
AMPS C/C++ Development Guide

AMPS C/C++ Development Guide
5.0

Publication date May 10, 2016
Copyright © 2016

All rights reserved. 60East, AMPS, and Advanced Message Processing System are trademarks of 60East Technologies, Inc. All other trademarks
are the property of their respective owners.

iii

Table of Contents
1. Introduction ... 1

1.1. Prerequisites .. 1
1.2. C & C++ Support Matrix .. 1

2. Installing the AMPS Client ... 2
2.1. Obtaining the Client .. 2
2.2. Explore the client ... 2
2.3. Build the Client ... 2
2.4. Test Connectivity to AMPS .. 3

3. Your First AMPS Program ... 4
3.1. Connecting to AMPS .. 4
3.2. Using the C client .. 6
3.3. Connection Strings ... 9
3.4. Connection Parameters .. 10
3.5. Next steps ... 11

4. Subscriptions .. 12
4.1. Subscribing .. 12
4.2. Asynchronous Message Processing Interface ... 13
4.3. Understanding Threading and Message Handlers .. 15
4.4. Unsubscribing .. 15
4.5. Understanding messages .. 16
4.6. Advanced Messaging Support ... 17
4.7. Next steps ... 18

5. Error Handling .. 19
5.1. Exceptions ... 19
5.2. Disconnect Handling ... 21
5.3. Unexpected Messages .. 23
5.4. Unhandled Exceptions ... 24
5.5. Detecting Write Failures .. 24

6. State of the World ... 26
6.1. Performing SOW Queries ... 26
6.2. SOW and Subscribe .. 27
6.3. Setting Batch Size .. 30
6.4. Client-Side Conflation ... 31
6.5. Managing SOW Contents ... 31

7. Using Queues ... 33
7.1. Backlog and Smart Pipelining ... 33

8. Delta Publish and Subscribe .. 36
8.1. Introduction ... 36
8.2. Delta Subscribe .. 36
8.3. Delta Publish ... 36

9. High Availability ... 38
9.1. Choosing an HAClient Protection Method ... 38
9.2. Connections and the ServerChooser ... 39
9.3. Heartbeats and Failure Detection ... 40
9.4. Considerations for Publishers .. 40
9.5. Considerations for Subscribers .. 42
9.6. Conclusion .. 45

10. AMPS Programming: Working with Commands ... 46
10.1. Understanding AMPS Messages .. 46
10.2. Creating and Populating the Command ... 46
10.3. Using execute ... 47

AMPS C/C++ Development Guide

iv

10.4. Command Cookbook ... 48
11. Utilities .. 67

11.1. Composite Message Types .. 67
11.2. NVFIX Messages .. 68
11.3. FIX Messages ... 70

12. Advanced Topics ... 73
12.1. Transport Filtering ... 73

13. Performance Tips and Best Practices ... 74
13.1. Measure Performance and Set Goals .. 74
13.2. Simplify Message Format and Contents .. 75
13.3. Use Content Filtering Where Possible ... 75
13.4. Use Asychronous Message Processing .. 75
13.5. Use Hash Indexes Where Possible ... 76
13.6. Use a Failed Write Handler and Exception Listener ... 76
13.7. Reduce Bandwidth Requirements ... 76
13.8. Limit Unnecessary Copies .. 77
13.9. Manage Publish Stores ... 78
13.10. Work with 60East as Necessary ... 78

A. Exceptions ... 79

1

Chapter 1. Introduction
This document explains how to use the C/C++ client for AMPS. Use this document to learn how to install, configure,
develop C and C++ applications that use AMPS.

1.1. Prerequisites
Before reading this book, it is important to have a good understanding of the following topics:

• Developing in C or C++. To be successful using this guide, you will need to possess a working knowledge of
C or C++.

• AMPS concepts. Before reading this book, you will need to understand the basic concepts of AMPS, such as
topics, subscriptions, messages, and SOW. Consult the AMPS Users' Guide to learn more about these topics before
proceeding.

You will need an installed and running AMPS server to use the product as well. You can write and compile programs
that use AMPS without a running server, but you will get the most out of this guide by running the programs against
a working server.

1.2. C & C++ Support Matrix
This version of the AMPS C++ client supports the following operating systems and features:

Table 1.1. C++ client supported features

Linux x64 Windows x64 Solaris SPARC

Incredible performance ✓ ✓ ✓

Publish and subscribe ✓ ✓ ✓

State of the World (SOW) queries ✓ ✓ ✓

Topic and content filtering ✓ ✓ ✓

Atomic SOW query and subscribe ✓ ✓ ✓

Transaction log replay ✓ ✓ ✓

Historical SOW query ✓ ✓ ✓

Beautiful documentation ✓ ✓ ✓

HA: automatic failover ✓ ✓

HA: durable publish and subscribe ✓ ✓

This version of the AMPS C++ client has been tested with the following compilers and versions. Other compilers
or versions may work, but have not been tested by 60East:

• Linux: gcc 4.8 (recommended), 4.6, or 4.4

• Windows: Visual Studio 2010 or later

• Solaris: Oracle Solaris Studio 12.3

2

Chapter 2. Installing the AMPS Client

2.1. Obtaining the Client
Before using the client, you will need to download and install it on your development computer. The client is pack-
aged into a single file, amps-c++-client-<version>.tar.gz, where <version> is replaced by the version
of the client, such as amps-c++-client-3.3.0.zip. In the following examples, the version number is omitted
from the filename.

Once expanded, the amps-c++-client directory will be created, containing sources, samples and makefiles for
the C++ client. You’re welcome to locate this directory anywhere that seems convenient; but for the remainder of
this book, we’ll simply refer to this directory as the amps-c++-client directory.

2.2. Explore the client
The client is organized into a number of directories that you’ll be using through this book. Understanding this orga-
nization now will save you time in the future. The top level directories are:

lib
An empty directory tree where built libraries are placed. Before using the AMPS C++ client, you must build them
using a C++ compiler and the provided makefile or solution file.

src
Sources and makefile for the AMPS C++ client library.

include
Location of include files for C and C++ programs. When building your own program, you’ll add the include
directory to your include path.

samples
Getting started with a new C/C++ library can be challenging. For your reference, we provide a number of small
samples, along with a makefile.

2.3. Build the Client
After unpacking the amps-c++-client directory, you must build the client library for your platform. To do so,
change to the amps-c++-client directory and, from a command prompt, type:

Installing the AMPS Client

3

make

or on Windows, from a Visual Studio Command Prompt, type:

msbuild

Upon successful completion, the AMPS libraries, samples, and spark client are built in the lib, samples and
spark directories, respectively.

2.4. Test Connectivity to AMPS
Before writing programs using AMPS, make sure connectivity to an AMPS server from this computer is working.
Launch a terminal window and change the directory to the AMPS directory in your AMPS installation, and use
spark to test connectivity to your server, for example:

./bin/spark ping -type fix -server 192.168.1.2:9004

If you receive an error message, verify that your AMPS server is up and running, and work with your systems
administrator to determine the cause of the connectivity issues. Without connectivity to AMPS, you will be unable
to make the best use of this guide.

4

Chapter 3. Your First AMPS Program
In this chapter, we will learn more about the structure and features of the AMPS C/C++ library, and build our first
C/C++ program using AMPS.

3.1. Connecting to AMPS
Let’s begin by writing a simple program that connects to an AMPS server and sends a single message to a topic:

#include <ampsplusplus.hpp>
#include <iostream>

int main(void)
{
 const char* uri = "tcp://127.0.0.1:9007/amps/json";

 // Construct a client with the name "examplePublisher".

 AMPS::Client ampsClient("examplePublisher");

 try
 {
 // connect to the server and log on
 ampsClient.connect(uri);
 ampsClient.logon();

 // publish a JSON message
 ampsClient.publish("messages",
 R"({ "message" : "Hello, World!" ,)"
 R"(client" : 1 })");

 }
 catch (const AMPS::AMPSException& e)
 {
 std::cerr << e.what() << std::endl;
 exit(1);
 }
 return 0;
}

Example 3.1. Connecting to AMPS

In the preceding Example 3.1, we show the entire program; but future examples will isolate one or more specific
portions of the code. The next section describes how to build and run the application and explains the code in further
detail.

Build and run
To build the program that you've created:

Your First AMPS Program

5

1. Create a new .cpp file and use your c compiler to build it, making sure the amps-c++-client/include
directory is in your compiler’s include path.

2. Link to the libamps.a or amps.lib static libraries.

3. Additionally, link to any operating system libraries required by AMPS; a full list may be found by examining the
Makefile and project files in the samples directory.

If the message is published successfully, there is no output to the console. We will demonstrate how to create a
subscriber to receive messages in Chapter 4.

Examining the code
Let us now revisit the code we listed earlier.

include <ampsplusplus.hpp>
#include <iostream>

int main()
{
 const char* uri = "tcp://127.0.0.1:9007/amps/json";

 AMPS::Client ampsClient("exampleClient");

 try {
 ampsClient.connect(uri);
 ampsClient.logon();

 // publish a JSON message
 ampsClient.publish("messages",
 R"({ "message" : "Hello, World!" ,)"
 R"("client" : 1 })");
 } catch (const AMPS::AMPSException& e) {
 std::cerr << e.what() << std::endl;
 exit(1);
 }
 return 0;
 }

Example 3.2. Connecting to AMPS

The URI to use to connect to AMPS. The URI consists of the transport, the address, and the protocol to use for
the AMPS connection. In this case, the transport is tcp, the address is 127.0.0.1:9007, and the protocol
is amps. In this case, AMPS is configured to allow any message type on that transport, so we specify json
in the URI to let AMPS know which message type this connection will use. Even though a transport that uses
the amps protocol can accept multiple message types, each connection must specify the exact message type
that connection will use. Check with the person who manages the AMPS instance to get the connection string
to use for your programs.
These are the include files required for an AMPS C++ Client. The first is ampsplusplus.hpp. This
header includes everything needed to compile C++ programs for AMPS. The next include is the Standard
C++ Library <iostream>, necessary due to use of std::cerr and std::endl.

Your First AMPS Program

6

This is where we first interact with AMPS by instantiating an AMPS::Client object. Client is the class
used to connect to and interact with an AMPS server. We pass the string "exampleClient" as the client-
Name. This name will be used to uniquely identify this client to the server. Errors relating to this connection
will be logged with reference to this name, and AMPS uses this name to help detect duplicate messages. AMPS
enforces uniqueness for client names when a transaction log is configured, and it is good practice to always
use unique client names.
Here we open a try block. AMPS C++ classes throw exceptions to indicate errors. For the remainder of our
interactions with AMPS, if an error occurs, the exception thrown by AMPS will be caught and handled in the
exception handler below.
At this point, we establish a valid AMPS network connection and can begin to use it to publish and subscribe
to messages. In this example, we use the URI specified earlier in the file. If any errors occur while attempting
to connect to AMPS, the connect() method will throw an exception.
The AMPS logon() command connects to AMPS and creates a named connection. If we had provided logon
credentials in the URI, the command would pass those credentials to AMPS. Without credentials, the client
logs on to AMPS anonymously. AMPS versions 5.0 and later require a logon() command in the default
configuration.
Here, a single message is published to AMPS on the messages topic, containing the data Hello world.
This data is placed into an XML message and sent to the server. Upon successful completion of this function,
the AMPS client has sent the message to the server, and subscribers to the messages topic will receive this
Hello world message.
Error handling begins with the catch block. All exceptions thrown by AMPS derive from AMPSException.
More specific exceptions may be caught to handle certain conditions, but catching AMPSException& allows
us to handle all AMPS errors in one place. In this example, we print out the error to the console and exit the
program.
At this point we return from main() and our ampsClient object falls out of scope. When this happens
AMPS automatically disconnects from the server and frees all of the client resources associated with the con-
nection. In the AMPS C++ client, objects are reference-counted, meaning that you can safely copy a client,
for example, and destroy copies of client without worrying about premature closure of the server connection
or memory leaks.

3.2. Using the C client

The AMPS C/C++ client is built in two layers: the C layer that exposes lower- level primitives for sending and
receiving messages to AMPS, and the C++ layer providing a set of abstractions over the C layer that makes it easier
to work with AMPS and create robust applications. The C++ layer is recommended for many applications, since it
offers a good balance of performance, control, and ease of use. If you are integrating AMPS into existing C code,
or need fine-grained control over how your application interacts with AMPS, then you may choose to use the C
layer directly.

The C Client offers low-level functionality for working with AMPS. With the C client, your application is responsi-
ble for correctly assembling the parameters to each command to AMPS and interpreting the response from AMPS.
The C client does not provide higher-level abstractions such as publish stores, automatic failover and reconnection,
sequence number management for published messages, and so on. Instead, you build the capabilities that your ap-
plication needs over the low level primitives.

As an example, Example 3.3 shows the previous sample rewritten to use the C layer directly:

#include <amps.h>

int main()
{

Your First AMPS Program

7

 char errorBuffer[256];
 amps_handle message;
 amps_handle logon_command;
 amps_handle client;
 amps_result result;

 client = amps_client_create("cClient");

 result = amps_client_connect(client,
 "tcp://localhost:9007/amps/json");

 if(result != AMPS_E_OK) {
 amps_client_get_error(
 client, errorBuffer, sizeof(errorBuffer));
 printf("error %s\n", errorBuffer);
 amps_client_destroy(client);
 return 1;
 }

 logon_command = amps_message_create(client);
 amps_message_set_field_value_nts(m, AMPS_Command, "logon");
 amps_message_set_field_value_nts(m, AMPS_ClientName, "cClient");
 amps_message_set_field_value_nts(m, AMPS_MessageType, "json");
 result = amps_client_send(client, logon_command);

 if (result != AMPS_E_OK)
 {
 amps_client_get_error(
 client, errorBuffer, sizeof(errorBuffer));
 printf("error %s\n", errorBuffer);
 amps_message_destroy(logon_command);
 amps_client_destroy(client);
 return 1;
 }

 amps_message_destroy(logon_command);

 message = amps_message_create(client);
 amps_message_set_field_value_nts(
 message, AMPS_CommandId, "12345");
 amps_message_set_field_value_nts(
 message, AMPS_Command, "publish");
 amps_message_set_field_value_nts(
 message, AMPS_Topic, "messages");
 amps_message_set_data_nts(
 message, "{\"message\":\"HelloWorld\"}");
 result = amps_client_send(client, message);
 if(result != AMPS_E_OK){
 amps_client_get_error(
 client, errorBuffer, sizeof(errorBuffer));
 printf("error sending: %s\n", errorBuffer);
 }
 amps_message_destroy(message);
 }

Your First AMPS Program

8

 amps_client_destroy(client);
 return 0;
}

Example 3.3. Connecting in C

Structurally, the example in C and in C++ are similar. In the C program more details are needed to form your program,
and the messages that are sent need to be constructed directly, instead of having portions of the message already
created.

At this point in the program, the necessary objects are declared in order to permit interaction with AMPS. When
AMPS errors occur, their text is available through the amps_client_get_error() function, so it is here
that we will create a small char array to hold the errors.
Here an amps_handle is created for each object and message objects that are constructed later. An
amps_handle is an opaque handle to an object constructed by AMPS, which cannot be dereferenced or used
by means other than AMPS functions. amps_handle is the size of a pointer and may be passed by value
wherever needed.
Next we declare an amps_result object, which is used to store the return value from functions that
may fail, such as during connection or interaction with an AMPS server. Many AMPS functions return an
amps_results.
Here we construct our AMPS client with a unique name. This function allocates resources that must be freed,
and can only be freed by a corresponding call to amps_client_destroy.
This is how a connection is established; control continues to where the AMPS message is allocated.
AMPS applications communicate with the AMPS server by sending and receiving messages. A logon com-
mand, like any other command, is simply a message to AMPS. Instead of calling a function that assembles and
sends the logon command, we construct the command ourselves.

When a message is constructed, the AMPS C client allocates resources that must be freed by a corresponding
amps_message_destroy function.
When a message is created in the AMPS C client, the message contains no information at all. To make the
message a logon command, we need to set the command type to "logon".

The C client provides a number of functions to assist in interacting with the data and fields of a message. In
this example the _nts functions are used, which allow for quick population of messages fields and data with
C-style null-terminated strings.

The next few lines add a minimal set of fields for the logon command. See the AMPS Command Reference
for the full set of header fields supported. For simplicity in this basic example, we set the smallest number
of fields possible. For example, this sample does not provide a user name or password on the command, nor
does the command request an acknowledgement message. In this case, the application relies on the fact that
AMPS will disconnect the client if the logon command fails. Production applications should register a message
handler, request acknowledgments for each command, and take appropriate actions if the command fails.
Once the command is constructed, we send the message. The return value does not indicate the result of the
command sent to AMPS. Instead, the return value indicates whether the AMPS client was able to send the
command to AMPS.
Free the resources associated with the logon_command message by calling amps_message_destroy
with the message.
As with the logon command, we must construct a message that contains a publish message. While the C
++ client constructs and sends the message for us, with the C client we construct the ourselves. Note that this
line also allocates resources that must be freed by a corresponding amps_message_destroy function.
These next few lines are responsible for setting the necessary fields and data to construct a valid publish
message for AMPS.
Once the message is constructed to our satisfaction, it is sent. As with the logon command, AMPS process-
es the publish command asynchronously. If an acknowledgement is requested, AMPS returns the acknowl-

Your First AMPS Program

9

edgement message in response to the publish command. Your application must process that acknowledge-
ment asynchronously.
Any errors from the operation are detected and examined here.
This where we free any message that was allocated and then destroy the client, freeing up the remaining AMPS
resources.

With the C client, your application is responsible for forming commands to AMPS, receiving the responses, and
interpreting the results. As mentioned above, the AMPS Command Reference contains detailed information on
the headers that need to be set for specific commands. The Command Cookbook in Section 10.4 contains information
on how to set headers for commonly used AMPS commands.

3.3. Connection Strings
The AMPS clients use connection strings to determine the server, port, transport, and protocol to use to connect to
AMPS. When the connection point in AMPS accepts multiple message types, the connection string also specifies
the precise message type to use for this connection. Connection strings have a number of elements.

Figure 3.1. elements of a connection string

As shown in the figure above, connection strings have the following elements:

• Transport defines the network used to send and receive messages from AMPS. In this case, the transport is tcp.

