics
A topic is a string that is used to declare a subject of interest for purposes of routing messages between publishers
and subscribers. Topic-based Publish and-Subscribe (e.g., Pub/Sub) is the simplest form of Pub/Sub filtering. All
messages are published with a topic designation to the AMPS engine, and subscribers will receive messages for
topics to which they have subscribed.

Publish and Subscribe

10

PUBLISHER 1
Topic: LN_ORDERS

PUBLISHER 2
Topic: NY_ORDERS

AMPS

SUBSCRIBER 1
Topic: LN_ORDERS

SUBSCRIBER 3
Topic: NY_ORDERS

SUBSCRIBER 2
Topic: .*_ORDERS

Figure 3.2. Topic Based Pub/Sub

For example, in Section 3.1, there are two publishers: Publisher 1 and Publisher 2 which publish to the topics
LN_ORDERS and NY_ORDERS, respectively. Messages published to AMPS are filtered and routed to the subscribers
of a respective topic. For example, Subscriber 1, which is subscribed to all messages for the LN_ORDERS topic
will receive everything published by Publisher 1. Subscriber 2, which is subscribed to the regular expression topic
".*_ORDERS" will receive all orders published by Publisher 1 and 2.

Regular expression matching makes it easy to create topic paths in AMPS. Some messaging systems require a spe-
cific delimiter for paths. AMPS allows you the flexibility to use any delimiter. However, 60East recommends using
characters that do not have significance in regular expressions, such as forward slashes. For example, rather than
using northamerica.orders as a path, use northamerica/orders.

AMPS does not restrict the characters that can be present in a topic name. However, notice that topic names that
contain regular expression characters (such as . or *) will be interpreted as regular expressions by default, which
may cause unexpected behavior.

Topics that begin with /AMPS are reserved. The AMPS server publishes messages to topics that begin with /AMPS
as described in ???. Some versions of the AMPS client libraries may internally publish to /AMPS/devnull. Your
applications should not publish to topics that begin with /AMPS, and publishes to those topics may fail.

Regular Expressions
With AMPS, a subscriber can use a regular expression to simultaneously subscribe to multiple topics that match
the given pattern. This feature can be used to effectively subscribe to topics without knowing the topic names in
advance. Note that the messages themselves have no notion of a topic pattern. The topic for a given message is
unambiguously specified using a literal string. From the publisher’s point of view, it is publishing a message to a
topic; it is never publishing to a topic pattern.

Publish and Subscribe

11

Subscription topics are interpreted as regular expressions if they include special regular expression characters. Oth-
erwise, they must be an exact match. Some examples of regular expressions within topics are included in Table 3.1.

Table 3.1. Topic Regular Expression Examples

Topic Behavior

^trade$ matches only “trade”.

^client.* matches “client”, “clients”, “client001”, etc.

.*trade.* matches “NYSEtrades”, “ICEtrade”, etc.

For more information regarding the regular expression syntax supported within AMPS, please see the Regular Ex-
pression chapter in the AMPS User Guide.

AMPS can be configured to disallow regular expression topic matching for subscriptions. See the AMPS Configu-
ration Guide for details.

3.2. Filtering Subscriptions By Content
One thing that differentiates AMPS from classic messaging systems is its ability to route messages based on message
content. Instead of a publisher declaring metadata describing the message for downstream consumers, the publisher
can simply publish the message content to AMPS and let AMPS examine the native message content to determine
how best to deliver the message.

The ability to use content filters greatly reduces the problem of oversubscription that occurs when topics are the only
facility for subscribing to message content. The topic space can be kept simple and content filters used to deliver
only the desired messages. The topic space can reflect broad categories of messages and does not have to be polluted
with metadata that is usually found in the content of the message. In addition, many of the advanced features of
AMPS such as out-of-focus messaging, aggregation, views, and SOW topics rely on the ability to filter content.