• Host address defines the destination on the network where the AMPS instance receives messages. The format of
the address is dependent on the transport. For tcp, the address consists of a host name and port number. In this
case, the host address is localhost:9007.

• Protocol sets the format in which AMPS receives commands from the client. Most code uses the default amps
protocol, which sends header information in JSON format. AMPS supports the ability to develop custom protocols
as extension modules, and AMPS also supports legacy protocols for backward compatibility.

• MessageType specifies the message type that this connection uses. This component of the connection string is
required if the protocol accepts multiple message types and the transport is configured to accept multiple message
types. If the protocol does not accept multiple message types, this component of the connection string is optional,
and defaults to the message type specified in the transport.

Legacy protocols such as fix, nvfix and xml only accept a single message type, and therefore do not require
or accept a message type in the connection string.

As an example, a connection string such as

tcp://localhost:9007/amps/json

would work for programs connecting from the local host to a Transport configured as follows:

<AMPSConfig>

Your First AMPS Program

10

...
 <!-- This transport accepts any known
 message type for the instance: the
 client must specify the message type.
 -->
 <Transport>
 <Name>any-tcp</Name>
 <Type>tcp</Type>
 <InetAddr>9007</InetAddr>
 <ReuseAddr>true</ReuseAddr>
 <Protocol>amps</Protocol>
 </Transport>
...
</AMPSConfig>

See the AMPS Configuration Guide for more information on configuring transports.

Providing Credentials in a Connection String
When using the default authenticator, the AMPS clients support the standard format for including a user name and
password in a URI, as shown below:

tcp://user:password@host:port/protocol/message_type

When provided in this form, the default authenticator provides the username and password specified in the URI. If
you have implemented another authenticator, that authenticator controls how passwords are provided to the AMPS
server.

3.4. Connection Parameters
When specifying a URI for connection to an AMPS server, you may specify a number of transport-specific options
in the parameters section of the URI. Here is an example:

tcp://localhost:9007/amps/json?tcp_nodelay=true&tcp_sndbuf=100000

In this example, we have specified the AMPS instance on localhost, port 9007, connecting to a transport that
uses the amps protocol and sending JSON messages. We have also set two parameters, tcp_nodelay, a Boolean
(true/false) parameter, and tcp_sndbuf, an integer parameter. Multiple parameters may be combined to finely
tune settings available on the transport. Normally, you'll want to stick with the defaults on your platform, but there
may be some cases where experimentation and fine-tuning will yield higher or more efficient performance.

AMPS supports the value of tcp in the connection string for TCP/IP connections, and the value of shm in the
connection string for the AMPS shared memory protocol.

Transport options
The following transport options are available for TCP connections:

Your First AMPS Program

11

tcp_rcvbuf (integer) Sets the socket receive buffer size. This defaults to the system default size. (On Linux,
you can find the system default size in /proc/sys/net/core/rmem_default.)

tcp_sndbuf (integer) Sets the socket send buffer size. This defaults to the system default size. (On Linux,
you can find the system default size in /proc/sys/net/core/wmem_default.)

tcp_nodelay (boolean) Enables or disables the TCP_NODELAY setting on the socket. By default
TCP_NODELAY is disabled.

tcp_linger (integer) Enables and sets the SO_LINGER value for the socket. By default, SO_LINGER is
enabled with a value of 10, which specifies that the socket will linger for 10 seconds.

tcp_keepalive (boolean) . Enables or disables the SO_KEEPALIVE value for the socket. The default value
for this option is true.

3.5. Next steps
You are now able to develop and build an application in C or C++ that publishes messages to AMPS. In the following
chapters, you will learn how to subscribe to messages, use content filters, work with SOW caches, and fine-tune
messages that you send.

12

Chapter 4. Subscriptions
Messages published to a topic on an AMPS server are available to other clients via a subscription. Before messages
can be received, a client must subscribe to one or more topics on the AMPS server so that the server will begin
sending messages to the client. The server will continue sending messages to the client until the client unsubscribes,
or the client disconnects. With content filtering, the AMPS server will limit the messages sent only to those messages
that match a client-supplied filter. In this chapter, you will learn how to subscribe, unsubscribe, and supply filters
for messages using the AMPS C/C++ client.

4.1. Subscribing
Subscribing to an AMPS topic takes place by calling Client.subscribe(). Here is a short example showing
the simplest way to subscribe to a topic (error handling and connection details are omitted for brevity):

Client client(...);
client.connect(...);
client.logon();

for (auto message : client.subscribe("messages"))
{
 std :: cout << "Received message: "
 << message.getData () << std :: endl ;
}

Example 4.1. Subscribing to a topic

Here we have created or received a Client that is properly connected to an AMPS server.
Here we subscribe to the topic messages. We do not provide a filter, so AMPS does not content-filter
the subscription. Although we don't use the object explicitly here, the subscribe function returns a Mes-
sageStream object that we iterate over. If, at any time, we no longer need to subscribe, we can break out of
the loop. When we break out of the loop, the MessageStream goes out of scope, the MessageStream destructor
runs, and the AMPS client sends an unsubscribe command to AMPS.
Within the body of the loop, we can process the message as we need to. In this case, we simply print the contents
of the message.

AMPS creates a background thread that receives messages and copies them into a MessageStream that you
iterate over. This means that the client application as a whole can continue to receive messages while you are doing
processing work.

The simple method described above is provided for convenience. The AMPS C++ client provides convenience
methods for the most common form of the AMPS commands. The client also provides an interface that allows you
to have precise control over the command. Using that interface, the example above becomes:

Client client(...);
client.connect(...);
client.logon();

for (auto message : ampsClient.execute(
 Command("subscribe").setTopic("messages"))

Subscriptions

13

{
 std :: cout << "Received message: "
 << message.getData () << std :: endl ;
}

Example 4.2. Subscribing to a topic using a command

Here we have created or received a Client that is properly connected to an AMPS server.
Here we create a command object for the subscribe command, specifying the topic messages.
Here we subscribe to the topic messages. We do not provide a filter, so AMPS does not content-filter the sub-
scription. Although we don't use the object explicitly here, the execute function returns a MessageStream
object that we iterate over. If, at any time, we no longer need to subscribe, we can break out of the loop. When
we break out of the loop, the MessageStream goes out of scope, the MessageStream destructor runs, and the
AMPS client sends an unsubscribe command to AMPS.
Within the body of the loop, we can process the message as we need to. In this case, we simply print the contents
of the message.

The Command interface allows you to precisely customize the commands you send to AMPS. For flexibility and ease
of maintenance, 60East recommends using the Command interface (rather than a named method) for any command
that will receive messages from AMPS. For publishing messages, there can a slight performance advantage to using
the named commands where possible.

4.2. Asynchronous Message Processing Interface
The AMPS C++ client also supports an interface that allows you to process messages asynchronously. In this case,
you add a message handler to the function call. The client returns the command ID of the subscribe command once
the server has acknowledged that the command has been processed. As messages arrive, the client calls your message
handler directly on the background thread. This can be an advantage for some applications. For example, if your
application is highly multithreaded and copies message data to a work queue processed by multiple threads, there
is usually a performance benefit to enqueuing work directly from the background thread. See Section 4.3 for a
discussion of threading considerations, including considerations for message handlers.

Here is a short example (error handling and connection details are omitted for brevity):

Client client(...);
client.connect(...);
client.logon();

string subscriptionId = client.executeAsync(
 Command("subscribe").setTopic("messages"),
 MessageHandler(myHandlerFunction, NULL));
...
void myHandlerFunction(const Message& message, void*
 userData)
{
 std::cout << message.getData() << std::endl;
}

Example 4.3. Subscribing to a topic with asynchronous processing

Here we have created or received a Client that is properly connected to an AMPS server.

Subscriptions

14

Here we create a command object for the subscribe command, specifying the topic messages.
Here we create a subscription with the following parameters:

command This is the AMPS Command object that contains the subscribe command.

MessageHandler This is an AMPS MessageHandler object that refers to our message handling
function myHandlerFunction. This function is called on a background thread
each time a message arrives. The second parameter, NULL, is passed as-is from the
client.subscribe() call to the message handler with every message, allowing
you to pass context about the subscription through to the message handler.

The myHandlerFunction is a global function that is invoked by AMPS whenever a matching message is
received. The first parameter, message, is a reference to an AMPS Message object that contains the data and
headers of the received message. The second parameter, userData, is set to whatever value was provided in
the MessageHandler constructor -- NULL in this example.

The AMPS client resets and reuses the message provided to this function between calls. This im-
proves performance in the client, but means that if your handler function needs to preserve infor-
mation contained within the message, you must copy the information rather than just saving the
message object. Otherwise, the AMPS client cannot guarantee the state of the object or the contents
of the object when your program goes to use it.

With newer compilers, you can use additional constructs to specify a callback function. Recent improvements in C
++ have added lambda functions -- unnamed functions declared in-line that can refer to names in the lexical scope
of their creator. If available on your system, both Standard C++ Library function objects and lambda functions may
be used as callbacks. Check functional.cpp in the samples directory for numerous examples.

Using an Instance Method as a Message Handler
One of the more common ways of providing a message handler is as an instance method on an object that maintains
message state. It's simple to provide a handler with this capability, as shown below.

class StatefulHandler
{
 private:
 std::string _handlerName;
 public:
 // Construct the handler and save state.

 StatefulHandler(const std::string& name) : _handlerName(name) {}

 // Message handler method.
 void operator()(const AMPS::Message & message)
 {
 std::cout << _handlerName << " got "
 << message.getData() << std::endl;
 }
};

You can then provide an instance of the handler directly wherever a message handler is required, as shown below:

client.subscribe(StatefulHandler("An instance"), "topic");

Subscriptions

15

4.3. Understanding Threading and Message Han-
dlers

When you call a subscribe command, the client creates a thread that runs in the background. The command returns,
while the thread receives messages. In the simple case, using synchronous message processing, the client provides
an internal handler function that populates the MessageStream. The MessageStream is used on the calling
thread, so operations on the MessageStream do not block the background thread.

When using asynchronous message processing, AMPS calls the handler function from the background thread. Mes-
sage handlers provided for asynchronous message processing must be aware of the following considerations.

The client creates one background thread per client object. A message handler that is only provided to a single client
will only be called from a single thread. If your message handler will be used by multiple clients, then multiple
threads will call your message handler. In this case, you should take care to protect any state that will be shared
between threads.

For maximum performance, do as little work in the message handler as possible. For example, if you use the contents
of the message to update an external database, a message handler that adds the relevant data to an update queue that
is processed by a different thread will typically perform better than a message handler that does this update during
the message handler.

While your message handler is running, the thread that calls your message handler is no longer receiving messages.
This makes it easier to write a message handler, because you know that no other messages are arriving from the
same subcription. However, this also means that you cannot use the same client that called the message handler to
send commands to AMPS. Acknowledgements from AMPS cannot be processed, and your application will deadlock
waiting for the acknowledgement. Instead, enqueue the command in a work queue to be processed by a separate
thread, or use a different client object to submit the commands.

The AMPS client resets and reuses the Message provided to this function between calls. This improves performance
in the client, but means that if your handler function needs to preserve information contained within the message, you
must copy the information rather than just saving the message object. Otherwise, the AMPS client cannot guarantee
the state of the object or the contents of the object when your program goes to use it.

4.4. Unsubscribing
With the synchronous interface, AMPS automatically unsubscribes to the topic when the destructor for the Mes-
sageStream runs. You can also explicitly call the close() method on the MessageStream object to remove
the subscription.

In the asynchronous interface, when a subscription is successfully made, messages will begin flowing to the message
handler, and the client.subscribe() call will return a string for the CommandId that serves as the identifier
for this subscription. A Client can have any number of active subscriptions, and this CommandId string is used to
refer to the particular subscription we have made here. For example, to unsubscribe, we simply pass in this identifier:

Client client = ...;

// Register asynchronous subscription

std::string subId = client.executeAsync(
 Command("subscribe").setTopic("messages"),
 MessageHandler(myHandlerFunction, NULL));

Subscriptions

16

...

for (auto msg :
 client.execute(Command("unsubscribe")
 .setSubscriptionId(subId))

{
 std::cout << "Response to unsubscribe : "
 << msg.getAckType() << std::endl;
}

Example 4.4. Unsubscribing from a topic

In this example, as in the previous section, we use the client.execute_async() method to create a subscrip-
tion to the messages topic. When our application is done listening to this topic, it unsubscribes by passing in
the subId returned by subscribe(). After the subscription is removed, no more messages will flow into our
myHandlerFunction().

4.5. Understanding messages
So far, we have seen that subscribing to a topic involves working with objects of AMPS::Message type. A Mes-
sage represents a single message to or from an AMPS server. Messages are received or sent for every client/server
operation in AMPS.

Header properties
There are two parts of each message in AMPS: a set of headers that provide metadata for the message, and the data
that the message contains. Every AMPS message has one or more header fields defined. The precise headers present
depend on the type and context of the message. There are many possible fields in any given message, but only a few
are used for any given message. For each header field, the Message class contains a distinct property that allows for
retrieval and setting of that field. For example, the Message.get_command_id() function corresponds to the
commandId header field, the Message.get_batch_size() function corresponds to the BatchSize header
field, and so on. For more information on these header fields, consult the AMPS User Guide and AMPS Command
Reference.

To work with header fields, aMessage contains getXxx()/setXxx() methods corresponding to the header
fields. 60East does not recommend attempting to parse header fields from the raw data of the message.

In AMPS, fields sometimes need to be set to a unique identifier value. For example, when creating a new subscription,
or sending a manually constructed message, you’ll need to assign a new unique identifier to multiple fields such as
CommandId and SubscriptionId. For this purpose, Message provides newXxx() methods for each field that
generates a new unique identifier and sets the field to that new value.

getData() method

Access to the data section of a message is provided via the getData() method. The data contains the unparsed
data in the message, returned as a series of bytes (a string or const char *). Your application code parses
and works with the data.

Subscriptions

17

The AMPS C++ client contains a collection of helper classes for working with message types that are specific to
AMPS (for example, FIX, NVFIX, and AMPS composite message types). For message types that are widely used,
such as JSON or XML, you can use whichever library you typically use in your environment.

4.6. Advanced Messaging Support
The client.subscribe() function provides options for subscribing to topics even when you do not know their
exact names, and for providing a filter that works on the server to limit the messages your application must process.

Regex topics
Regular Expression (Regex) Topics allow a regular expression to be supplied in the place of a topic name. When you
supply a regular expression, it is as if a subscription is made to every topic that matches your expression, including
topics that do not yet exist at the time of creating the subscription.

To use a regular expression, simply supply the regular expression in place of the topic name in the subscribe()
call. For example:

for (auto message : client.subscribe("client.*"))
{
 // receive messages for any topic that begins with 'client'
 std::cout << "Received a message on topic '" << message.getTopic() << "'
 "
 << "with the data: " << message.getData() << std::endl;
}

Example 4.5. Regex topic subscription

In this example, messages on topics client and client1 would match the regular expression, and those messages
will be returned by the MessageStream . As in the example, you can use the getTopic() method to determine
the actual topic of the message sent to the lambda function.

Content filtering
One of the most powerful features of AMPS is content filtering. With content filtering, filters based on message
content are applied at the server, so that your application and the network are not utilized by messages that are
uninteresting for your application. For example, if your application is only displaying messages from a particular
user, you can send a content filter to the server so that only messages from that particular user are sent to the client.
The AMPS User Guide provides full details on content filtering.

To apply a content filter to a subscription, simply pass it into the client.subscribe() call:

for (auto message : ampsClient.subscribe("messages", "/sender = 'mom'))
{
 // process messages from mom
}

Example 4.6. Using content filters

Subscriptions

18

In this example, we have passed in a content filter "/sender = 'mom'". This will cause the server to only send
us messages from the messages topic that additionally have a sender field equal to mom.

For example, the AMPS server will send the following message, where /sender is mom:

{ "sender" : "mom",
 "text" : "Happy Birthday!",
 "reminder" : "Call me Thursday!" }

The AMPS server will not send a message with a different /sender value:

{ "sender" : "henry dave",
 "text" : "Things do not change; we change." }

Updating the Filter on a Subscription

AMPS allows you to update the filter on a subscription. When you replace a filter on the the subscription, AMPS
immediately begins sending only messages that match the updated filter. Notice that if the subscription was entered
with a command that includes a SOW query, using the replace option can re-issue the SOW query (as described
in the AMPS User Guide).

To update a the filter on a subscription, you create a subscribe command. You set the SubscriptionId
provided on the Command to the identifier of the existing subscription, and include the replace option on the
Command. When you send the Command, AMPS atomically replaces the filter and sends messages that match the
updated filter from that point forward.

4.7. Next steps
At this point, you are able to build AMPS programs in C/C++ that publish and subscribe to AMPS topics. For an
AMPS application to be truly robust, it needs to be able to handle the errors and disconnections that occur in any
distributed system. In the next chapter, we will take a closer look at error handling and recovery, and how you can
use it to make your application ready for the real world.

19

Chapter 5. Error Handling
In every distributed system, the robustness of your application depends on its ability to recover gracefully from
unexpected events. The AMPS client provides the building blocks necessary to ensure your application can recover
from the kinds of errors and special events that may occur when using AMPS.

5.1. Exceptions
Generally speaking, when an error occurs that prohibits an operation from succeeding, AMPS will throw an excep-
tion. AMPS exceptions universally derive from AMPS::AMPSException, so by catching AMPSException,
you will be sure to catch anything AMPS throws. For example:

...
void ReadAndEvaluate(Client& client)
{
 // read a new payload from the user
 string payload;
 getline(cin, payload);
 // write a new message to AMPS
 if(!payload.empty()) {
 try {
 client.publish("UserMessage",
 string("{ \"message\" : \"data\" }");
 } catch (const AMPSException& exception)
 {
 cerr << "An AMPS exception occurred: "<<
 exception.toString() << endl;
 }
 }
}

Example 5.1. Catching an AMPS Exception

In this example, if an error occurs the program writes the error to stderr, and the publish() command fails.
However, client is still usable for continued publishing and subscribing. When the error occurs, the exception is
written to the console, converting the exception to a string via the toString() method.