Content-based messaging is somewhat analogous to database queries that include a WHERE clause. Topics can be
considered tables into which rows are inserted (or updated). A subscription is similar to issuing a SELECT from
the topic table with a WHERE clause to limit the rows which are returned. Topic-based messaging is analogous to a
SELECT on a table with no limiting WHERE clause.

AMPS uses a combination of XPath-based identifiers and SQL-92 operators for content filtering. Some examples
are shown below:

Example Filter for a JSON message
(/Order/Instrument/Symbol == 'IBM') AND
(/Order/Px >= 90.00 AND /Order/Px < 91.00)

Example Filter for an XML Message:

 (/FIXML/Order/Instrmt/@Sym == 'IBM') AND (/FIXML/Order/@Px
 >= 90.00 AND /FIXML/Order/@Px < 91.0)

Publish and Subscribe

12

Example Filter for a FIX Message:

 /35 < 10 AND /34 == /9

For more information about how content is handled within AMPS, check out the Content Filtering chapter in the
AMPS User Guide.

Unlike some other messaging systems, AMPS lets you use a relatively small set of topics to categorize
messages at a high level and use content filters to retrieve specific data published to those topics. Ex-
amples of good, broad topic choices:

trades, positions, MarketData, Europe, alerts

This approach makes it easier to administer AMPS, easier for publishers to decide which topics to
publish to, and easier for subscribers to be sure that they've subscribed to all relevant topics.

13

Chapter 4. State of the World (SOW)
One of the core features of AMPS is the ability to persist the most recent update for each message matching a topic.
The State of the World can be thought of as a database where messages published to AMPS are filtered into topics,
and where the topics store the latest update to a message. Since AMPS subscriptions are based on the combination
of topics and filters, the State of the World (SOW) gives subscribers the ability to quickly resolve any differences
between their data and updated data in the SOW by querying the current state of a topic, or a set of messages inside
a topic.

4.1. How Does the State of the World Work?
Much like a relational database, AMPS SOW topics contain the ability to persist the most recent update for each
message. AMPS identifies a message by using a unique key for the message. The SOW key for a message is similar
to the primary key in a relational database: each value of the key is a unique message. The first time a message
is received with a particular SOW key, AMPS adds the message to the SOW. Subsequent messages with the same
SOW key value update the message.

AMPS assigns a SOW key based on the content of the message. The fields to use for the key are specified in the
SOW topic definition, and consist of one or more XPath expressions. AMPS finds the specified fields in the message
and computes a SOW key based on the name of the topic and the values in these fields.

The following diagrams demonstrate how the SOW works.

MSFT
IBM

Price

30
120

key=1;symbol=MSFT;price=30

key=2;symbol=IBM;price=120

ORDERS

Symbol1

2

Key

1
2

Figure 4.1. A SOW topic named ORDERS with a key definition of /Key

In Figure 4.1, two messages are published where neither of the messages have matching keys existing in the ORDERS
topic, the messages are both inserted as new messages. Some time after these messages are processed, an update
comes in for the MSFT order changing the price from 30 to 35. Since the MSFT order update has a key field of 1,
this matches an existing record and overwrites the existing message containing the same key, as seen in Figure 4.2.

State of the World (SOW)

14

MSFT
IBM

Price

30 35
120

key=1;symbol=MSFT;price=35

ORDERS

Symbol3 Key

1
2

Figure 4.2. Updating the MSFT record by matching incoming message keys

By default, state of the world topics are persistent. For persistent topics, AMPS stores the contents of the state of
the world in a dedicated, memory-mapped file. This means that the total state of the world does not need to fit into
memory, and that the contents of the state of the world database are maintained across server restarts. You can also
define a transient state of the world topic, which does not store the contents of the SOW to a persisted file.

The state of the world file is separate from the transaction log, and you do not need to configure a transaction log
to use a SOW. When a transaction log is present that covers the SOW topic, on restart AMPS uses the transaction
log to keep the SOW up to date. When the latest transaction in the SOW is more recent than the last transaction in
the transaction log (for example, if the transaction log has been deleted), AMPS takes no action. If the transaction
log has newer transactions than the SOW, AMPS replays those transactions into the SOW to bring the SOW file up
to date. If the SOW file is missing or damaged, AMPS rebuilds the state of the world by replaying the transaction
log from the beginning of the log.