AMPS exception types vary based on the nature of the error that occurs. In your program, if you would like to handle
certain kinds of errors differently than others, you can catch the appropriate subclass of AMPSException to
detect those specific errors and do something different.

string CreateNewSubscription(Client& client)
{
 string id;
 string topicName;
 while(id.empty())
 {
 topicName = AskUserForTopicName();
 try {
 id = client.subscribe(bind(HandleMessage,

Error Handling

20

 placeholders::_1),
 topicName, 5000);
 }
 catch(const BadRegexTopicException& ex)
 {
 DisplayError(
 "Error: bad topic name or regular " +
 "expression ’" + topicName +"’. " +
 "The error was: " + ex.toString());
 // we’ll ask the user for another topic
 }
 catch(const AMPSException& ex)
 {
 DisplayError(
 "Error: error setting up subscription " +
 "to topic " + topicName +". The error was: " +
 ex.toString());
 return NULL; // give up
 }
 }
 return id;
 }

Example 5.2. Catching AMPSException Subsclasses

In Example 5.2 our program is an interactive program that attempts to retrieve a topic name (or regular expres-
sion) from the user.
If an error occurs when setting up the subscription whether or not to try again based on the subclass of AM-
PSException that is thrown. If a BadRegexTopicException, this exception is thrown during subscrip-
tion to indicate that a bad regular expression was supplied, so we would like to give the user a chance to correct.
This line indicates that the program catches the BadRegexTopicException exception and displays a
specific error to the user indicating the topic name or expression was invalid. By not returning from the function
in this catch block, the while loop runs again and the user is asked for another topic name.
If an AMPS exception of a type other than BadRegexTopicException is thrown by AMPS, it is caught
here. In that case, the program emits a different error message to the user.
At this point the code stops attempting to subscribe to the client by the return NULL statement.

Exception Types
Each method in AMPS documents the kinds of exceptions that it can throw. For reference, Table A.1 contains a list
of all of the exception types you may encounter while using AMPS, when they occur, and what they mean.

Exception Handling and Asynchronous Message Processing
When using asynchronous message processing, exceptions thrown form the message handler are silently absorbed
by the AMPS C++ client by default. The AMPS C++ client allows you to register an exception listener to detect and
respond to these exceptions. When an exception listener is registered, AMPS will call the exception listener with
the exception. See Section 5.4 for details.

Error Handling

21

5.2. Disconnect Handling
Every distributed system will experience occasional disconnections between one or more nodes. The reliability of
the overall system depends on an application’s ability to efficiently detect and recover from these disconnections.
Using the AMPS C/C++ client’s disconnect handling, you can build powerful applications that are resilient in the
face of connection failures and spurious disconnects.

The HAClient class, included with the AMPS C++ client, contains a disconnect handler and other features for
building highly-available applications. The HAClient includes features for managing a list of failover servers,
resuming subscriptions, republishing in-flight messages, and other functionality that is commonly needed for high
availability. 60East recommends using the HAClient for automatic reconnection wherever possible, as the HA-
Client disconnect handler has been carefully crafted to handle a wide variety of edge cases and potential failures.
This section covers the use of a custom disconnect handler in the event that the behavior of the HAClient does
not suit the needs of your application.

Custom disconnect handling gives you the ultimate in control and flexibility regarding how to respond to discon-
nects. Your application gets to specify exactly what happens when a disconnect occurs by supplying a function to
client.setDisconnectHandler(), which is invoked whenever a disconnect occurs.

Example 5.3 shows the basics:

class MyApp
{
 string _uri;
 Client _client;
public:
 MyApp(const string& uri) : _uri(uri), _client("myapp")
 {
 _uri = uri;
 _client.setDisconnectHandler(
 AttemptReconnection, (void*)this);

 _client.connect(uri);
 _client.execute_async(Command("subscribe")
 .setTopic("orders"),
 bind(&MyApp::ShowMessage,this
 placeholders::_1));
 }
 void ShowMessage(const Message& m)
 {
 // display order data to the user
 ...
 }
 void AttemptReconnection(Client& client,
 void* userdata)
 {
 MyApp* app = (MyApp*) userdata;
 // simple: just try to reconnect once.
 client.connect(app->_uri);
 }
 }

Example 5.3. Supplying a Disconnect Handler

Error Handling

22

In Example 5.3 the setDisconnectHandler() method is called to supply a function for use when AMPS
detects a disconnect. At any time, this function may be called by AMPS to indicate that the client has discon-
nected from the server, and to allow your application to choose what to do about it. The application continues
on to connect and subscribe to the orders topic.
Our disconnect handler’s implementation begins here. In this example, we simply try to reconnect to the orig-
inal server. A more robust reconnect would have logic to limit either the total number of connects, frequency
of connects or both. Errors are likely to occur here, therefore we must have disconnected for a reason, but
Client takes care of catching errors from our disconnect handler. If an error occurs in our attempt to recon-
nect and an exception is thrown by connect(), then Client will catch it and absorb it, passing it to the
ExceptionListener if registered. If the client is not connected by the time the disconnect handler returns,
AMPS throws DisconnectedException.

By creating a more advanced disconnect handler, you can implement logic to make your application even more ro-
bust. For example, imagine you have a group of AMPS servers configured for high availability—you could imple-
ment fail-over by simply trying the next server in the list until one is found. Example 5.4 shows a brief example.

class MyApp
{
 vector<string>& _uris;
 int _currentUri;
 Client _client;
public:
 MyApp(vector<string>& uris) :
 _uris(uris), _currentUri(0),
 _client("MyApp")
 {
 _client.setDisconnectHandler(
 &ConnectToNextUri, this);
 ConnectToNextUri(this);
 }

 static void ConnectToNextUri(Client client, void* me)
 {
 MyApp* app = (MyApp*)me;
 while(true)
 {
 try {
 client.connect(app->_uris[app->_currentUri]);
 client.subscribe(...);
 return;
 } catch(AMPSException& e) {
 app->_currentUri = (app->_currentUri + 1)
 % app->_uris.size();
 }
 }
 }
 }

Example 5.4. Simple Client Failover Implementation

Here our application is configured with a vector of AMPS server URIs to choose from, instead of a single URI.
These will be used in the ConnectToNextUri() method as explained below.

Error Handling

23

ConnectToNextUri() is invoked by our disconnect handler TestDisconnectHandler in the AMPS
Client when a disconnect occurs. Since our client is currently disconnected, we manually invoke our disconnect
handler to initiate the first connection.
During a disconnect the AMPS Client invokes ConnectToNextUri(), which loops around our array of
URIs attempting to connect to each one until successful. In the invoke() method it attempts to connect to the
current URI, and if it is successful, returns immediately. If the connection attempt fails, the exception handler
for AMPSException is invoked. In the exception handler, we advance to the next URI, display a warning
message, and continue around the loop. This simplistic handler never gives up, but in a typical implementation,
you would likely stop attempting to reconnect at some point.
At this point the client registers a subscription to the server we have connected to. It is important to note that,
once a new server is connected, it is the responsibility of the application to re-establish any subscriptions placed
previously. This behavior provides an important benefit to your application: one reason for disconnect is due to
a client’s inability to keep up with the rate of message flow. In a more advanced disconnect handler, you could
choose to not re-establish subscriptions that are the cause of your application’s demise.

Using a Heartbeat to Detect Disconnection
The AMPS client includes a heartbeat feature to help applications detect disconnection from the server within a
predictiable amount of time. Without using a heartbeat, an application must rely on the operating system to notify
the application when a disconnect occurs. For applications that are simply receiving messages, it can be impossible
to tell whether a socket is disconnected or whether there are simply no incoming messages for the client.

When you set a heartbeat, the AMPS client sends a heartbeat message to the AMPS server at a regular interval, and
waits a specified amount of time for the response. If the operating system reports an error on send, or if the server
does not respond within the specified amount of time, the AMPS client considers the server to be disconnected.

5.3. Unexpected Messages
The AMPS C++ client handles most incoming messages and takes appropriate action. Some messages are unexpected
or occur only in very rare circumstances. The AMPS C++ client provides a way for clients to process these messages.
Rather than providing handlers for all of these unusual events, AMPS provides a single handler function for messages
that can't be handled during normal processing.

Your application registers this handler by setting the UnhandledMessageHandler for the client. This handler
is called when the client receives a message that can't be processed by any other handler. This is a rare event, and
typically indicates an unexpected condition.

For example, if a client publishes a message that AMPS cannot parse, AMPS returns a failure acknowledgement. This
is an unexpected event, so AMPS does not include an explicit handler for this event, and failure acknowledgements
are received in the method registered as the UnhandledMessageHandler.

Your application is responsible for taking any corrective action needed. For example, if a message publication fails,
your application can decide to republish the message, publish a compensating message, log the error, stop publication
altogether, or any other action that is appropriate.

Error Handling

24

5.4. Unhandled Exceptions
In the AMPS C++ client, exceptions can occur that are not thrown to the main thread of the application. For example,
when an exception is thrown from a message handler running on a background thread, AMPS does not automatically
propagate that exception to the main thread.

Instead, AMPS provides the exception to an unhandled exception handler if one is specified on the client. The
unhandled exception handler receives a reference to the exception object, and takes whatever action is necessary.
Typically, this involves logging the exception or setting an error flag that the main thread can act on. Notice that
AMPS C++ client only catches exceptions that derive from std::exception. If your message handler contains
code that can throw exceptions that do not derive from std::exception, 60East recommends catching these
exceptions and throwing an equivalent exception that derives from std::exception.

For example, the unhandled exception handler below takes a std::ostream, and logs information from each
exception to that std::ostream.

class ExceptionLogger : public AMPS::ExceptionListener
{
 private:
 std::ostream& os_;

 public:

 ExceptionLogger() : os_(std::cout) {}
 ExceptionLogger(std::ostream& os) :
 os_(os) {}

 virtual void exceptionThrown(const std::exception& e)
 {
 os_ << e.what()
 << std::endl;
 }
}

5.5. Detecting Write Failures
The publish methods in the C++ client deliver the message to be published to AMPS and then return immediately,
without waiting for AMPS to return an acknowledgement. Likewise, the sowDelete methods request deletion of
SOW messages, and return before AMPS processes the message and performs the deletion. This approach provides
high performance for operations that are unlikely to fail in production. However, this means that the methods return
before AMPS has processed the command, without the ability to return an error in the event that the command fails.

The AMPS C++ client provides a FailedWriteHandler that is called when the client receives an acknowledge-
ment that indicates a failure to persist data within AMPS. To use this functionality, you implement the Failed-
WriteHandler interface, construct an instance of your new class, and register that instance with the set-
FailedWriteHandler() function on the client. When an acknowledgement returns that indicates a failed write,
AMPS calls the registered handler method with information from the acknowledgement message, supplemented with
information from the client publish store if one is available. Your client can log this information, present an error to
the user, or take whatever action is appropriate for the failure.

Error Handling

25

When no FailedWriteHandler is registered, acknowledgements that indicate errors in persisting data are treat-
ed as unexpected messages and routed to the LastChanceMessageHandler. In this case, AMPS provides only
the acknowledgement message and does not provide the additional information from the client publish store.

26

Chapter 6. State of the World
The AMPS State of the World (SOW) allows you to automatically keep and query the latest information about a topic
on the AMPS server, without building a separate database. Using SOW lets you build impressively high-performance
applications that provide rich experiences to users. The AMPS C++ client lets you query SOW topics and subscribe
to changes with ease. AMPS SOW topics can be used as a current value cache to provide the most recently published
value for each record, as a key/value object store, as the source for an aggregate or conflated topic, or all of the above
uses. For more information on State of the World topics, see the AMPS User Guide.

6.1. Performing SOW Queries
To begin, we will look at a simple example of issuing a SOW query.

for (auto message : ampsClient.sow("orders" ,"/symbol == 'ROL'"))
{
 if(message.getCommand() == "group_begin")
 {
 std::cout << "Receiving messages from the SOW." << std::endl ;
 }
 else if(message.getCommand() == "group_end")
 {
 std::cout << "Done receiving messages from SOW." << std::endl;
 }
 else {
 std::cout << "Received message: " << message.getData () <<
 std::endl;
 }
}

Example 6.1. Basic SOW Query

In listing Example 6.1 the program invokes ampsClient.sow() to initiate a SOW query on the orders topic,
for all entries that have a symbol of ’ROL’. The SOW query is requested with a batch size of 100, meaning that
AMPS will attempt to send 100 messages at a time as results are returned.

As the query executes, each matching entry in the topic at the time of the query is returned. Messages containing the
data of matching entries have a Command of value sow, so as those arrive, we write them to the console. AMPS
sends a "group_begin" message before the first SOW result, and a "group_end" message after the last SOW result.

When the SOW query is complete, the MessageStream completes iteration and the loop completes. There's no
need to explicitly break out of the loop.

As with subscribe, the sow function also provides an asynchronous version. In this case, you provide a message
handler that will be called on a background thread:

void HandleSOW(const Message& message)
{
 if (message.getCommand() == "sow")
 {
 cout << message.getData() << endl;
 }

State of the World

27

}
void ExecuteSOWQuery(Client client)
{
 Command command("sow");
 command.setTopic("orders")
 .setFilter("/symbol='ROL'")
 .setBatchSize(100);

 client.execute_async(Command("sow")
 .setTopic("orders")
 .setFilter("/symbol = 'ROL'")
 .setBatchSize(100)
 , bind(HandleSOW, placeholders::_1));

}

Example 6.2. Asynchronous sow

In the listing for Example 6.2, the ExecuteSOWQuery() function invokes client.sow() to intiate a SOW
query on the orders topic, for all entries that have a symbol of ROL. The SOW query is requested with a batch size
of 100, meaning that AMPS will attempt to send 100 messages at a time as results are returned.

As the query executes, the HandleSOW() method is invoked for each matching entry in the topic. Messages con-
taining the data of matching entries have a Command of sow, so as those arrive, we write them to the console.

6.2. SOW and Subscribe
Imagine an application that displays real-time information about the position and status of a fleet of delivery vans.
When the application starts, it should display the current location of each of the vans along with their current status.
As vans move around the city and post other status updates, the application should keep its display up to date. Vans
upload information to the system by posting message to a van location topic, configured with a key of van_id
on the AMPS server.

In this application, it is important to not only stay up-to-date on the latest information about each van, but to ensure
all of the active vans are displayed as soon as the application starts. Combining a SOW with a subscription to the
topic is exactly what is needed, and that is accomplished by the Client.sowAndSubscribe() method. Now
we will look at an example:

// processSOWMessage
//
// Processes a message during SOW query. Returns
// false if the SOW query is complete, true
// if there is no more SOW processing.

bool processSOWMessage(const AMPS::Message& message)
{

 if (message.getCommand() == "group_begin")
 {
 std::cout << "Receiving messages from the SOW." << std::endl;
 }
 else if (message.getCommand() == "group_end")

State of the World

28

 {
 std::cout << "Done receiving messages from SOW." << std::endl;
 return true;
 }
 else
 {
 std::cout << "SOW message: " << message.getData() << std::endl;
 addVan(message);
 }
 return false;
}

// processSubscriptionMessage
//
// Process messages received on a subscription, after the SOW
// query is complete.

void processSubscribeMessage(const AMPS::Message& message)
{
 if (message.getCommand() == "oof")
 {
 std::cout << "OOF : " << message.getReason()
 << " message to remove : "
 << message.getData() << std::endl;
 removeVan(message);
 }
 else
 {
 std::cout << "New or updated message: " << message.getData() <<
 std::endl;
 addOrUpdateVan(message);
 }
}

...

void doSowAndSubscribe(AMPS::Client& ampsClient)
{
 bool sowDone = false;

 std::cerr << "about to subscribe..." << std::endl;

 for (auto message :
 ampsClient.execute(
 Command("sow_and_subscribe")
 .setTopic("van_location")
 .setFilter("/status = 'ACTIVE'")
 .setBatchSize(100)
 .setOptions("oof"))
 {
 if (sowDone == false)
 {
 sowDone = processSOWMessage(message);
 }

State of the World

29

 else
 {
 processSubscribeMessage(message);
 }
 }
}

Example 6.3. Using sowAndSubscribe

In Example 6.3 we issue a sowAndSubscribe() to begin receiving information about all of the open orders
in the system for the symbol ROL. These orders are now are returned as Messages whose Command returns
SOW.

sub-
ex-
oof: ???

Notice here that we specified true for the oofEnabled parameter. Setting this parameter to true causes us
to receive Out-of-Focus ("OOF") messages for the topic. OOF messages are sent when an entry that was sent
to us in the past no longer matches our query. This happens when an entry is removed from the SOW cache
via a sowDelete() operation, when the entry expires (as specified by the expiration time on the message or
by the configuration of that topic on the AMPS server), or when the entry no longer matches the content filter
specified. In our case, when an order is processed or canceled (or if the symbol changes), a Message is sent
with Command set to OOF. The content of that message is the message sent previously. We use OOF messages
to remove orders from our display as they are completed or canceled.

Now we will look at an example that uses the asynchronous form of sowAndSubscribe:

// handleMessage
//
// Handles messages for both SOW query and subscription.

void processSOWMessage(const AMPS::Message& message)
{

 if (message.getCommand() == "group_begin")
 {
 std::cout << "Receiving messages from the SOW." << std::endl;
 return;
 }
 else if (message.getCommand() == "group_end")
 {
 std::cout << "Done receiving messages from SOW." << std::endl;
 return true;
 }
 else if (message.getCommand() == "oof")
 {
 std::cout << "OOF : " << message.getReason()
 << " message to remove : "
 << message.getData() << std::endl;
 removeVan(message);
 }
 else
 {
 std::cout << "New or updated message: " << message.getData() <<
 std::endl;
 addOrUpdateVan(message);
 }
}

State of the World

30

...

std::string trackVanPositions(AMPS::Client& ampsClient)
{

 std::cerr << "about to subscribe..." << std::endl;

 return ampsClient.execute_async(
 Command("sow_and_subscribe")
 .setTopic("van_location")
 .setFilter("/status = 'ACTIVE'")
 .setBatchSize(100)
 .setOptions("oof"),
 bind(processSOWMessage(placeholders::_1));
}

Example 6.4. Asynchronous SOW and Subscribe

In Example 6.4, the trackVanPositions function invokes sowAndSubscribe to begin tracking vans, and
returns the subscription ID. The application can later use this to unsubscribe.