When the state of the world is transient, AMPS does not store the state of the world across restarts. In this case,
AMPS does not synchronize the state of the world with the transaction log when the server starts. Instead, AMPS
tracks the state of the world for messages that occur while the server is running, without replaying previous messages
into the SOW.

4.2. Queries
At any point in time, applications can issue SOW queries to retrieve all of the messages that match a given topic
and content filter. When a query is executed, AMPS will test each message in the SOW against the content filter
specified and all messages matching the filter will be returned to the client. The topic can be a literal topic name
or a regular expression pattern. For more information on issuing queries, please see the SOW Queries chapter in
the AMPS User Guide.

4.3. Configuration
Topics where SOW persistence is desired can be individually configured within the SOW section of the configuration
file. Each topic will be defined with a Topic section enclosed within SOW. The AMPS Configuration Reference
contains a description of the attributes that can be configured per topic. TopicMetaData is a synonym for SOW
provided for compatibility with previous versions of AMPS. Likewise, TopicDefinition is a synonym for the
Topic element of the SOW section, provided for compatibility with versions of AMPS prior to 5.0.

State of the World (SOW)

15

Table 4.1. SOW/Topic

Element Description

FileName The file where the State of the World (SOW) data will be stored.

This element is required for SOW topics with a Durability of persistent (the
default) because those topics are persisted to the filesystem. This is not required for
SOW topics with a durability of transient.

MessageType Type of messages to be stored. To use AMPS generated SOW keys, the message type
specified must support content filtering so that AMPS can determine the SOW key for
the message. All of the default message types, except binary, support content filtering.
Since the binary message type does not support content filtering, that type can only
be used for a SOW when publishers use explict keys.

See the "Message Types" chapter in the AMPS User Guide for a discussion of the mes-
sage types that AMPS loads by default. Some message types (such as Google Protocol
Buffers) require additional configuration, and must be configured before using the mes-
sage type in a SOW topic.

Name The name of the SOW topic - all unique messages (see Key) on this topic will be stored
in a topic-specific SOW database.

If no Name is provided, AMPS accepts Topic as a synonym for Name to provide
compatibility with versions of AMPS previous to 5.0.

Key Specifies an XPath within each message that AMPS will use to determine whether a
message is unique. This element can be specified multiple times to create a composite
key.

A SOW topic can have either a key determined by AMPS, or publishers can provide
the SOW key for a message with each message. 60East recommends having AMPS
determine the key unless your application has specific needs that make this impractical.

AMPS automatically creates a hash index for the SOW key.

HashIndex AMPS provides the ability to do fast lookup for SOW records based on specific fields.

When one or more HashIndex elements are provided, AMPS creates a hash index for
the fields specified in the element. These indexes are created on startup, and are kept up
to date as records are added, removed, and updated.

The HashIndex element contains a Key element for each field in the hash index.

AMPS uses a hash index when a query uses a exact matching for all of the fields in the
index. AMPS does not use hash indexes for range queries or regular expressions.

AMPS automatically creates a hash index for the SOW key.

RecoveryPoint For SOW topics that are covered by the transaction log, the point from which to recover
the SOW if the SOW file is removed, or if the SOW topic has transient duration.

This configuration item allows two values:

• epoch recovers the SOW from the beginning of the transaction log

• now recovers the SOW from the current point in the transaction log

State of the World (SOW)

16

Element Description
Defaults to epoch.

Index AMPS supports the ability to precreate memo indexes for specific fields using the In-
dex configuration option.

When one or more Index elements are provided, AMPS creates memo indexes for any
field specified in an Index element on startup, before a query that uses that field runs.
Otherwise, AMPS indexes each field the first time a query uses the field. Adding one or
more Index configurations to a SOW/Topic can improve retrieval performance the
first time a query that contains the indexed fields runs for large SOW topics.