The two forms have the same result. However, one form performs processing on a background thread, and blocks
the client from receiving messages while that processing happens, while the other form processes messages on the
calling thread and allows the background thread to continue to receive messages while processing occurs. In both
cases, the application receives and processes the same messages.

6.3. Setting Batch Size
The AMPS clients include a batch size parameter that specifies how many messages the AMPS server will return to
the client in a single batch when returning the results of a SOW query. The 60East clients set a batch size of 10 by
default. This batch size works well for common message sizes and network configurations.

Adjusting the batch size may produce better network utilitization and produce better performance overall for the
application. The larger the batch size, the more messages AMPS will send to the network layer at a time. This can
result in fewer packets being sent, and therefore less overhead in the network layer. The effect on performance is
generally most noticeable for small messages, where setting a larger batch size will allow several messages to fit
into a single packet. For larger messages, a batch size may still improve performance, but the improvement is less
noticeable.

In general, 60East recommends setting a batch size that is large enough to produce few partially-filled packets. Bear
in mind that AMPS holds the messages in memory while batching them, and the client must also hold the messages in
memory while receiving the messages. Using batch sizes that require large amounts of memory for these operations
can reduce overall application peformance, even if network utilization is good.

For smaller message sizes, 60East recommends using the default batch size, and experimenting with tuning the batch
size if performance improvements are necessary. For relatively large messages (especially messages with sizes over
1MB), 60East recommends explicitly setting a batch size of 1 as an initial value, and increasing the batch size only
if performance testing with a larger batch size shows improved network utilization or faster overall performance.

State of the World

31

6.4. Client-Side Conflation
In many cases, applications that use SOW topics only need the current value of a message at the time the message
is processed, rather than processing each change that lead to the current value. On the server side, AMPS provides
conflated topics to meet this need. Conflated topics are described in more detail in the AMPS User Guide, and require
no special handling on the client side.

In some cases, though, it's important to conflate messages on the client side. This can be particularly useful for
applications that do expensive processing on each message, applications that are more efficient when processing
batches of messages, or for situations where you cannot provide an appropriate conflation interval for the server
to use.

A MessageStream has the ability to conflate messages recieved for a subscription to a SOW topic, view, or
conflated topic. When conflation is enabled, for each message recieved, the client checks to see whether it has already
received an unprocessed message with the same SowKey. If so, the client replaces the unprocessed message with
the new message. The application never receives the message that has been replaced.

To enable client-side conflation, you call conflate() on the MessageStream, and then use the Mes-
sageStream as usual:

// Query and subscribe
MessageStream results =
 ampsClient.sowAndSubscribe("orders", "/symbol == 'ROL'");

// Turn on conflation
results.conflate();

// Process the results
for (auto message : results)
{
 // Process message here
}

Notice that if the MessageStream is used for a subscription that does not include SowKeys (such as a subscription
to a topic that does not have a SOW), no conflation will occur.

When using client-side conflation with delta subscriptions, bear in mind that client-side conflation replaces the whole
message, and does not attempt to merge deltas. This means that updates can be lost when messages are replaced. For
some applications (for example, a ticker application that simply sends delta updates that replace the current price),
this causes no problems. For other applications (for example, when several processors may be updating different
fields of a message simultaneously), using conflation with deltas could result in lost data, and server-side conflation
is a safer alternative.

6.5. Managing SOW Contents
AMPS allows application to manage the contents of the SOW by explicitly deleting messages that are no longer
relevant. For example, if a particular delivery van is retired from service, the application can remove the record for
the van by deleting the record for the van.

The client provides the following functions for deleting records from the SOW.

• sowDelete accepts a filter, and deletes all messages that match the filter

State of the World

32

• sowDeleteByKeys accepts a set of SOW keys as a comma-delimited string and deletes messages for those
keys, regardless of the contents of the messages. SOW keys are provided in the header of a SOW message, and
is the internal identifier AMPS uses for that SOW message

• sowDeleteByData accepts a topic and message, and deletes the SOW record that would be updated by that
message

Most applications use sowDelete, since this is the most useful and flexible method for removing items from the
SOW. In some cases, particularly when working with extremely large SOW databases, sowDeleteByKeys can
provide better performance.

In either case, AMPS sends an OOF message to all subscribers who have received updates for the messages removed,
as described in the previous section.

The simple form of the sowDelete command returns a MessageStream that receives the response. This response is
an acknowledgement message that contains information on the delete command. For example, the following snippet
simply prints informational text with the number of messages deleted:

for (auto msg : client.sowDelete("sow_topic",
 "/id in (42, 64, 37)"))
{
 std::cout << "Got a " << msg.getCommand()
 << " message containing " << msg.getAckType()
 << ": deleted " << msg.getMatches() << " entries."
 << std::endl;
}

The sowDelete command can also be sent asychronously, in a version that requires a message handler. The mes-
sage handler is written to receive sow_delete response messages from AMPS:.

void HandleSOWDelete(const Message& message)
{
 std::cout << "Got a " << msg.getCommand()
 << " message containing " << msg.getAckType()
 << ": deleted " << msg.getMatches() << " entries."
 << std::endl;
}

....

client.execute_async(Command("sow_delete")
 .setTopic("sow_topic")
 .setFilter("/id in (42, 64, 37)")
 , bind(HandleSOWDelete, placeholders::_1));

Acknowledging messages from a queue uses a form of the sow_delete command that is only supported for queues.
Acknowledgement is discussed in the chapter on queues.

33

Chapter 7. Using Queues
AMPS message queues provide a high-performance way of distributing messages across a set of workers. The AMPS
User Guide describes AMPS queues in detail, including the features of AMPS referred to in this chapter. This chapter
does not describe message queues in detail, but instead explains how to use the AMPS C++ client with message
queues.

To publish messages to an message queue, publishers simply publish to any topic that is collected by the queue.
There is no difference between publishing to a queue and publishing to any other topic, and a publisher does not
need to be aware that the topic will be collected into a queue.

Subscribers must be aware that they are subscribing to a queue, and acknowledge messages from the queue when
the message is processed.

7.1. Backlog and Smart Pipelining
AMPS queues are designed for high-volume applications that need minimal latency and overhead. One of the features
that helps performance is the subscription backlog feature, which allows applications to receive multiple messages
at a time. The subscription backlog sets the maximum number of unacknowledged messages that AMPS will provide
to the subscription.

When the subscription backlog is larger than 1, AMPS delivers additional messages to a subscriber before the sub-
scriber has acknowledged the first message received. This technique allows subscribers to process messages as fast
as possible, without ever having to wait for messages to be delivered. The technique of providing a consistent flow
of messages to the application is called smart pipelining.

Subscription Backlog
The AMPS server determines the backlog for each subscription. An application can set the maximum backlog that
it is willing to accept with the max_backlog option. Depending on the configuration of the queue (or queues)
specified in the subscription, AMPS may assign a smaller backlog to the subscription. If no max_backlog option
is specified, AMPS uses a max_backlog of 1 for that subscription.

In general, applications that have a constant flow of messages perform better with a max_backlog setting higher
than 1. The reason for this is that, with a backlog greater than 1, the application can always have a message waiting
when the previous message is processed. Setting the optimum max_backlog is a matter of understanding the
messaging pattern of your application and how quickly your application can process messages.

To request a max_backlog for a subscription, you explicitly set the option on the subscribe command, as shown
below:

Command cmd("subscribe");
cmd.setTopic("my_queue")
 .setOptions("max_backlog=10");

Acknowledging Messages
For each message delivered on a subscription, AMPS counts the message gainst the subscription backlog until the
message is explicitly acknowledged. In addition, when a queue specifies at-least-once delivery, AMPS retains

Using Queues

34

the message in the queue until the message expires or until the message has been explicitly acknowledged and
removed from the queue. From the point of view of the AMPS server, this is implemented as a sow_delete from
the queue with the bookmarks of the messages to remove. The AMPS C++ client provides several ways to make it
easier for applications to create and send the appropriate sow_delete.

Automatic Acknowledgement

The AMPS client allows you to specify that messages should be automatically acknowledged. When this mode is
on, AMPS acknowledges the message automatically in the following cases:

• Asynchronous message processing interface. The message handler returns without throwing an exception.

• Synchronous message processing interface. The application requests the next message from the Mes-
sageStream.

AMPS batches acknowledgements created with this method, as described in the following section.

To enable automatic acknowledgement batching, use the setAutoAck() method.

client.setAutoAck(true); // enable AutoAck

Message Convenience Method

The AMPS C++ client provides a convenience method, ack(), on delivered messages. When the application is
finished with the message, the application simply calls ack() on the message.

For messages that originated from a queue with at-least-once semantics, this adds the bookmark from the
message to the batch of messages to acknowledge. For other messages, this method has no effect.

message.ack(); // Add this message to the next
 // acknowledgement batch.

Manual Acknowledgement

To manually acknowledge processed messages and remove the messages from the queue, applications use the
sow_delete command with the bookmarks of the messages to remove. Notice that AMPS only supports using a
bookmark with sow_delete when removing messages from a queue, not when removing records from a SOW.

For example, given a Message object to acknowledge and a client, the code below acknowledges the message.

void acknowledgeSingle(const Client & client, const Message & message)
{
 Message acknowledge;
 acknowledge.setCommand("sow_delete")
 .setTopic(message.getTopic())
 .setBookmark(message.getBookmark());
 client.send(acknowledge);
}

Example 7.1. Simple Queue Acknowledgement

Using Queues

35

In listing Example 7.1 the program creates a sow_delete command, specifies the topic and the bookmark, and
then sends the command to the server. Because the program does not need or expect a response from AMPS, this
function uses the Message object rather than the Command object.

While this method works, creating and sending an acknowledgement for each individual message can be inefficient
if your application is processing a large volume of messages. Rather than acknowledging each message individually,
your application can build a comma-delimited list of bookmarks from the processed messages and acknowledge all
of the messages at the same time. In this case, it's important to be sure that the number of messages you wait for is
less than the maximum backlog -- the number of messages your client can have unacknowledged at a given time.
Notice that both automatic acknowledgement and the helper method on the Message object take the maxiumum
backlog into account.

Acknowledgement Batching
The AMPS C++ client automatically batches acknowledgements when either of the convenience methods is used.
Batching acknowledgements reduces the number of round-trips to AMPS, reducing network traffic and improving
overall performance. AMPS sends the batch of acknowledgements when the number of acknowledgements exceeds
a specified size, or when the amount of time since the last batch was sent exceeds a specified timeout.

You can set the number of messages to batch and the maximum amount of time between batches:

client.setAckBatchSize(10); // Send batch after 10 messages
client.setAckTimeout(1000); // ... or 1 second

The AMPS C++ client is aware of the subscription backlog for a subscription. When AMPS returns the acknowl-
edgement for a subscription that contains queues, AMPS includes information on the subscription backlog for the
subscription. If the batch size is larger than the subscription backlog, the AMPS C++ client adjusts the requested
batch size to match the subscription backlog.

36

Chapter 8. Delta Publish and Subscribe

8.1. Introduction
Delta messaging in AMPS has two independent aspects:

• delta subscribe allows subscribers to receive just the fields that are updated within a message.

• delta publish allows publishers to update and add fields within a message by publishing only the updates into
the SOW.

This chapter describes how to create delta publish and delta subscribe commands using the AMPS C++ client. For a
discussion of this capability, how it works, and how message types support this capability see the AMPS User Guide.

8.2. Delta Subscribe
To delta subscribe, you simply use the delta_subscribe command as follows:

// assumes that client is connected and logged on

Command cmd("delta_subscribe");
cmd.setTopic("delta_topic");
cmd.setFilter("/thingIWant = 'true'");

for (auto m : client.execute(cmd))
{
 // Delta messages arrive here
}

As described in the AMPS User Guide, messages provided to a delta subscription will contain the fields used to
generate the SOW key and any changed fields in the message. Your application is responsible for choosing how to
handle the changed fields.

8.3. Delta Publish
To delta publish, you use the delta_publish command as follows:

// assumes that client is connected and logged on

String msg = ... ; // obtain changed fields here

client.deltaPublish("myTopic", msg);

The message that you provide to AMPS must include the fields that the topic uses to generate the SOW key. Other-
wise, AMPS will not be able to identify the message to update. For SOW topics that use a User-Generated SOW
Key, use the Command form of delta_publish to set the SowKey.

// assumes that client is connected and logged on

Delta Publish and Subscribe

37

String msg = ... ; // obtain changed fields here
String key = ... ; // obtain user-generated SOW key

Command cmd("delta_publish");
cmd.setTopic("delta_topic");
cmd.setSowKey(key);
cmd.setData(msg);

// Execute the delta publish. Use NULL for
// a message handler since any failure acks will
// be routed to the FailedWriteHandler
client.executeAsync(cmd,NULL);

38

Chapter 9. High Availability
The AMPS Client provides an easy way to create highly-available applications using AMPS, via the HAClient
class. Using HAClient allows applications to automatically:

• Recover from temporary disconnects between client and server.

• Failover from one server to another when a server becomes unavailable.

• Ensure no messages are lost or duplicated after a reconnect or failover.

• Persist messages and bookmarks on disk for protection against client failure.

You can choose how your application uses HAClient features. For example, you might need automatic reconnec-
tion, but have no need to resume subscriptions or republish messages. The high availability behavior in HAClient is
provided by implementations of defined interfaces. You can combine different implementations provided by 60East
to meet your needs, and implement those interfaces to provide your own policies.

Some of these features require specific configuration settings on your AMPS instance(s). This chapter mentions
these features and describes how to use the C++ HAClient to take advantage of these features. You can find full
documentation for settings and server features in the User Guide.

9.1. Choosing an HAClient Protection Method
Use the HAClient class to create a highly-available connection to one or more AMPS instances. HAClient de-
rives from Client and offers the same methods, but also adds protection against network, server, and client out-
ages. Most code written with Client will also work with HAClient, and major differences involve constructing
and connecting the HAClient.

The HAClient provides protection from disconnection using Stores. As the name implies, stores hold information
about the state of the client. There are two types of store:

• A bookmark store tracks received messages, and is used to resume subscriptions.

• A publish store tracks published messages, and is used to ensure that messages are persisted in AMPS.

The AMPS client provides a memory-backed version of each store and a file-backed version of each store. An HA-
Client can use either a memory backed store or a file backed store for protection. Each method provides resilience
to different failures:

• Memory-backed stores protect against disconnection from AMPS by storing messages and bookmarks in your
process’ address space. This is the highest performance option for working with AMPS in a highly available
manner. The trade-off with this method is there is no protection from a crash or failure of your client application. If
your application is terminated prematurely or, if the application terminates at the same time as an AMPS instance
failure or network outage, then messages may be lost or duplicated.

• File-backed stores protect against client failure and disconnection from AMPS by storing messages and bookmarks
on disk. To use this protection method, the create_file_backed method requests additional arguments for
the two files that will be used for both bookmark storage and message storage. If these files exist and are non-
empty (as they would be after a client application is restarted), the HAClient loads their contents and ensures
synchronization with the AMPS server once connected. The performance of this option depends heavily on the
speed of the device on which these files are placed. When the files do not exist (as they would the first time a
client starts on a given system), the HAClient creates and initializes the files. In this case the client does not
have a point at which to resume the subscription or messages to republish.

High Availability

39

While clients provide convenience methods for creating file-backed and memory-backed HAClient objects with
the appropriate stores, you can also create and set the stores in your application code. The store interface is public,
and an application can create and provide a custom store as necessary.

In this example, we create two clients, one for ”less-important” messages that uses memory for its store, and one
which uses a pair of files for its store:

HAClient memoryClient = HAClient::createMemoryBacked(
 "lessImportantMessages");
HAClient diskClient = HAClient::createFileBacked(
 "moreImportantMessages",
 "/mnt/fastDisk/moreImportantMessages.outgoing",
 "/mnt/fastDisk/moreImportantMessages.incoming");

Example 9.1. HAClient creation examples

While this chapter presents the built-in file and memory-based stores, the AMPS C/C++
Client provides open interfaces that allow development of custom persistent message stores.
You can implement the Store and BookmarkStore interfaces in your code, and then
pass instances of those to setPublishStore() or setBookmarkStore() methods
in your Client. Instructions on developing a custom store are beyond the scope of this
document; please refer to the AMPS Client HA Whitepaper for more information.

9.2. Connections and the ServerChooser
Unlike Client, the HAClient attempts to keep itself connected to an AMPS instance at all times, by automat-
ically reconnecting or failing over when it detects disconnect. When you are using the Client directly, your dis-
connect handler usually takes care of reconnection. HAClient, on the other hand, provides a disconnect handler
that automatically reconnects to the current server or to the next available server.

To inform the HAClient of the addresses of the AMPS instances in your system, you pass a ServerChooser
instance to the HAClient. ServerChooser acts as a smart enumerator over the servers available: HAClient
calls ServerChooser methods to inquire about what server should be connected, and calls methods to indicate
whether a given server succeeded or failed.

The AMPS C/C++ Client provides a simple implementation of ServerChooser, called DefaultServer-
Chooser, that provides very simple logic for reconnecting. This server chooser is most suitable for basic testing,
or in cases where an application should simply rotate through a list of servers. For most applications, you implement
the ServerChooser interface yourself for more advanced logic, such as choosing a backup server based on your
network topology, or limiting the number of times your application should try to reconnect to a given address.

In either case, you must provide a ServerChooser to HAClient to get started, and then invoke connectAnd-
Logon() to create the first connection. If no ServerChooser is provided, the HAClient throws an exception:

HAClient myClient = HAClient::createMemoryBacked(
 "myClient");

// primary.amps.xyz.com is the primary AMPS instance, and
// secondary.amps.xyz.com is the secondary
ServerChooser chooser(new DefaultServerChooser());
chooser.add("tcp://primary.amps.xyz.com:12345/fix");

High Availability

40

chooser.add("tcp://secondary.amps.xyz.com:12345/fix");
myClient.setServerChooser(chooser);
myClient.connectAndLogon();
...
myClient.disconnect();

Example 9.2. HAClient logon

Similar to Client, HAClient remains connected to the server until disconnect() is called. Unlike Client,
HAClient provides a built-in disconnect handler that automatically attempts to reconnect to your server if it detects
a disconnect, and, if that server cannot be connected, fails over to the next server provided by the ServerChooser.
In this example, the call to connectAndLogon() attempts to connect and log in to primary.amps.xyz.com,
and returns if that is successful. If it cannot connect, it tries secondary.amps.xyz.com, and continues trying
servers from the ServerChooser until a connection is established. Likewise, if it detects a disconnection while
the client is in use, HAClient attempts to reconnect to the server it was most recently connected with, and, if that
is not possible, it moves on to the next server provided by the ServerChooser.

9.3. Heartbeats and Failure Detection
Use of the HAClient allows your application to quickly recover from detected connection failures. By default,
connection failure detection occurs when AMPS receives an operating system error on the connection. This system
may result in unpredictable delays in detecting a connection failure on the client, particularly when failures in network
routing hardware occur, and the client primarily acts as a subscriber.

The heartbeat feature of the AMPS client allows connection failure to be detected quickly. Heartbeats ensure that
regular messages are sent between the AMPS client and server on a predictable schedule. The AMPS client and
server both assume disconnection has occurred if these regular heartbeats cease, ensuring disconnection is detected
in a timely manner. To utilize heartbeat, call the setHeartbeat method on Client or HAClient:

HAClient client = HAClient::createMemoryBacked(
 "importantStuff");
...
client.connectAndLogon();
client.setHeartbeat(3);
...

setHeartbeat takes one parameter: the heartbeat interval. The heartbeat interval specifies the periodicity of
heartbeat messages sent by the server: the value 3 indicates messages are sent on a three-second interval. If the client
receives no messages in a six second window (two heartbeat intervals), the connection is assumed to be dead, and
the HAClient attempts reconnection. An additional variant of setHeartbeat allows the idle period to be set
to a value other than two heartbeat intervals.

9.4. Considerations for Publishers
Publishing with an HAClient is nearly identical to regular publishing; you simply call the publish() method
with your message’s topic and data. The AMPS client sends these messages asynchronously for maximum perfor-
mance, but, before exiting or terminating your connection, you should ensure that the server has received all of
your messages. The AMPS server occasionally sends persisted acknowledgement messages that indicate messages

High Availability

41

it has successfully received and persisted. For safety, your application should wait until it has successfully received
the final acknowledgement from the AMPS instance. Use the unpersistedCount() method in the Store to
determine how many messages remain unacknowledged by the AMPS instance, as in the following example:

HAClient pub = HAClient.createMemoryBacked(
 "importantStuff");
...
pub.connectAndLogon();
std::string topic = "loggedTopic";
std:string data = ...;
for(size_t i = 0; i < MESSAGE_COUNT; i++)
{
 pub.publish(topic, data);
}

// We think we are done, but the server may not
// have acknowledged us yet.
while(pub.getPublishStore().unpersistedCount() > 0)
{
 printf(("waiting for final ack from the server...");
 sleep(1000);
}
pub.disconnect();

Example 9.3. HA Publisher

In this example, the client sends each message immediately when publish() is called, but if AMPS becomes
unavailable between the final publish() and the disconnect(), then the client may not have received an
acknowledgement for all of the published messages. It is possible that not every message has been received or
persisted by the AMPS server. By waiting until unpersistedCount() becomes 0, the application ensures that
it has received acknowledgement for every message published. If a disconnect or failover occurs while waiting,
HAClient automatically reconnects and correlates its internal store with the AMPS server (via the client sequence
number returned in the acknowledgement message from the logon), replaying any messages the AMPS server might
need in order to be consistent.

AMPS uses the name of the HAClient to determine the origin of messages. For the AMPS
server to correctly identify duplicate messages, each instance of an application that publishes
messages must use a distinct name. That name must be consistent across different runs of
the application.

If your application crashes or is terminated by an outside force, some published messages may not have been
persisted in the AMPS server. If you use the file-based store (in other words, the store created by using
HAClient.createFileBacked()), then the HAClient will recover the messages, and once logged on, cor-
relate the message store to what the AMPS server has received, re-publishing any missing messages. This occurs
automatically when HAClientconnects, without any explicit consideration in your code, other than ensuring that
the same file name is passed to createFileBacked() if recovery is desired.

AMPS provides persisted acknowledgement messages for topics that do not have a transac-
tion log enabled; however, the level of durability provided for topics with no transaction log
is minimal. Learn more about transaction logs in the User Guide.

High Availability

42

9.5. Considerations for Subscribers
HAClient provides two important features for applications that subscribe to one or more topics: re-subscription,
and a bookmark store to track the correct point at which to resume a bookmark subscription.

Resubscription With Asynchronous Message Processing
Any asynchronous subscription placed using an HAClient is automatically reinstated after a disconnect or a
failover. These subscriptions are placed in an in-memory SubscriptionManager, which is created automati-
cally when the HAClient is instantiated. Most applications will use this built-in subscription manager, but for ap-
plications that create a varying number of subscriptions, you may wish to implement SubscriptionManager to
store subscriptions in a more durable place. Note that these subscriptions contain no message data, but rather simply
contain the the parameters of the subscription itself (for instance, the command, topic, message handler, options,
and filter).

When a re-subscription occurs, the AMPS C++ Client re-executes the command as originally submitted, including
the original topic, options, and so on. AMPS sends the subscriber any messages for the specified topic (or topic
expression) that are published after the subscription is placed. For a sow_and_subscribe command, this means
that the client reissues the full command, including the SOW query as well as the subscription.

Resubscription With Synchronous Message Processing
The HAClient (starting with the AMPS C++ Client version 4.3.1.1) does not track synchronous message processing
subscriptions in the SubscriptionManager. The reason for this is to preserve conventional iterator behavior.
That is, once the MessageStream indicates that there are no more elements to iterate (for example, because the
connection has closed), the MessageStream will not \suddenly produce more elements.

To resubscribe when the HAClient fails over, you can simply reissue the subscription. For example, the snippet
below re-issues a subscribe command when the message stream ends:

bool still_need_to_process = true;

while (still_need_to_process == true)
{
 for (auto message : client.subscribe("messages"))
 {
 // process messages

 // check condition on still_need_to_process

 if (still_need_to_process == false) break;
 }
 // end of stream, for a subscribe this means
 // that the connection is likely closed.

}

High Availability

43

Bookmark Stores
In cases where it is critical not to miss a single message, it is important to be able to resume a subscription at the
exact point that a failure occurred. In this case, simply recreating a subscription isn't sufficient. Even though the
subscription is recreated, the subscriber may have been disconnected at precisely the wrong time, and will not see
the message.

To ensure delivery of every message from a topic or set of topics, the AMPS HAClient includes a BookmarkS-
tore that, combined with the bookmark subscription and transaction log functionality in the AMPS server, ensures
that clients receive any messages that might have been missed. The client stores the bookmark associated with each
message received, and tracks whether the application has processed that message; if a disconnect occurs, the client
uses the BookmarkStore to determine the correct resubscription point, and sends that bookmark to AMPS when it
re-subscribes. AMPS then replays messages from its transaction log from the point after the specified bookmark,
thus ensuring the client is completely up-to-date.

HAClient helps you to take advantage of this bookmark mechanism through the BookmarkStore interface and
bookmarkSubscribe() method on Client. When you create subscriptions with bookmarkSubscribe(),
whenever a disconnection or failover occurs, your application automatically resubscribes to the message after the
last message it processed. HAClients created by createFileBacked() additionally store these bookmarks
on disk, so that the application can restart with the appropriate message if the client application fails and restarts.

To take advantage of bookmark subscriptions, do the following:

• Ensure the topic(s) to be subscribed are included in a transaction log. See the User Guide for information on how
to specify the contents of a transaction log.

• Use bookmarkSubscribe() instead of subscribe() when creating a subscription, and decide how the
application will manage subscription identifiers (SubIds).

• Use the BookmarkStore.discard() method in message handlers to indicate when a message has been fully
processed by the application.

The following example creates a bookmark subscription against a transaction-logged topic, and fully processes each
message as soon as it is delivered:

HAClient client = HAClient::createFileBacked(
 "aClient",
 "/logs/aClient.publishLog",
 "/logs/aClient.subscribeLog");

namespace MyMessageHandler
{
 public void invoke(const Message& message, void* data)
 {
 ...
 client.getBookmarkStore().discard(message);
 ...
 }
}

AMPS::Command command("subscribe");
command.setTopic("myTopic")
 .setSubscriptionId("MySubId")

High Availability

44

 .setBookmark(AMPS::Client::BOOKMARK_RECENT());

std::string commandID =
 client.execute_async(Command("subscribe")
 .setTopic("myTopic")
 .setSubscriptionId("MySubId")
 .setBookmark(AMPS::Client::BOOKMARK_RECENT()),
 AMPS::MessageHandler(MyMessageHandler::invoke,(void*)
(&client)));

Example 9.4. HAClient Subscription

In this example, the client is a file-backed client, meaning that arriving bookmarks will be stored in a file
(Client.subscribeLog). Storing these bookmarks in a file allows the application to restart the subscription
from the last message processed, in the event of either server or client failure.

For optimum performance, it is critical to discard every message once its processing is com-
plete. If a message is never discarded, it remains in the bookmark store. During re-sub-
scription, HAClient always restarts the bookmark subscription with the oldest undiscarded
message, and then filters out any more recent messages that have been discarded. If an old
message remains in the store, but is no longer important for the application’s functioning,
the client and the AMPS server will incur unnecessary network, disk, and CPU activity.

In Example 9.4 all parameters after the bookmark are optional. However, all options before — and including the
bookmark — are required when creating a bookmarkSubscribe().

The last parameter, subId, specifies an identifier to be used for this subscription. Passing NULL causes HAClient
to generate one and return it, like most other Client functions. However, if you wish to resume a subscription from
a previous point after the application has terminated and restarted, the application must pass the same subscription
ID as during its previous run. Passing a different subscription ID bypasses any recovery mechanisms, creating an
entirely new subscription. When you use an existing subscription ID, the HAClient locates the last-used bookmark
for that subscription in the local store, and attempts to re-subscribe from that point.

The subId is also required to be unique when used within a single client, but can be the same in different clients.
Internally, AMPS tracks subscriptions in each client, thus each identifier for each subscription within a client must
be unique. The same subId can be reused across unique clients simultaneously without causing problems.

• Client::BOOKMARK_NOW() specifies that the subscription should begin from the moment the server receives
the subscription request. This results in the same messages being delivered as if you had invoked subscribe()
instead, except that the messages will be accompanied by bookmarks. This is also the behavior that results if you
supply an invalid bookmark.

• Client::BOOKMARK_EPOCH() specifies that the subscription should begin from the beginning of the AMPS
transaction log.

• Client::BOOKMARK_RECENT() specifies that the subscription should begin from the last-used message
in the associated BookmarkStore, or, if this subscription has not been seen before, to begin with EPOCH.
This is the most common value for this parameter, and is the value used in the preceding example. By using
MOST_RECENT, the application automatically resumes from wherever the subscription left off, taking into ac-
count any messages that have already been processed and discarded.

When the HAClient re-subscribes after a disconnection and reconnection, it always uses MOST_RECENT, ensuring
that the continued subscription always begins from the last message used before the disconnect, so that no messages
are missed.

High Availability

45

9.6. Conclusion
With only a few changes, most AMPS applications can take advantage of the HAClient and associated classes to
become more highly-available and resilient. Using the PublishStore, publishers can ensure that every message
published has actually been persisted by AMPS. Using BookmarkStore, subscribers can make sure that there
are no gaps or duplicates in the messages received. HAClient makes both kinds of applications more resilient
to network and server outages and temporary issues, and, by using the file-based HAClient, clients can recover
their state after an unexpected termination or crash. Though HAClient provides useful defaults for the Store,
BookmarkStore, SubscriptionManager, and ServerChooser, you can customize any or all of these to
the specific needs of your application and architecture.

46

Chapter 10. AMPS Programming:
Working with Commands

The AMPS clients provide named convenience methods for core AMPS functionality. These named methods work by
creating messages and sending those messages to AMPS. All communication with AMPS occurs through messages.

You can use the Command object to customize the messages that AMPS sends. This is useful for more advanced
scenarios where you need precise control over AMPS, in cases where you need to use an earlier verison of the client
to communicate with a more recent version of AMPS, or in cases where a named method is not available.

10.1. Understanding AMPS Messages
AMPS messages are represented in the client as AMPS.Message objects. The Message object is generic, and can
represent any type of AMPS message, including both outgoing and incoming messages. This section includes a brief
overview of elements common to AMPS command message. Full details of commands to AMPS are provided in
the AMPS Command Reference Guide.

All AMPS command messages contain the following elements:

• Command. The command tells AMPS how to interpret the message. Without a command, AMPS will reject the
message. Examples of commands include publish, subscribe, and sow.

• CommandId. The command id, together with the name of the client, uniquely identifies a command to AMPS.
The command ID can be used later on to refer to the command or the results of the command. For example, the
command id for a subscribe message becomes the identifier for the subscription. The AMPS client provides
a command id when the command requires one and no command id is set.

Most AMPS messages contain the following fields:

• Topic. The topic that the command applies to, or a regular expression that identifies a set of topics that the com-
mand applies to. For most commands, the topic is required. Commands such as logon, start_timer, and
stop_timer do not apply to a specific topic, and do not need this field.

• Ack Type. The ack type tells AMPS how to acknowledge the message to the client. Each command has a default
acknowledgement type that AMPS uses if no other type is provided.

• Options. The options are a comma-separated list of options that affect how AMPS processes and responds
to the message.

Beyond these fields, different commands include fields that are relevant to that particular command. For example,
SOW queries, subscriptions, and some forms of SOW deletes accept the Filter field, which specifies the filter to
apply to the subscription or query. As another example, publish commands accept the Expiration field, which sets
the SOW expiration for the message.

For full details on the options available for each command and the acknowledgement messages returned by AMPS,
see the AMPS Command Reference Guide.

10.2. Creating and Populating the Command
To create a command, you simply construct a command object of the appropriate type:

AMPS Programming: Working with Commands

47

AMPS::Command command("sow");

Once created, you set the appropriate fields on the command. For example, the following code creates a publish
message, setting the command, topic, data to publish, and an expiration for the message:

AMPS::Command command("sow")
 .setTopic("messages-sow")
 .setFilter("/id > 20");

When sent to AMPS using the execute() method, AMPS performs a SOW query from the topic messages-sow
using a filter of /id > 20. The results of sending this message to AMPS are no different than using the form of
the sow method that sets these fields.

10.3. Using execute
Once you've created a message, use the execute method to send the message to AMPS. The execute method
returns a MessageStream that provides response messages. The executeAsync method sends the command to
AMPS, waits for a processed acknowledgement, then returns. Messages are processed on the client background
thread.

For example, the following snippet sends the command created above:

client.execute(command);

You can also provide a message handler to receive acknowledgements, statistics, or the results of subscriptions and
SOW queries. The AMPS client maintains a background thread that receives and processes incoming messages. The
call to executeAsync returns on the main thread as soon as AMPS acknowledges the command as having been
processed, and messages are received and processed on the background thread:

void handleMessages(const AMPS::Message& m, void* user_data)
{
 // print acknowledgement type and reason for sample purposes.
 std::cout << m.getAckType() << " : " << m.getReason() << std::endl;
}

...

client.executeAsync(command, AMPS::MessageHandler(handleMessages, NULL));

...

While this message handler simply prints the ack type and reason for sample purposes, message handlers in produc-
tion applications are typically designed with a specific purpose. For example, your message handler may fill a work
queue, or check for success and throw an exception if a command failed.

Notice that the publish command does not provide typically return results other than acknowledgement messages,
so there is little need for a message handler with a publish command. To send a publish command, use the
executeAsync() method with a NULL message handler:

client.executeAsync(publishCmd, NULL);

AMPS Programming: Working with Commands

48

10.4. Command Cookbook
This section is a quick guide to commonly used AMPS commands. For the full range of options on AMPS commands,
see the AMPS Command Reference.

Publishing
This section presents common recipes for publishing to a topic in AMPS using the Command or Message interfaces.
This section provides information on how to configure the request to AMPS. You can adapt this information to your
application and the specific interface you are using.

The AMPS server does not return a stream of messages in response to a publish command.

AMPS publish commands do not return a stream of messages. A publish command must be used
with asynchronous message processing, while passing an empty message handler.

Basic Publish

In its simplest form, a subscription needs only the topic to publish to and the data to publish. The AMPS client
automatically constructs the necessary AMPS headers and formats the full publish command.

In many cases, a publisher only needs to use the basic publish command.

Table 10.1. Basic Publish

Header Comment

Topic Sets the topic to publish to. The topic specified must be
a literal topic name. Regular expression characters in the
topic name are not interpreted.

Some topics in AMPS, such as views and conflated top-
ics, cannot be published to directly. Instead, a publisher
must publish to the underlying topics.

Data The data to publish to the topic. The AMPS client does
not interpret, escape, or validate this data: the data is pro-
vided to the server verbatim.

Publish With CorrelationId

AMPS provides publishers with a header field that can be used to contain arbitrary data, the CorrelationId.

Table 10.2. Publish With CorrelationId

Header Comment

Topic Sets the topic to publish to. The topic specified must be
a literal topic name. Regular expression characters in the
topic name are not interpreted.

AMPS Programming: Working with Commands

49

Header Comment
Some topics in AMPS, such as views and conflated top-
ics, cannot be published to directly. Instead, a publisher
must publish to the underlying topics.

Data The data to publish to the topic. The AMPS client does
not interpret, escape, or validate this data: the data is pro-
vided to the server verbatim.

CorrelationId The CorrelationId to provide on the message. AM-
PS provides the CorrelationId to subscribers. The
CorrelationId has no significance for AMPS.

The CorrelationId may only contain characters that
are valid in base-64 encoding.

Publish With Explicit SOW Key

When publishing to a SOW topic that is configured to require an explicit SOW key, the publisher needs to set the
SowKey header on the message.

Table 10.3. Publish with Explicit SOW Key

Header Comment

Topic Sets the topic to publish to. The topic specified must be
a literal topic name. Regular expression characters in the
topic name are not interpreted.