SlabSize The size of each allocation for the SOW file, as a number of bytes. When AMPS needs
more space for the SOW, it requests this amount of space from the operating system.
This effectively sets the maximum message size that AMPS guarantees can be stored
in the SOW.

60East recommends setting this value only if you will be storing messages larger than
the default SlabSize or if performance or capacity testing indicates a need to tune
SOW performance. If you plan to store messages larger than the default setting, 60East
recommends a starting value of several times the maximum message size. For example,
if your maximum message size is 2MB, a good starting point for SlabSize would
be 8MB.

If it becomes necessary to tune the SlabSize, see the Best Practices and Capacity
Planning sections of the AMPS User Guide for a full discussion tuning the SlabSize.

Default: 1MB

InitialSlabCount The number of SOW slabs that AMPS will allocate on startup.

Default: 1

Maximum: 1024

Expiration Time for how long a record should live in the SOW database for this topic. The expiration
time is stored on each message, so changing the expiration time in the configuration file
will not affect the expiration of messages currently in the SOW.

AMPS accepts interval values for the Expiration, using the interval format described in
the AMPS Configuration Guide section on units, or one of the following special values:

• A value of disabled specifies that AMPS will not process SOW expiration for
this topic, regardless of any expiration value set on the message. In this case, AMPS
saves the expiration for the message, but does not process it. The value must be set to
disabled (the default) if History is enabled for this topic.

• A value of enabled specifies that AMPS will process SOW expiration for this topic,
with no expiration set by default. Instead, AMPS uses the value set on the individual
messages (with no expiration set for messages that do not contain an expiration value).

Default: disabled (never expire)

KeyDomain The seed value for SowKeys used within the topic. The default is the topic name, but
it can be changed to a string value to unify SowKey values between different topics.

State of the World (SOW)

17

Element Description
For example, if your application has a ShippingAddress SOW and a CreditRat-
ing SOW that both use /customerID as the SOW key, you can use a KeyDomain
to ensure that the generated SowKey for a given /customerId is identical for both
SOW topics. This does not affect how AMPS processes the SOW topics, but can make
correlating information from different SOW topics easier in your application.

Default: the name of the SOW topic

Durability Defines the data durability of a SOW topic. SOW databases listed as persistent
are stored to the file system, and retain their data across instance restarts. Those listed
as transient are not persisted to the file system, and are reset each time the AMPS
instance restarts.

Default: persistent

Valid values: persistent or transient

Synonyms: Duration is also accepted for this parameter for backward compatibility
with configuration prior to 4.0.0.1

History Enable historical query for this SOW. This element contains a Window and Granu-
larity element. When the History element is present, historical query is enabled
for this sow. Otherwise, AMPS does not enable historical query and does not store the
historical state of the SOW.

Expiration must be disabled when History is enabled.

Window For a historical SOW, the length of time to store history. For example, when the value
is 1w, AMPS will store one week of history for this SOW.

Used within the History element.

Default: By default, AMPS does not expire historical SOW data.

Granularity For a historical SOW, the granularity of the history to store. For many applications, it is
not necessary for AMPS to store all of the updates to the SOW. This parameter sets the
resolution at which AMPS will save the state of a message.

For example, when you set a granularity of 1m, AMPS will save the state of the message
no more frequently than once per minute, even when the state of the message is updated
several times a minute.

Used within the History element.

DEPRECATED:

RecordSize

This parameter is deprecated beginning in AMPS 5.0. Use the SlabSize parameter
instead. Size (in bytes) of a SOW record for this topic.

Default: 512

DEPRECATED:

InitialSize

This parameter is deprecated beginning in AMPS 5.0. Use the InitialSlabCount
parameter instead.Initial size (in records) of the SOW database file for this topic.