Some topics in AMPS, such as views and conflated top-
ics, cannot be published to directly. Instead, a publisher
must publish to the underlying topics.

Data The data to publish to the topic. The AMPS client does
not interpret, escape, or validate this data: the data is pro-
vided to the server verbatim.

SowKey The SOW Key to use for this message. This header is
only supported for publishes to a topic that requires an
explicit SOW Key.

Command Cookbook: Subscribing
This section presents common recipes for subscribing to a topic in AMPS using the Command or Message inter-
faces. This section provides information on how to configure the request to AMPS. You can adapt this information
to your application and the specific interface you are using.

Basic Subscription

In its simplest form, a subscription needs only the topic to subscribe to.

AMPS Programming: Working with Commands

50

Table 10.4. Basic Subscription

Header Comment

Topic Sets the topic to subscribe to. All messages from the topic
will be delivered on this subscription. The topic specified
can be the literal topic name, or a regular expression that
matches multiple topics.

Basic Subscription With Options

In its simplest form, a subscription needs only the topic to subscribe to. To add options to the subscription, set the
Options header on the Command.

Table 10.5. Basic Subscription with Options

Header Comment

Topic Sets the topic to subscribe to. All messages from the topic
will be delivered on this subscription. The topic specified
can be the literal topic name, or a regular expression that
matches multiple topics.

Options A comma-delimited set of options for this command. See
the AMPS Command Reference for a description of sup-
ported options.

Content Filtered Subscription

To provide a content filter on a subscription, set the Filter property on the command. The AMPS User Guide
provides details on the filter syntax.

Table 10.6. Content Filtered Subscription

Header Comment

Topic Sets the topic to subscribe to. The topic provided can be
either the exact name of the topic, or a regular expression
that matches the names of the topics for the subscription.

Filter Sets the content filter to be applied to the subscription.
Only messages that match the content filter will be pro-
vided to the subscription.

Bookmark Subscription

To create a bookmark subscription, set the Bookmark property on the command. The value of this property can be
either a specific bookmark, a timestamp, or one of the client-provided constants. The AMPS User Guide provides
details on creating timestamps. Notice that the MOST_RECENT constant tells the AMPS client to find the appro-
priate message in the client bookmark store and begin the subscription at that point. In this case, the client sends
that bookmark value to AMPS. The Bookmark option is only supported for topics that are recorded in an AMPS
transaction log.

AMPS Programming: Working with Commands

51

Table 10.7. Bookmark Subscription

Header Comment

Topic Sets the topic to subscribe to. The topic provided can be
either the exact name of the topic, or a regular expression
that matches the names of the topics for the subscription.

Bookmark Sets the point in the transaction log at which the subscrip-
tion will begin. The bookmark provided can be a specific
AMPS bookmark, a timestamp, or one of the client-pro-
vided constants.

AMPS also accepts a comma-delimited list of book-
marks. In this case, AMPS begins the subscription from
whichever of the bookmarks is earliest in the transaction
log.

Rate Controlled Bookmark Subscription

To create a bookmark subscription, set the Bookmark property on the command. The value of this property can be
either a specific bookmark, a timestamp, or one of the client-provided constants. The AMPS User Guide provides
details on creating timestamps. Notice that the MOST_RECENT constant tells the AMPS client to find the appro-
priate message in the client bookmark store and begin the subscription at that point. In this case, the client sends
that bookmark value to AMPS. The Bookmark option is only supported for topics that are recorded in an AMPS
transaction log.

Table 10.8. Bookmark Subscription

Header Comment

Topic Sets the topic to subscribe to. The topic provided can be
either the exact name of the topic, or a regular expression
that matches the names of the topics for the subscription.

Bookmark Sets the point in the transaction log at which the subscrip-
tion will begin. The bookmark provided can be a specific
AMPS bookmark, a timestamp, or one of the client-pro-
vided constants.

AMPS also accepts a comma-delimited list of book-
marks. In this case, AMPS begins the subscription from
whichever of the bookmarks is earliest in the transaction
log.

Options A comma-separated list of options for the command. To
control the rate at which AMPS delivers messages, the
options for the command must include a rate specifier.
For example, to specify a limit of 750 messages per sec-
ond, include rate=750 in the options string.

Bookmark Subscription With Content Filter

To create a bookmark subscription, set the Bookmark property on the command. The property can be either a
specific bookmark, a timestamp, or one of the client-provided constants. The AMPS User Guide provides details on
creating timestamps. Notice that the MOST_RECENT constant tells the AMPS client to find the appropriate message

AMPS Programming: Working with Commands

52

in the client bookmark store and begin the subscription at that point. In this case, the client sends that bookmark
value to AMPS.

To add a filter to a bookmark subscription, set the Filter property on the command. The AMPS User Guide
provides details on the filter syntax.

Table 10.9. Bookmark Subscription With Content Filter

Header Comment

Topic Sets the topic to subscribe to. The topic provided can be
either the exact name of the topic, or a regular expression
that matches the names of the topics for the subscription.

Bookmark Sets the point in the transaction log at which the subscrip-
tion will begin. The bookmark provided can be a specific
AMPS bookmark, a timestamp, or one of the client-pro-
vided constants.

AMPS also accepts a comma-delimited list of book-
marks. In this case, AMPS begins the subscription from
whichever of the bookmarks is earliest in the transaction
log.

Filter Sets the content filter to be applied to the subscription.
Only messages that match the content filter will be pro-
vided to the subscription.

Pausing a Bookmark Subscription

To pause a bookmark subscription, you must provide the subscription ID and the pause option on a subscribe
command.

Table 10.10. Pause a Bookmark Subscription

Header Comment

Topic Sets the topic to subscribe to. The topic provided can be
either the exact name of the topic, or a regular expression
that matches the names of the topics for the subscription.

SubId A comma-delimited list of subscription IDs to pause.

Options A comma-delimited list of options for the command. To
pause a subscription, the options must include pause.

Resuming a Bookmark Subscription

To resume a bookmark subscription, you must provide the subscription ID and the resume option on a subscribe
command.

Table 10.11. Resume a Bookmark Subscription

Header Comment

Topic Sets the topic to subscribe to. The topic provided can be
either the exact name of the topic, or a regular expression
that matches the names of the topics for the subscription.

AMPS Programming: Working with Commands

53

Header Comment

SubId A comma-delimited list of subscription IDs to resume.

Options A comma-delimited list of options for the command. To
resume a subscription, the options must include resume.

Replacing the Filter on a Subscription

To replace the content filter on a subscription, provide the SubId of the subscription to be replaced, add the re-
place option, and set the Filter property on the command with the new filter. The AMPS User Guide provides
details on the filter syntax.

Table 10.12. Replacing the Filter on a Subscription

Header Comment

Topic Sets the topic to subscribe to. The topic provided can be
either the exact name of the topic, or a regular expression
that matches the names of the topics for the subscription.

SubId The identifier for the subscription to update. The SubId
is the CommandId for the original subscribe com-
mand.

Options A comma-separated list of options. To replace the filter
on a subscription, include replace in the list of options.

Filter Sets the content filter to be applied to the subscription.
Only messages that match the content filter will be pro-
vided to the subscription.

Subscribing to a Queue and Requesting a max_backlog

To subscribe to a queue and request a max_backlog greater than 1, use the Options field of the subscribe
command to set the requested max_backlog.

Table 10.13. Requesting a max_backlog

Header Comment

Topic Sets the topic to subscribe to. The topic provided can be
either the exact name of the topic, or a regular expression
that matches the names of the topics for the subscription.

Options A comma-separated list of options. To request a value for
the max_backlog, pass the value in the options as follows:

max_backlog=NN

For example, to request a max backlog of 7, your appli-
cation would pass the following option:

max_backlog=7

AMPS Programming: Working with Commands

54

SOW Query
This section presents common recipes for querying a SOW topic in AMPS using the Command or Message inter-
faces. This section provides information on how to configure the request to AMPS. You can adapt this information
to your application and the specific interface you are using.

Basic SOW Query

In its simplest form, a SOW query needs only the topic to query.

Table 10.14. Basic SOW Query

Header Comment

Topic Sets the topic to query. The SOW query returns all mes-
sages in the SOW. The topic specified can be the literal
topic name, or a regular expression that matches multiple
topics.

Basic SOW With Options

In its simplest form, a SOW needs only the topic to subscribe to. To add options to the subscription, set the Options
header on the Command.

Table 10.15. Basic SOW Query with Options

Header Comment

Topic Sets the topic to query. The SOW query returns all mes-
sages in the SOW. The topic specified can be the literal
topic name, or a regular expression that matches multiple
topics.

Options A comma-delimited set of options for this command. See
the AMPS Command Reference for a description of
supported options.

SOW Query With Ordered Results

In its simplest form, a SOW needs only the topic to subscribe to. To return the results in a specific order, provide
an ordering expression in the OrderBy header.

Table 10.16. Basic SOW Query with Ordered Results

Header Comment

Topic Sets the topic to query. The SOW query returns all mes-
sages in the SOW. The topic specified can be the literal
topic name, or a regular expression that matches multiple
topics.

OrderBy Orders the results returned as specified. Requires a com-
ma-separated list of identifiers of the form:

/field [ASC | DESC]

AMPS Programming: Working with Commands

55

Header Comment
For example, to sort in descending order by orderDate
so that the most recent orders are first, and ascending or-
der by customerName for orders with the same date,
you might use a specifier such as:

/orderDate DESC, /customerName ASC

If no sort order is specified for an identifer, AMPS de-
faults to ascending order.

SOW Query With TopN Results

In its simplest form, a SOW needs only the topic to subscribe to. To return only a specific number of records, provide
the number of records to return in the TopN header.

Table 10.17. SOW Query with TopN Results

Header Comment

Topic Sets the topic to query. The SOW query returns all mes-
sages in the SOW. The topic specified can be the literal
topic name, or a regular expression that matches multiple
topics.

TopN The maximum number of records to return. AMPS us-
es the OrderBy header to determine the order of the
records.

If no OrderBy header is provided, records are returned
in an indeterminate order. In most cases, using an Order-
By header when you use the TopN header will guarantee
that you get the records of interest.

OrderBy Orders the results returned as specified. Requires a com-
ma-separated list of identifiers of the form:

/field [ASC | DESC]

For example, to sort in descending order by orderDate
so that the most recent orders are first, and ascending or-
der by customerName for orders with the same date,
you might use a specifier such as:

/orderDate DESC, /customerName ASC

If no sort order is specified for an identifer, AMPS de-
faults to ascending order.

Content Filtered SOW Query

To provide a content filter on a SOW query, set the Filter property on the command. The AMPS User Guide
provides details on the filter syntax.

AMPS Programming: Working with Commands

56

Table 10.18. Content Filtered SOW Query Subscription

Header Comment

Topic Sets the topic to query. The topic specified can be the
literal topic name, or a regular expression that matches
multiple topics.

Filter Sets the content filter to be applied to the query. Only
messages that match the content filter will be returned in
response to the query.

Historical SOW Query

To create a historical SOW query, set the Bookmark property on the command. The property can be either a specific
bookmark or a timestamp. The AMPS User Guide provides details on creating timestamps.

This command is only supported on SOW topics that have History enabled.

Table 10.19. Historical SOW Query

Header Comment

Topic Sets the topic to query. The topic specified can be the
literal topic name, or a regular expression that matches
multiple topics.

Bookmark Sets the historical point in the SOW at which to query.
The query returns the saved state of the records in the
SOW as of the point in time specified in this header.

Historical SOW Query With Content Filter

To create a historical SOW query, set the Bookmark property on the command. The property can be either a specific
bookmark or a timestamp. The AMPS User Guide provides details on creating timestamps. To add a filter to the
query, set the Filter property on the command. The AMPS User Guide provides details on the filter syntax.

This command is only supported on SOW topics that have History enabled.

Table 10.20. Historical SOW Query With Content Filter

Header Comment

Topic Sets the topic to query. The topic specified can be the
literal topic name, or a regular expression that matches
multiple topics.

Bookmark Sets the historical point in the SOW at which to query.
The query returns the saved state of the records in the
SOW as of the point in time specified in this header.

Filter Sets the content filter to be applied to the query. Only
messages that match the content filter will be provided to
the query.

AMPS Programming: Working with Commands

57

SOW Query for Specific Records

AMPS allows a consumer to query for specific records as identified by a set of SowKeys. For topics where AMPS
assigns the SowKey, the SowKey for the record is the AMPS-assigned identifier. For topics configured to require
a user-provided SowKey, the SowKey for the record is the original key provided when the record was published.
The AMPS User Guide provides more details on SOW keys.
Table 10.21. SOW Query by SOW Key

Header Comment

Topic Sets the topic to query. The topic specified can be the
literal topic name, or a regular expression that matches
multiple topics.

SowKeys A comma-delimited list of SowKey values. AMPS re-
turns only the records specified in this list.

For example, a valid format for a list of keys would be:

1853097931817257202,10402779940201650075,22363879930342650852

SOW and Subscribe
This section presents common recipes for atomic sow and subscribe in AMPS using the Command or Message
interfaces. This section provides information on how to configure the request to AMPS. You can adapt this informa-
tion to your application and the specific interface you are using.

Basic SOW and Subscribe

In its simplest form, a SOW and Subscribe needs only the topic to subscribe to.
Table 10.22. Basic SOW and Subscribe

Header Comment

Topic Sets the topic to query and subscribe to. The topic speci-
fied can be the literal topic name, or a regular expression
that matches multiple topics.

SOW and Subscribe With Options

In its simplest form, a SOW and subscribe command needs only the topic to subscribe to. To add options to the
subscription, set the Options header on the Command.

Table 10.23. Basic SOW and Subscribe with Options

Header Comment

Topic Sets the topic to query and subscribe to. The topic speci-
fied can be the literal topic name, or a regular expression
that matches multiple topics.

Options A comma-delimited set of options for this command. See
the AMPS Command Reference for a full description
of supported options.

AMPS Programming: Working with Commands

58

Header Comment
The most common options for this command are:

oof Request out of order notifi-
cations

timestamp Include timestamps on mes-
sages

Content Filtered SOW and Subscribe

To provide a content filter on a SOW and Subscribe, set the Filter property on the command. The AMPS User
Guide provides details on the filter syntax.

Table 10.24. Content Filtered SOW and Subscribe

Header Comment

Topic Sets the topic to query and subscribe to. The topic speci-
fied can be the literal topic name, or a regular expression
that matches multiple topics.

Filter Sets the content filter to be applied to the query. Only
messages that match the content filter will be returned in
response to the query.

Historical SOW and Subscribe

To create a historical SOW query with a subscription, set the Bookmark property on the command. The property
can be either a specific bookmark or a timestamp. The AMPS User Guide provides details on creating timestamps.
This command is only supported on SOW topics that are recorded in an AMPS transaction log. If the Bookmark
provided is a value other than NOW (0|1|), the SOW topic must have History enabled.

Table 10.25. Historical SOW and Subscribe

Header Comment

Topic Sets the topic to query and subscribe to. The topic speci-
fied can be the literal topic name, or a regular expression
that matches multiple topics.

Bookmark Sets the historical point in the SOW at which to query.
The query returns the saved state of the records in the
SOW as of the point in time specified in this header.

Historical SOW and Subscribe With Content Filter

To create a historical SOW query with a subscription, set the Bookmark property on the command. The property
can be either a specific bookmark or a timestamp. The AMPS User Guide provides details on creating timestamps.
This command is only supported on SOW topics that are recorded in an AMPS transaction log. If the Bookmark
provided is a value other than NOW (0|1|), the SOW topic must have History enabled.

AMPS Programming: Working with Commands

59

Table 10.26. Historical SOW and Subscribe With Content Filter

Header Comment

Topic Sets the topic to query. The topic specified can be the
literal topic name, or a regular expression that matches
multiple topics.

Bookmark Sets the historical point in the SOW at which to query.
The query returns the saved state of the records in the
SOW as of the point in time specified in this header.

Filter Sets the content filter to be applied to the query. Only
messages that match the content filter will be provided to
the query.

Delta Publishing
This section presents common recipes for publishing to a topic in AMPS using the Command or Message interfaces.
This section provides information on how to configure the request to AMPS. You can adapt this information to your
application and the specific interface you are using.

Basic Delta Publish

In its simplest form, a subscription needs only the topic to publish to and the data to publish. The AMPS client
automatically constructs the necessary AMPS headers and formats the full delta_publish command.

In many cases, a publisher only needs to use the basic delta publish command.

Table 10.27. Basic Delta Publish

Header Comment

Topic Sets the topic to publish to. The topic specified must be
a literal topic name. Regular expression characters in the
topic name are not interpreted.

Some topics in AMPS, such as views and conflated top-
ics, cannot be published to directly. Instead, a publisher
must publish to the underlying topics.

Data The data to publish to the topic. The AMPS client does
not interpret, escape, or validate this data: the data is pro-
vided to the server verbatim.

Delta Publish With CorrelationId

AMPS provides publishers with a header field that can be used to contain arbitrary data, the CorrelationId. A
delta publish message can be used to update the CorrelationId as well as the data within the message.
Table 10.28. Delta Publish With CorrelationId

Header Comment

Topic Sets the topic to publish to. The topic specified must be
a literal topic name. Regular expression characters in the
topic name are not interpreted.

AMPS Programming: Working with Commands

60

Header Comment
Some topics in AMPS, such as views and conflated top-
ics, cannot be published to directly. Instead, a publisher
must publish to the underlying topics.

Data The data to publish to the topic. The AMPS client does
not interpret, escape, or validate this data: the data is pro-
vided to the server verbatim.

CorrelationId The CorrelationId to provide on the message. AM-
PS provides the CorrelationId to subscribers. The
CorrelationId has no significance for AMPS.

The CorrelationId may only contain characters that
are valid in base-64 encoding.

Delta Publish With Explicit SOW Key

When publishing to a SOW topic that is configured to require an explicit SOW key, the publisher needs to set the
SowKey header on the message.

Table 10.29. Delta Publish with Explicit SOW Key

Header Comment

Topic Sets the topic to publish to. The topic specified must be
a literal topic name. Regular expression characters in the
topic name are not interpreted.

Some topics in AMPS, such as views and conflated top-
ics, cannot be published to directly. Instead, a publisher
must publish to the underlying topics.