Default: 2048

DEPRECATED:

IncrementSize

This parameter is deprecated beginning in AMPS 5.0. Use the SlabSize parameter
instead. Number of records to expand the SOW database (for this topic) by when more
space is required.

State of the World (SOW)

18

Element Description
Default: 1000

The listing in Example 4.1 is an example of using Topic to add a SOW topic to the AMPS configuration. One
topic named ORDERS is defined as having key /invoice, /customerId and MessageType of json. The
persistence file for this topic be saved in the sow/ORDERS.json.sow file. For every message published to the
ORDERS topic, a unique key will be assigned to each record with a unique combination of the fields /invoice
and /customerId. A second topic named ALERTS is also defined with a MessageType of xml keyed off of /
client/id. The SOW persistence file for ALERTS is saved in the sow/ALERTS.xml.sow file.

<SOW>
 <Topic>
 <Name>ORDERS</Name>
 <FileName>sow/%n.sow</FileName>
 <Key>/invoice</Key>
 <Key>/customerId</Key>
 <MessageType>json</MessageType>
 <SlabSize>1MB</SlabSize>
 <HashIndex>
 <Key>/region</Key>
 </HashIndex>
 </Topic>

 <Topic>
 <Name>ALERTS</Name>
 <FileName>sow/%n.sow</FileName>
 <Key>/alert/id</Key>
 <MessageType>xml</MessageType>
 </Topic>
</SOW>

Example 4.1. Sample SOW configuration

Topics are scoped by their message type.

For example, two topics named Orders can be created one which supports MessageType of json
and another which supports MessageType of xml.

Each of the MessageType entries that are defined for the Orders topic will require that Transport
in the configuration file can accept messages of that type. Otherwise, there is no way for a publisher
to publish messages of that type to this instance or for a subscriber to receive messages of that type
from this instance.

This means that messages published to the Orders topic must know the type of message they are
sending (json or xml) and the port defined by the transport.

19

Chapter 5. Advanced Topics
While there is much more content beyond the scope of this document, AMPS provides many of the following addi-
tional utilities and guides for you to learn about the many feature of AMPS.

5.1. Event Logging
AMPS provides a rich logging framework that supports logging to many different targets including the console,
syslog, and files. Every error and event message within AMPS is uniquely identified and can be filtered out or
explicitly included in the logger output. The AMPS User Guide describes the AMPS logger configuration and the
unique settings for each logging target.

5.2. Message Record and Replay
AMPS supports a fully-queryable transaction log. You can configure the transaction log to keep a journal of incoming
messages for one or more topics, and then replay those messages, in order, from any point in time. This capability is
often used for historical analysis or backtesting. In addition, this capability can be used to provide high availability,
ensuring that clients do not miss messages in a message stream even if the client fails while processing messages.

The AMPS clients provide resumable subscription capability that works with the transaction log. Using this capa-
bility, you can create applications that ensure that clients never miss a message, even if the client is shut down and
restarted.

5.3. Message Queues

AMPS includes high performance queuing built on the AMPS messaging engine and transaction log. AMPS message
queues combine elements of classic message queuing with the advanced messaging features of AMPS, including
content filtering, aggregation and projection, historical replay, and so on. The Message Queues chapter in the AMPS
User Guide presents an overview of message queues.

AMPS message queues help you easily solve some common messaging problems:

• Ensuring that a message is only processed once

• Distributing tasks across workers in a fair manner

• Ensuring that a message is delivered to and processed by a worker

• Ensuring that when a worker fails to process a message, that message is redelivered

While it's possible to create applications with these properties by using the other features of AMPS, message queues
provide these functions built into the AMPS server. In addition, message queues allow you to:

• Replicate messages between AMPS instances while preserving delivery guarantees

• Create views and aggregates based on the current contents of a queue

• Filter messages into and out of a queue

Advanced Topics

20

• Provide a single published message to multiple queues

• Aggregate multiple topics into a single queue

Use message queues when you need to ensure that a message is processed by a single consumer. When you need to
distribute messages to a number of consumers, use the AMPS pub/sub delivery model.

The AMPS client libraries, starting in version 5.0, are queue-aware and contain features to make it easier to work
with queues and create the application behavior that you need. See the Developer Guide for the client library of your
choice for details on how to use these features.

5.4. Conflated Topics

To further reduce network bandwidth consumption, AMPS supports a form of SOW topic called a “conflated topic.”
A conflated topic is a copy of one SOW topic into another with the ability to control the update interval. Changes
to a message that occur between updates are conflated into a single message that represents the current state of the
message.

To better see the value in a conflated topic, imagine a SOW topic called ORDER_STATE exists in an AMPS instance.
ORDER_STATE messages are published frequently to the topic. Meanwhile, there are several subscribing clients
that are watching updates to this topic and displaying the latest state in a GUI front-end.

If this GUI front-end only needs updates in five second intervals from the ORDER_STATE topic, then more fre-
quent updates would be wasteful of network and client-side processing resources. To reduce network congestion, a
conflating topic replica of the ORDER_STATE topic can be created which will contain a copy of ORDER_STATE
updated in five second intervals. Only the changed records from ORDER_STATE will be copied to the conflating
replica topic and then sent to the subscribing clients. Those records with multiple updates within the time interval
will have their latest updated values sent during replication, resulting in substantial savings in bandwidth for single
records with high update rates.

5.5. View Topics and Aggregation
AMPS contains a high-performance aggregation engine, which can be used to project one topic onto another, similar
to the CREATE VIEW functionality found in most RDBMS software. Views can JOIN multiple topics together,
including topics with different message types.

5.6. Historical SOW Query
AMPS allows you to configure a SOW topic to retain the historical state of the SOW, on a configurable
granularity.You can then query for the state of the SOW at a point in time, and retrieve results from the saved state.

5.7. Utilities
AMPS provides several utilities that are not essential to message processing, but can be helpful in troubleshooting or
tuning an AMPS instance. The User Guide and Utility Reference describe these utilities in detail. The utilities include:

Advanced Topics

21

• A command-line client, spark, as a useful tool for diagnostics, such as checking the contents of a SOW topic.
The spark client can also be used for simple scripting to run queries, place subscriptions, and publish data.

• ampserr is used to expand and examine error messages that may be observed in the logs. This utility allows a
user to input a specific error code, or a class of error codes, examine the error message in more detail, and where
applicable, view known solutions to similar issues.

• amps_sow_dump is used to inspect the contents of a SOW topic store.

• amps_journal_dump is used to examine the contents of an AMPS journal file during debugging and program
tuning.

More information about each of these utilities, including usage and examples, can be found in the AMPS Utilities
User Guide.

5.8. Monitoring Interface
AMPS provides a monitoring interface which contains information about the state of the host system (CPU, memory,
disk and network) as well as statistics about the state of the AMPS instance it is monitoring (clients, SOW state,
Journal State and more). AMPS provides this information through a RESTful interface for ease of integration into
existing enterprise monitoring systems.

AMPS can also record statistics in a persistent SQLite database, which can be queried using the standard SQLite
toolset.

More information about the monitoring system provided in AMPS can be found in the AMPS Monitoring Reference
Guide. More information about the statistics database is provided in the Statistics Database Reference.

5.9. High Availability
The High Availability chapter in the AMPS User Guidewill showcase the powerful High Availability features that
AMPS provides. This chapter describes how to use the AMPS transaction log and AMPS replication to provide
failover strategies and high availability guarantees.

The AMPS approach to high availablilty

22

Chapter 6. Next Steps
Now that you understand the basics of how AMPS works, you have two potential paths forward in your usage of
the product:

• On one path, you may want to learn how to configure, deploy, and administer your own instance of AMPS. For
this path, see the User Guide, which provides complete information for system administrators who are responsible
for the deployment, availability and management of data to other users.

• Alternatively, you may need to develop an application to work with AMPS, using one of the Developer Guides
for Java, Python, C++, or C#. For this path, download one of the evaluation kits from the AMPS developer page
at http://www.crankuptheamps.com/developer.