Data The data to publish to the topic. The AMPS client does
not interpret, escape, or validate this data: the data is pro-
vided to the server verbatim.

SowKey The SOW Key to use for this message. This header is
only supported for publishes to a topic that requires an
explicit SOW Key.

Delta Subscribing
This section presents common recipes for subscribing to a topic in AMPS using the Command or Message inter-
faces. This section provides information on how to configure the request to AMPS. You can adapt this information
to your application and the specific interface you are using.

Basic Delta Subscription

In its simplest form, a delta subscription needs only the topic to subscribe to.

AMPS Programming: Working with Commands

61

Table 10.30. Basic Delta Subscription

Header Comment

Topic Sets the topic to subscribe to. All messages from the topic
will be delivered on this subscription. The topic specified
can be the literal topic name, or a regular expression that
matches multiple topics.

Basic Delta Subscription With Options

In its simplest form, a subscription needs only the topic to subscribe to. To add options to the subscription, set the
Options header on the Command.

Table 10.31. Basic Delta Subscription

Header Comment

Topic Sets the topic to subscribe to. All messages from the topic
will be delivered on this subscription. The topic specified
can be the literal topic name, or a regular expression that
matches multiple topics.

Options A comma-delimited set of options for this command. See
the AMPS Command Reference for a description of
supported options.

Content Filtered Delta Subscription

To provide a content filter on a subscription, set the Filter property on the command. The AMPS User Guide
provides details on the filter syntax.

Table 10.32. Content Filtered Subscription

Header Comment

Topic Sets the topic to subscribe to. The topic provided can be
either the exact name of the topic, or a regular expression
that matches the names of the topics for the subscription.

Filter Sets the content filter to be applied to the subscription.
Only messages that match the content filter will be pro-
vided to the subscription.

Bookmark Delta Subscription

To create a bookmark subscription, set the Bookmark property on the command. The property can be either a
specific bookmark, a timestamp, or one of the client-provided constants. The AMPS User Guide provides details on
creating timestamps. Notice that the MOST_RECENT constant tells the AMPS client to find the appropriate message
in the client bookmark store and begin the subscription at that point. In this case, the client sends that bookmark
value to AMPS.

AMPS Programming: Working with Commands

62

Table 10.33. Bookmark Subscription

Header Comment

Topic Sets the topic to subscribe to. The topic provided can be
either the exact name of the topic, or a regular expression
that matches the names of the topics for the subscription.

Bookmark Sets the point in the transaction log at which the subscrip-
tion will begin. The bookmark provided can be a specific
AMPS bookmark, a timestamp, or one of the client-pro-
vided constants.

AMPS also accepts a comma-delimited list of book-
marks. In this case, AMPS begins the subscription from
whichever of the bookmarks is earliest in the transaction
log.

Bookmark Delta Subscription With Content Filter

To create a bookmark subscription, set the Bookmark property on the command. The property can be either a
specific bookmark, a timestamp, or one of the client-provided constants. The AMPS User Guide provides details on
creating timestamps. Notice that the MOST_RECENT constant tells the AMPS client to find the appropriate message
in the client bookmark store and begin the subscription at that point. In this case, the client sends that bookmark
value to AMPS.

To add a filter to a bookmark subscription, set the Filter property on the command. The AMPS User Guide
provides details on the filter syntax.

Table 10.34. Bookmark Delta Subscription With Content Filter

Header Comment

Topic Sets the topic to subscribe to. The topic provided can be
either the exact name of the topic, or a regular expression
that matches the names of the topics for the subscription.

Bookmark Sets the point in the transaction log at which the subscrip-
tion will begin. The bookmark provided can be a specific
AMPS bookmark, a timestamp, or one of the client-pro-
vided constants.

AMPS also accepts a comma-delimited list of book-
marks. In this case, AMPS begins the subscription from
whichever of the bookmarks is earliest in the transaction
log.

Filter Sets the content filter to be applied to the subscription.
Only messages that match the content filter will be pro-
vided to the subscription.

SOW and Delta Subscribe
This section presents common recipes for atomic sow and delta subscribe in AMPS using the Command or Mes-
sage interfaces. This section provides information on how to configure the request to AMPS. You can adapt this
information to your application and the specific interface you are using.

AMPS Programming: Working with Commands

63

Basic SOW and Delta Subscribe

In its simplest form, a SOW and Delta Subscribe needs only the topic to subscribe to.

Table 10.35. Basic SOW Query

Header Comment

Topic Sets the topic to query and subscribe to. The topic speci-
fied can be the literal topic name, or a regular expression
that matches multiple topics.

SOW and Delta Subscribe With Options

In its simplest form, a SOW and subscribe command needs only the topic to subscribe to. To add options to the
subscription, set the Options header on the Command.

Table 10.36. Basic SOW and Delta Subscribe with Options

Header Comment

Topic Sets the topic to query and subscribe to. The topic speci-
fied can be the literal topic name, or a regular expression
that matches multiple topics.

Options A comma-delimited set of options for this command. See
the AMPS Command Reference for a full description
of supported options.

The most common options for this command are:

oof Request out of order notifi-
cations

timestamp Include timestamps on mes-
sages

Content Filtered SOW and Delta Subscribe

To provide a content filter on a SOW and Delta Subscribe, set the Filter property on the command. The AMPS
User Guide provides details on the filter syntax.

Table 10.37. Content Filtered SOW and Delta Subscribe

Header Comment

Topic Sets the topic to query and subscribe to. The topic speci-
fied can be the literal topic name, or a regular expression
that matches multiple topics.

Filter Sets the content filter to be applied to the query. Only
messages that match the content filter will be returned in
response to the query.

AMPS Programming: Working with Commands

64

Historical SOW and Subscribe

To create a historical SOW query with a subscription, set the Bookmark property on the command. The property
can be either a specific bookmark or a timestamp. The AMPS User Guide provides details on creating timestamps.
This command is only supported on SOW topics that are recorded in an AMPS transaction log. If the Bookmark
provided is a value other than NOW (0|1|), the SOW topic must have History enabled.

Table 10.38. Historical SOW and Subscribe

Header Comment

Topic Sets the topic to query and subscribe to. The topic speci-
fied can be the literal topic name, or a regular expression
that matches multiple topics.

Bookmark Sets the historical point in the SOW at which to query.
The query returns the saved state of the records in the
SOW as of the point in time specified in this header.

Historical SOW and Delta Subscribe With Content Filter

To create a historical SOW query with a subscription, set the Bookmark property on the command. The property
can be either a specific bookmark or a timestamp. The AMPS User Guide provides details on creating timestamps.
This command is only supported on SOW topics that are recorded in an AMPS transaction log. If the Bookmark
provided is a value other than NOW (0|1|), the SOW topic must have History enabled.

Table 10.39. Historical SOW and Delta Subscribe With Content Filter

Header Comment

Topic Sets the topic to query. The topic specified can be the
literal topic name, or a regular expression that matches
multiple topics.

Bookmark Sets the historical point in the SOW at which to query.
The query returns the saved state of the records in the
SOW as of the point in time specified in this header.

Filter Sets the content filter to be applied to the query. Only
messages that match the content filter will be provided to
the query.

SOW Delete
This section presents common recipes for sending a sow_delete command using the Command or Message inter-
faces. This section provides information on how to configure the request to AMPS. You can adapt this information
to your application and the specific interface you are using.

Delete All Records in a SOW

To delete all records in a SOW, provide a filter that evaluates to TRUE for every record in the SOW. By convention,
60East recommends 1=1 for the filter.

AMPS Programming: Working with Commands

65

Table 10.40. Delete All Records in a SOW

Header Comment

Topic Sets the topic from which to remove records.

Filter A filter specifying the messages to remove. By conven-
tion, use 1=1 to remove all records in the SOW.

Delete SOW Records Matching a Filter

To delete the records that match a particular filter, provide the filter in the sow_delete command.

Table 10.41. Delete All Records in a SOW

Header Comment

Topic Sets the topic from which to remove records.

Filter A filter specifying the messages to remove.

Delete A Specific Message By Data

To delete a specific message, provide the data for the message to delete. With this form of SOW delete, AMPS
deletes the message that would have been updated if the data were provided as a publish message. Notice that this
form of sow_delete relies on the Key definition in the SOW configuration, and is not generally useful with
explicitly-keyed SOW topics.

Table 10.42. Delete All Records in a SOW

Header Comment

Topic Sets the topic from which to remove records.

Data The message to remove.

Deleting Specific Messages Using Keys

To delete specific messages using SOW keys, provide the SOW keys for the message to delete.

Table 10.43. Delete All Records in a SOW

Header Comment

Topic Sets the topic from which to remove records.

SOWKeys A comma-delimited list of SOWKeys that specify the
messages to remove.

Acknowledging Messages from a Queue

To acknowledge messages from an AMPS queue, provide the bookmarks for the messages to acknowledge. Notice
that this is the only form of the sow_delete command that can acknowledge messages from a queue, and that this
form of sow_delete is not accepted for topics that are not queue topics.

AMPS Programming: Working with Commands

66

Table 10.44. Acknowledging a queue message

Header Comment

Topic Sets the topic that contains the messages to acknowledge.

Bookmark A comma-delimited list of Bookmarks that specify the
messages to acknowledge.

67

Chapter 11. Utilities
The AMPS C++ client includes a set of utilities and helper classes to make working with AMPS easier.

11.1. Composite Message Types
The client provides a pair of classes for creating and parsing composite message types.

• CompositeMessageBuilder allows you to assemble the parts of a composite message and then serialize
them in a format suitable for AMPS.

• CompositeMessageParser extracts the individual parts of a composite message type

For more information regarding composite message types, refer to Chapter 4.3.

Building Composite Messages
To build a composite message, create an instance of CompositeMessageBuilder, and populate the parts. The
CompositeMessageBuilder copies the parts provided, in order, to the underlying message. The builder simply
writes to an internal buffer with the appropriate formatting, and does not allow you to update or change the individual
parts of a message once they've been added to the builder.

The snippet below shows how to build a composite message that includes a JSON part, constructed as a string, and
a binary part consisting of the bytes from a standard vector.

std::string json_part("{\"data\":\"sample\"}");

std::vector<double> data;
// populate data
...

// Create the payload for the composite message.

AMPS::CompositeMessageBuilder builder;

builder.append(json_part.str());
builder.append(reinterpret_cast<const char*>(data.data()),
 data.size() * sizeof(double));

// send the message

std::string topic("messages");
ampsClient.publish(topic.c_str(), topic.length(),
 builder.data(), builder.length());

Utilities

68

Parsing Composite Messages
To parse a composite message, create an instance of CompositeMessageParser, then use the parse()
method to parse the message provided by the AMPS client. The CompositeMessageParser gives you access to each
part of the message as a sequence of bytes.

For example, the following snippet parses and prints messages that contain a JSON part and a binary part that contains
an array of doubles.

for (auto message : ampsClient.subscribe("messages"))
{

 parser.parse(message);

 // First part is JSON
 std::string json_part = std::string(parser.getPart(0));

 // Second part is the raw bytes for a vector<double>
 AMPS::Field binary = parser.getPart(1);

 std::vector<double> vec;
 double *array_start = (double*)binary.data();
 double *array_end = array_start + (binary.len() / sizeof(double));

 vec.insert(vec.end(), array_start, array_end);

 // Print the contents of the message
 std::cout << "Received message with " << parser.size() << " parts"
 << std::endl
 << "\t" << json_part
 << std::endl;

 for (auto d : vec)
 std::cout << d << " ";

 std::cout << std::endl;

 }

Notice that the receiving application is written with explicit knowledge of the structure and content of the composite
message type.

11.2. NVFIX Messages
The client provides a pair of classes for creating and parsing NVFIX message types.

• NVFIXBuilder allows you to assemble an NVFIX message and then serialize them in a format suitable for
AMPS.

• NVFIXShredder extracts the individual fields of a NVFIX message type

Utilities

69

Building NVFIX Messages
To build a NVFIX message, create an instance of NVFIXBuilder, then add the fields of the message using ap-
pend(). NVFIXBuilder copies the fields provided, in order, to the underlying message. The builder simply
writes to an internal buffer with the appropriate formatting, and does not allow you to update or change the individual
fields of a message once they've been added to the builder.

The snippet below shows how to build a NVFIX message and publish it to the AMPS client.

// Construct a client with the name "NVFIXPublisher".
AMPS::Client ampsClient("NVFIXPublisher");

// Construct a simple NVFIX message.
AMPS::NVFIXBuilder builder;

// Add data to the builder
builder.append("Test", "data");
builder.append("More", "stuff");

// Display the data
std::cout << builder.getString() << std::endl;

try
{
 // Connect to the server and log on
 ampsClient.connect(uri);
 ampsClient.logon();

 // Publish message to the topic messages
 std::string topic("messages");
 ampsClient.publish(topic, builder.getString());

}
catch (const AMPS::AMPSException& e)
{
 std::cerr << e.what() << std::endl;
 exit(1);
}

Parsing NVFIX Messages
To parse a NVFIX message, create an instance of FIXShredder, then use the toMap() method to parse the
message provided by the AMPS client. The FIXShredder gives you access to each field of the message in a map.

The snippet below shows how to parse and print an NVFIX message.

// Create a client with the name "NVFIXSubscriber"
AMPS::Client ampsClient("NVFIXSubscriber");

try
{
 // Connect to the server and log on

Utilities

70

 ampsClient.connect(uri);
 ampsClient.logon();

 // Subscribe to the messages topic

 // This overload of the subscribe method returns a MessageStream
 // that can be iterated over. When the MessageStream destructor
 // runs, the destructor unsubscribes.

 // Set up the shredder
 AMPS::FIXShredder shredder;

 for(auto message : ampsClient.subscribe("messages"))
 {
 // Shred the data to a map
 auto subscription = shredder.toMap(message.getData());

 // Display the data
 for(auto iterator = subscription.begin(); iterator !=
 subscription.end(); ++iterator)
 {
 std::cout << iterator->first << " " << iterator->second << std::endl;
 }
 }
}
catch (const AMPS::AMPSException& e)
{
 std::cerr << e.what() << std::endl;
 exit(1);
}

11.3. FIX Messages
The client provides a pair of classes for creating and parsing FIX messages.

• FIXBuilder allows you to assemble a FIX message and then serialize them in a format suitable for AMPS.

• FIXShredder extracts the individual fields of a FIX message.

Building FIX Messages
To build a FIX message, create an instance of FIXBuilder, then add the fields of the message using append().
FIXBuilder copies the fields provided, in order, to the underlying message. The builder simply writes to an
internal buffer with the appropriate formatting, and does not allow you to update or change the individual fields of
a message once they've been added to the builder.

The snippet below shows how to build a FIX message and publish it to the AMPS client.

// Construct a client with the name "FIXPublisher".
AMPS::Client ampsClient("FIXPublisher");

Utilities

71

// Construct a simple FIX message.
AMPS::FIXBuilder builder;

// Add data to the builder
builder.append(0, "123");

// Display the data
std::cout << builder.getString() << std::endl;

try
{
 // connect to the server and log on
 ampsClient.connect(uri);
 ampsClient.logon();

 // publish message to the messages topic
 std::string topic("messages");
 ampsClient.publish(topic, builder.getString());

}
catch (const AMPS::AMPSException& e)
{
 std::cerr << e.what() << std::endl;
 exit(1);
}

Parsing FIX Messages
To parse a FIX message, create an instance of FIXShredder, then use the toMap() method to parse the message
provided by the AMPS client. The FIXShredder gives you access to each field of the message in a map.

The snippet below shows how to parse and print a FIX message.

// Create a client with the name "NVFIXSubscriber"
AMPS::Client ampsClient("NVFIXSubscriber");

try
{
 // Connect to the server and log on
 ampsClient.connect(uri);
 ampsClient.logon();

 // Subscribe to the messages topic

 // This overload of the subscribe method returns a MessageStream
 // that can be iterated over. When the MessageStream destructor
 // runs, the destructor unsubscribes.

 // Set up the shredder
 AMPS::FIXShredder shredder;

Utilities

72

 for(auto message : ampsClient.subscribe("messages"))
 {
 // Shred the data to a map
 auto subscription = shredder.toMap(message.getData());

 // Display the data
 for(auto iterator = subscription.begin(); iterator !=
 subscription.end(); ++iterator)
 {
 std::cout << iterator->first << " " << iterator->second << std::endl;
 }
 }
}
catch (const AMPS::AMPSException& e)
{
 std::cerr << e.what() << std::endl;
 exit(1);
}

73

Chapter 12. Advanced Topics

12.1. Transport Filtering
The AMPS C/C++ client offers the ability to filter incoming and outgoing messages in the format they are sent and
received on the network. This allows you to inspect or modify outgoing messages before they are sent to the network,
and incoming messages as they arrive from the network.

To create a transport filter, you create a function with the following signature

void amps_tcp_filter_function(const unsigned char* data,size_t len,short
 direction, void* userdata);

You then register the filter by calling amps_tcp_set_filter_function with a pointer to the function and a
pointer to the data to be provided in the userdata parameter of the callback.

For example, the following filter function simply prints the data provided to the standard output:

void amps_tcp_trace_filter_function(const unsigned char* data,
 size_t len,
 short direction,
 void* userdata)
{
 // Output the direction marker
 if (direction == 0)
 {
 std::cout << "OUTGOING ---> ";
 }
 else
 {
 std::cout << "INCOMING ---> ";
 }

 // Output the data
 std::cout << std::string(data, len) << std::endl;

}

Registering the function is a matter of calling the amps_set_transport_filter_function with the transport to filter, as
shown below:

 // client is an existing Client object

 amps_tcp_set_filter_function(amps_client_get_transport(client.getHandle()),
 &s_tcp_trace_filter_function,
 (void*)NULL);

The snippet above gets the underlying C client handle from the C++ class, retrieves the transport handle associated
with the client handle, and the installs the filter for that transport.

74

Chapter 13. Performance Tips and Best
Practices

This chapter presents tips and techniques for writing high-performance applications with AMPS. This section
presents principles and approaches that describe how to use the features of AMPS and the AMPS client libraries to
achieve high performance and reliability.

Specific techniques (for example, the details on how to write a message handler) are described in other parts of
the AMPS documentation and referenced here. Other techniques require information specific to the application (for
example, determining the minimum set of information required in a message), and are best done as part of your
application design.