The following sections provide more information about each of these paths and also briefly describes some use cases
for AMPS.

6.1. Operation and Deployment
In preparing to deploy your instance of AMPS, you must size your host environment according to multiple dimen-
sions: memory, storage, CPU, and network. The “Operation and Deployment” chapter in the AMPS User Guide pro-
vides guidelines and best practices for configuring the host environment. The chapter also specifies recommended
settings for running AMPS on a Linux operating system.

6.2. Application Development
Each language-specific Development Guide explains how to install, configure, and develop applications that use
AMPS. In order to develop applications using an AMPS client, you must understand the basic concepts of AMPS,
such as topics, subscriptions, messages and SOW.

You will also need an installed and running AMPS server to use the product. Although you can type and compile
programs that use AMPS without a running server, you will get the most benefit by running the programs against a
working server. An evaluation version of AMPS is available from http://www.crankuptheamps.com/evaluate.

http://www.crankuptheamps.com/developer
http://www.crankuptheamps.com/evaluate

23

Index
Symbols
60East Technologies, 5

A
Admin view, 7
AMPS

installation, 6
logging, 19
starting, 6
state, 13
Topic Replicas, 20
topics, 9
transaction log, 19
utilities, 20
Views, 20

ampServer-compat, 7
AMPS_PLATFORM_COMPAT, 7
Availability, 21

C
Caching, 13
compatibility

with previous versions, 4

F
FileName

SOW/Topic, 15

H
High availability, 21
Highlights, 1
historical SOW

enabling, 17

I
installation, 6

J
JSON messages, 7

L
Last value cache, 13
Logging, 19

M
message expiration, 16
message queues, 19
message replay, 19
Monitoring Interface, 21

O
Operating systems, 2
overview, 1

P
Platforms, 2
Pub/sub, 9
Publish, 9
Publish and subscribe, 9

Q
queues, 19

R
Regular expressions, 10

topics, 10
Replication, 21

S
SOW, 13

configuration, 14
queries, 14
rebuilding from transaction log, 14
topic definition, 14

spark utility, 7
starting, 6
State of the World (SOW), 13
storage, 13
Subscribe, 9
Support, 3

channels, 5
technical, 3

Supported platforms, 2

T
Technical support, 3
Topic Replicas, 20
TopicDefinition

synonym for Topic, 14
Topics

intro, 9
regular expressions, 10

Transactions, 21

U
Utilities, 20

ampserr, 20
amps_journal_dump, 20
amps_sow_dump, 20

V
version numbers, 4

Index

24

Views, 20

	Advanced Message Processing System (AMPS) Evaluation Guide
	Table of Contents
	Chapter 1. Introduction to 60East Technologies AMPS
	1.1. Product Overview
	1.2. Software Requirements
	1.3. Document Conventions
	1.4. Obtaining Support
	Support Steps
	AMPS Versioning and Certification
	Contacting 60East Technologies Support

	Chapter 2. Getting Started
	2.1. Installing AMPS
	2.2. Starting AMPS
	2.3. Admin View of the AMPS Server
	2.4. Interacting with AMPS Using Spark
	2.5. JSON Messages - A Quick Primer

	Chapter 3. Publish and Subscribe
	3.1. Topics
	Regular Expressions

	3.2. Filtering Subscriptions By Content

	Chapter 4. State of the World (SOW)
	4.1. How Does the State of the World Work?
	4.2. Queries
	4.3. Configuration

	Chapter 5. Advanced Topics
	5.1. Event Logging
	5.2. Message Record and Replay
	5.3. Message Queues
	5.4. Conflated Topics
	5.5. View Topics and Aggregation
	5.6. Historical SOW Query
	5.7. Utilities
	5.8. Monitoring Interface
	5.9. High Availability

	Chapter 6. Next Steps
	6.1. Operation and Deployment
	6.2. Application Development

	Index