All of the recommendations in this section are general guidelines. There are few, if any, universal rules for perfor-
mance: at times, a design decision that is absolutely necessary to meet the requirements for an application might
reduce performance somewhat. For example, your application might involve sending large binary data that cannot
be incrementally updated. That application will use more bandwidth per message than an application that sends
100-byte messages with fields that can be incrementally updated. However, since the application depends on being
able to deliver the binary payloads, this difference in bandwidth consumption is a part of the requirements for the
application, not a design decision that can be optimized.

13.1. Measure Performance and Set Goals
The most important tools for creating high performance applications that use AMPS are clear goals and accurate
measurement. Without accurate measurement, it's impossible to know whether a particular change has improved
performance or not. Without clear goals, it's difficult to know whether a given result is sufficient, or whether you
need to continue improving performance.

60East recommends that your measurements include baseline metrics for the part of your message processing that
does not involve AMPS. As an example, imagine your task is to reduce the amount of time that elapses between
when an order is sent and when the processed response is received from 100ms in total to 85ms in total. To achieve
this reduction, you might first measure the processing that your application performs on the order. If that process-
ing consumes 65ms, the most effective optimization may be to improve the order processing. On the other hand,
if processing an order consumes 15ms, then optimizing message delivery or network utilization may be the most
effective way to meet your goals.

When measuring performance, simulate your production environment as closely as possible. For example, AMPS is
highly parallelized, so sending a pattern of subscriptions and publishes from a single test client that would normally
come from 20 clients will produce a very different performance profile. Likewise, AMPS can typically perform at
rates that fill the available bandwidth. Performance measured on a 1GbE connection may be very different than per-
formance measured over a 10GbE connection. Consider the characteristics of your data, and the number of messages
you expect to store and process. A 1GB data set consisting of 1 million records will perform differently than a 1GB
data set consisting of 10 million records, or a 1GB data set consisting of 100 records.

When collecting information about performance, 60East recommends enabling persistence for the Statistics Database
(stats.db), so you can easily collect historical data on both AMPS and the operating system. For example, a
dip in performance correlated with high CPU and memory usage at the same time each day may be correlated with
other activity on the system (such as cron jobs or close of business processing). In a situation like that, where the
performance reduction is based on factors external to the AMPS application, the overall system metrics captured in
stats.db can help you re-create the external state and understand the state of the system as a whole. AMPS collects

Performance Tips and Best Practices

75

the statistics in memory by default, and persisting that data into a database does not typically have a measurable
effect on performance itself, but makes measuring and tuning performance much easier.

For peformance testing, 60East recommends using dedicated hardware for AMPS to eliminate the effects of other
processes. If dedicated hardware is not available and other processes are consuming resources, 60East recommends
disabling AMPS NUMA tuning to ensure that AMPS threads do not unnecessarily compete with other processes
during performance tuning.

13.2. Simplify Message Format and Contents
AMPS supports a wide range of message types, and is capable of filtering and processing large and complex mes-
sages. For many applications, the simplicity of being able to use messages that contain the full information is the
most important consideration. For other applications, however, achieving the minimum possible latency and the
maximum possible network utilization is important enough to warrant choosing a simplified message format.

To simplify message contents, carefully consider the information that downstream processors require. If a down-
stream process will not use information in the message, there is no need to send the information. For example, con-
sider an application that provides orders from a UI. In such an application, the object that represents the order often
contains information relevant to the local state of the application that is not relevant to a downstream system. Rather
than simply serializing the full object, your application may perform better if you serialize only the fields that a
downstream system will take action on.

To simplify message format, choose the simplest format that can convey the information that your application needs.
The general principle is that the simpler the message format is, the more quickly AMPS and client libraries can parse
messages of that type. Likewise, the more complicated the structure of each message is, the more work is required to
parse the message. For the highest levels of performance, 60East recommends keeping the message structure simple
and preferring message formats such as NVFIX, BFlat, or JSON as compared with more complicated formats such
as XML or BSON.

13.3. Use Content Filtering Where Possible
AMPS content filtering helps your application perform better by ensuring that your application only receives the
messages that it needs. Wherever possible, we recommend using content filtering to precisely specify which messages
your application needs. In particular, if at any point your application is receiving a message, parsing the message,
and then determining whether to act on the message or not, 60East recommends using content filters to ensure that
your application only receives messages that it needs to act on.

13.4. Use Asychronous Message Processing
The synchronous message processing interface is straightforward, and presents a convenient interface for getting
started with AMPS.

However, the MessageStream used by the synchronous interface makes a full copy of each message and provides
it from the background reader thread to the thread that consumes the message. This memory overhead and synchro-
nization between the reader thread and consumer thread happens regardless of whether the application needs all
of the header fields in the message or even processes the message. The MessageStream also does not take into
account the speed at which your program is consuming messages, and will read messages into memory as fast as the
network and processor allow. If your application cannot consume messages at wire speed, this can lead to increasing
memory consumption as the application falls further behind the MessageStream.

Performance Tips and Best Practices

76

Most applications see improved performance by using a MessageHandler. With this approach, the Message-
Handler does minimal work. If more extensive processing is needed, the MessageHandler dispatches the work
to another thread: but it does this only when the work is necessary, and it only saves the part of the message needed
to accomplish the work.

13.5. Use Hash Indexes Where Possible
When querying a SOW, hash indexes on SOW topics are supported for exact matching on string data as described
in the AMPS User Guide. A hash index can perform many times faster than a parallel query. If the query pattern
for your application can take advantage of hash indexes, 60East recommends creating those hash indexes on your
SOW topics.

13.6. Use a Failed Write Handler and Exception
Listener

In many cases, particularly during the early stages of development, performance problems can point to defects in
the application. Even after the application is tuned, monitoring for failure is important to keep applications running
smoothly.

60East recommends always installing a failed write handler if your application is publishing messages. This will
help you to quickly identify cases where AMPS is rejecting publishes due to entitlement failures, message type
mismatches, or other similar problems.

60East recommends always installing an exception listener if your application is using asynchronous message pro-
cessing. This will help you to identify and correct any problems with your message handler.

13.7. Reduce Bandwidth Requirements
In many applications that use AMPS, network bandwidth is the single most important factor in overall performance.
Your application can use bandwidth most efficiently by reducing message size. For example, rather than serializing
an entire object, you might serialize only the fields that the remote process needs to act on, as mentioned above.
Likewise, rather than sending one message that contains a collected set of information that processors will need
to extract, consider sending a message in the units that processors will work with. This can reduce bandwidth to
processors substantially. For example, rather than sending a single message with all of the activity for a single
customer over a given period of time (such as a trading day), consider breaking out the record into the individual
transactions for the customer.

Tune Batch Size for SOW Queries
As described in Section 6.3, tuning the batch size for SOW queries can improve overall performance by improving
network utilization. In addition, because the AMPS header is only parsed once per batch, a larger batch size can
dramatically improve processing performance for smaller messages.

The AMPS clients default to a batch size of 10. This provides generally good performance for most transactional
messages (such as order records or inventory records). For large messages, particularly messages greater than a
megabyte in size, a batch size of 1 may reduce memory pressure in the client and improve performance.

Performance Tips and Best Practices

77

With smaller messages (for example, message sizes of a few hundred bytes), 60East recommends measuring perfor-
mance with larger batch sizes such as 50 or 100 . For large messages, reducing the batch size may improve overall
performance by requiring less memory consumption on the AMPS server.

Conflate Fast-Changing Information
If your data source publishes information faster than your clients need to consume it, consider using a conflated
topic. For example, in a system that presents a user interface and displays fast-moving data, it is common for the
data to change at a rate faster than the user interface can format and render the data. In this case, a conflated topic
can both reduce bandwidth and simplify processing in the user interface.

Minimize Bandwidth for Updates
If your application uses a SOW and processes frequent updates, consider using delta publish and delta subscribe to
reduce the size of the messages transmitted. These features are designed to minimize bandwidth while still providing
full-fidelity data streams.

Conflate Queue Acknowledgements
The AMPS clients include the ability to conflate acknowledgements back to AMPS as queue messages are processed.
Using these features, with an appropriate max_backlog, can reduce the amount of network traffic required for
acknowledgements.

Use a Transaction Log When Monitoring Publish Failures
When a topic is not covered by a transaction log, AMPS returns acknowledgment messages for every publish that re-
quests one. This ensures that each message is acknowledged, even when AMPS has no persistent record of the mes-
sages in the topic. However, acknowledging each message requires more network traffic for each publish message.

When a topic is covered by a transaction log, AMPS conflates persisted acknowledgments. Conflation is possible
in this case because AMPS has a full record of the messages and does not have to store additional state to conflate
the acknowledgements. With conflated acknowledgements, AMPS will send a success acknowledgement periodi-
cally that covers all messages up to that point. If a message fails, AMPS immediately sends the conflated success
acknowledgement for all previous messages and the failure acknowledgement for the failed message.

Combine Conflation and Deltas
In many cases, using an approach that combines delta publishes to a SOW with delta subscriptions to a conflated
topic can dramatically reduce bandwidth to the application with no loss of information.

13.8. Limit Unnecessary Copies
One of the most effective ways to increase performance is to limit the amount of data copied within your application.

Performance Tips and Best Practices

78

For example, if your message handler submits work to a set of processors that only use the Data and Bookmark
from a Message, create a data structure that holds only those fields and copy that information into instances of that
data structure rather than copying the entire Message. While this approach requires a few extra lines of code, the
performance benefits can be substantial.

When publishing messages to AMPS, avoid unnecessary copies of the data. For example, if you have the data in a
byte array, use the publish methods that use a byte array rather than converting the data to a string unnecessarily.
Likewise, if you have the data in the form of a string, avoid converting it to a byte array where possible.

13.9. Manage Publish Stores
When using a publish store, the Client holds messages until they are acknowledged as persisted by AMPS, as deter-
mined by the replication configuration for the AMPS instance.

In the event that an instance with sync replication goes offline, the publish store for the Client will grow, since the
messages are not being fully persisted. To avoid this problem, 60East recommends that an instance that uses sync
replication always configure Actions to automatically downgrade the replication link if the remote instance goes
offline for a period of time, and upgrade the link when the remote instance comes back online.

See the "High Availability and Replication" chapter in the User Guide for more information on replication, sync and
async acknowledgement modes, and the Actions used to manage replication.

13.10. Work with 60East as Necessary
60East offers performance advice adapted for your specific usage through your support agreement. Once you've set
your performance goals, worked through the general best practices and applied the practices that make sense for
your application, 60East can help with detailed performance tuning, including recommendations that are specific to
your use case and performance needs.

79

Appendix A. Exceptions
The following table details each of the exception types thrown by AMPS.

Table A.1. Exceptions supported in Client and HAClient

Exception When Notes

AlreadyConnected Connecting Thrown when connect() is called on a
Client that is already connected.

AMPS Anytime Base class for all AMPS exceptions.

Authentication Anytime Indicates an authentication failure occurred
on the server.

BadFilter Subscribing This typically indicates a syntax error in a fil-
ter expression.

BadRegexTopic Subscribing Indicates a malformed regular expression was
found in the topic name.

Command Anytime Base class for all exceptions relating to com-
mands sent to AMPS.

Connection Anytime Base class for all exceptions relating to the
state of the AMPS connection.

ConnectionRefused Connecting The connection was actively refused by the
server. Validate that the server is running, that
network connectivity is available, and the set-
tings on the client match those on the server.

Disconnected Anytime No connection is available when AMPS need-
ed to send data to the server or the user's dis-
connect handler threw an exception.

InvalidTopic SOW query A SOW query was attempted on a topic not
configured for SOW on the server.

InvalidTransportOptions Connecting An invalid option or option value was speci-
fied in the URI.

InvalidURI Connecting The URI string provided to connect() was
formatted improperly.

MessageType Connecting The class for a given transport's message type
was not found in AMPS.

MessageTypeNotFound Connecting The message type specified in the URI was
not found in AMPS.

NameInUse Connecting The client name (specified when instantiating
Client) is already in use on the server.

RetryOperation Anytime An error occurred that caused processing of
the last command to be aborted. Try issuing
the command again.

Stream Anytime Indicates that data corruption has occurred on
the connection between the client and server.
This usually indicates an internal error inside
of AMPS -- contact AMPS support.

Exceptions

80

Exception When Notes

SubscriptionAlreadyExistsException Subscribing A subscription has been requested using the
same CommandId as another subscription.
Create a unique CommandId for every sub-
scription.

TimedOut Anytime A timeout occurred waiting for a response to
a command.

TransportType Connecting Thrown when a transport type is selected in
the URI that is unknown to AMPS.

Unknown Anytime Thrown when an internal error occurs. Con-
tact AMPS support immediately.

UsageException Changing the proper-
ties of an object.

Thrown when the object is not in a valid
state for setting the properties. For example,
some properties of a Client (such as the Book-
markStore used) cannot be changed while that
client is connected to AMPS.

	AMPS C/C++ Development Guide
	Table of Contents
	Chapter 1. Introduction
	1.1. Prerequisites
	1.2. C & C++ Support Matrix

	Chapter 2. Installing the AMPS Client
	2.1. Obtaining the Client
	2.2. Explore the client
	lib
	src
	include
	samples

	2.3. Build the Client
	2.4. Test Connectivity to AMPS

	Chapter 3. Your First AMPS Program
	3.1. Connecting to AMPS
	Build and run
	Examining the code

	3.2. Using the C client
	3.3. Connection Strings
	Providing Credentials in a Connection String

	3.4. Connection Parameters
	Transport options

	3.5. Next steps

	Chapter 4. Subscriptions
	4.1. Subscribing
	4.2. Asynchronous Message Processing Interface
	Using an Instance Method as a Message Handler

	4.3. Understanding Threading and Message Handlers
	4.4. Unsubscribing
	4.5. Understanding messages
	Header properties
	getData() method

	4.6. Advanced Messaging Support
	Regex topics
	Content filtering
	Updating the Filter on a Subscription

	4.7. Next steps

	Chapter 5. Error Handling
	5.1. Exceptions
	Exception Types
	Exception Handling and Asynchronous Message Processing

	5.2. Disconnect Handling
	Using a Heartbeat to Detect Disconnection

	5.3. Unexpected Messages
	5.4. Unhandled Exceptions
	5.5. Detecting Write Failures

	Chapter 6. State of the World
	6.1. Performing SOW Queries
	6.2. SOW and Subscribe
	6.3. Setting Batch Size
	6.4. Client-Side Conflation
	6.5. Managing SOW Contents

	Chapter 7. Using Queues
	7.1. Backlog and Smart Pipelining
	Subscription Backlog
	Acknowledging Messages
	Acknowledgement Batching

	Chapter 8. Delta Publish and Subscribe
	8.1. Introduction
	8.2. Delta Subscribe
	8.3. Delta Publish

	Chapter 9. High Availability
	9.1. Choosing an HAClient Protection Method
	9.2. Connections and the ServerChooser
	9.3. Heartbeats and Failure Detection
	9.4. Considerations for Publishers
	9.5. Considerations for Subscribers
	9.6. Conclusion

	Chapter 10. AMPS Programming: Working with Commands
	10.1. Understanding AMPS Messages
	10.2. Creating and Populating the Command
	10.3. Using execute
	10.4. Command Cookbook
	Publishing
	Basic Publish
	Publish With CorrelationId
	Publish With Explicit SOW Key

	Command Cookbook: Subscribing
	Basic Subscription
	Basic Subscription With Options
	Content Filtered Subscription
	Bookmark Subscription
	Rate Controlled Bookmark Subscription
	Bookmark Subscription With Content Filter
	Pausing a Bookmark Subscription
	Resuming a Bookmark Subscription
	Replacing the Filter on a Subscription
	Subscribing to a Queue and Requesting a max_backlog

	SOW Query
	Basic SOW Query
	Basic SOW With Options
	SOW Query With Ordered Results
	SOW Query With TopN Results
	Content Filtered SOW Query
	Historical SOW Query
	Historical SOW Query With Content Filter
	SOW Query for Specific Records

	SOW and Subscribe
	Basic SOW and Subscribe
	SOW and Subscribe With Options
	Content Filtered SOW and Subscribe
	Historical SOW and Subscribe
	Historical SOW and Subscribe With Content Filter

	Delta Publishing
	Basic Delta Publish
	Delta Publish With CorrelationId
	Delta Publish With Explicit SOW Key

	Delta Subscribing
	Basic Delta Subscription
	Basic Delta Subscription With Options
	Content Filtered Delta Subscription
	Bookmark Delta Subscription
	Bookmark Delta Subscription With Content Filter

	SOW and Delta Subscribe
	Basic SOW and Delta Subscribe
	SOW and Delta Subscribe With Options
	Content Filtered SOW and Delta Subscribe
	Historical SOW and Subscribe
	Historical SOW and Delta Subscribe With Content Filter

	SOW Delete
	Delete All Records in a SOW
	Delete SOW Records Matching a Filter
	Delete A Specific Message By Data
	Deleting Specific Messages Using Keys
	Acknowledging Messages from a Queue

	Chapter 11. Utilities
	11.1. Composite Message Types
	Building Composite Messages
	Parsing Composite Messages

	11.2. NVFIX Messages
	Building NVFIX Messages
	Parsing NVFIX Messages

	11.3. FIX Messages
	Building FIX Messages
	Parsing FIX Messages

	Chapter 12. Advanced Topics
	12.1. Transport Filtering

	Chapter 13. Performance Tips and Best Practices
	13.1. Measure Performance and Set Goals
	13.2. Simplify Message Format and Contents
	13.3. Use Content Filtering Where Possible
	13.4. Use Asychronous Message Processing
	13.5. Use Hash Indexes Where Possible
	13.6. Use a Failed Write Handler and Exception Listener
	13.7. Reduce Bandwidth Requirements
	Tune Batch Size for SOW Queries
	Conflate Fast-Changing Information
	Minimize Bandwidth for Updates
	Conflate Queue Acknowledgements
	Use a Transaction Log When Monitoring Publish Failures
	Combine Conflation and Deltas

	13.8. Limit Unnecessary Copies
	13.9. Manage Publish Stores
	13.10. Work with 60East as Necessary

	Appendix A. Exceptions

