
AMPS Configuration Reference Guide

AMPS Configuration Reference Guide
5.0

Publication date May 10, 2016
Copyright © 2016

All rights reserved. 60East, AMPS, and Advanced Message Processing System are trademarks of 60East Technologies, Inc. All other trademarks
are the property of their respective owners.

iii

Table of Contents
1. AMPS Configuration Basics ... 1

1.1. AMPS Configuration File Special Characters .. 2
1.2. Using Units in the Configuration .. 5
1.3. Environment Variables in AMPS Configuration ... 6

2. Generating a Configuration File .. 8
3. Instance Level Configuration .. 9

3.1. SOW Statistics Interval .. 10
3.2. Slow Client Policies .. 11
3.3. Minidump Directory .. 12
3.4. Configuration Validation .. 12
3.5. Tuning .. 12
3.6. Externals ... 13

4. Admin Server ... 15
5. Modules .. 16
6. Message Types ... 19
7. Transports .. 23
8. Logging ... 29
9. State-of-the-World (SOW) Features .. 31

9.1. SOW/Topic .. 31
9.2. SOW/Queue ... 35
9.3. SOW/View .. 39
9.4. SOW/ConflatedTopic ... 40

10. Replication Destination ... 42
11. Transaction Log .. 46
12. Authentication ... 48
13. Entitlement ... 50
14. Actions .. 51

14.1. Running an Action on a Schedule .. 51
14.2. Running an Action in Response to a Signal ... 51
14.3. Running an Action on Startup or Shutdown ... 52
14.4. Running an Action on Client Connection .. 53
14.5. Running an Action on Message Delivery .. 53
14.6. Running an Action on Message Publish .. 54
14.7. Running an Action on OOF Message ... 54
14.8. Running an Action on Minidump ... 55
14.9. Running an Action on Offline Start or Stop ... 55
14.10. Rotate Log Files ... 56
14.11. Manage the Statistics Database .. 56
14.12. Manage Journal Files ... 57
14.13. Removing Files ... 58
14.14. Deleting Messages from SOW ... 59
14.15. Querying a SOW Topic .. 59
14.16. Manage Security ... 61
14.17. Enable and Disable a Transport ... 61
14.18. Publishing Messages .. 62
14.19. Manage Replication ... 62
14.20. Extract Values ... 63
14.21. Increment Counter ... 64
14.22. Executing System Commands .. 64
14.23. Debugging AMPS ... 65
14.24. Creating a Minidump ... 65

AMPS Configuration Reference Guide

iv

14.25. Shut Down AMPS ... 65
14.26. Action Configuration Examples ... 66

A. Obsolete Configuration Parameters .. 69
Index .. 70

1

Chapter 1. AMPS Configuration Basics
If you have not become familiar with the AMPS User Guide, in particular the Getting Started chapter, please start
there before reading this guide.

The easiest way to create a custom XML configuration file for AMPS is to start with the sample configuration file
produced by the --sample-config flag to AMPS. Example 1.1 shows a simplified sample configuration file.

<?xml version="1.0" encoding="UTF-8"?>

<!-- Sample AMPS configuration

 This file defines an AMPS instance that provides publish and
 subscribe, topic filtering, and content filtering for JSON messages.
 The instance provides messaging services on port 9007 of the server.
 This configuration also provides an adminstrative interface on
 port 8085, and logs serious messages (error and higher severity) to
 stdout.

 This sample file does not configure State of the World (SOW) Topics,
 Transaction Logs, Aggregation and Views, Historical Query, Replication,
 Authentication and Entitlement, Conflating Topic Replicas, or other
 features of AMPS.

 More details for the features available and how to configure them are
 provided in the AMPS User Guide and the AMPS Configuration Reference.
 Both are available at http://crankuptheamps.com/documentation/

 -->

<AMPSConfig>

 <!-- Name of the AMPS instance -->

 <Name>AMPS-Sample</Name>

 <!-- Configure the administrative HTTP server on port 8085

 This HTTP server provides admin functions and statistics
 for the instance
 -->

 <Admin>
 <InetAddr>localhost:8085</InetAddr>
 </Admin>

 <!-- Configure a transport for JSON messages over TCP on port 9007
 -->

 <Transports>
 <Transport>
 <Name>json-tcp</Name>
 <Type>tcp</Type>

AMPS Configuration Basics

2

 <InetAddr>9007</InetAddr>
 <MessageType>json</MessageType>
 <Protocol>amps</Protocol>
 </Transport>
 </Transports>

 <!-- Log messages of severity 'error' and higher to stdout -->

 <Logging>
 <Target>
 <Protocol>stdout</Protocol>
 <Level>error</Level>
 </Target>
 </Logging>

</AMPSConfig>

Example 1.1. Simple AMPS configuration file

The AMPS configuration XML file is defined first by wrapping the config file with an AMPSConfig tag to identify
it as a configuration file. Next, the instance is given a name using the <Name> tag.

Once our instance has a name, it is good to define the connection target for the administration port. By default, the
administration port can be found by pointing a browser to http://localhost:8085, but if a different port or
host name is desired, then that is defined in the Admin and InetAddr tags. The Admin port is discussed more
in Table 4.1.

Next we describe how to get messages into AMPS. There are several different transport types which can be parsed
by AMPS, all of which are discussed in greater detail in the Transports chapter, but for this sample, we keep things
simple by focusing on JSON messages over tcp. In AMPS, each key to defining each transport is to give them
a unique InetAddr port and specify the type of message AMPS will process on that port using MessageType
tag. The MessageType tells AMPS how to parse the incoming messages on a specific port. In the above example,
messages are coming in on port 9007, and AMPS uses the JSON parser to parse the body of the message. AMPS
also requires a Protocol tag for the Transport, which specifies the format of the commands to AMPS. In this
case, we use the standard amps protocol. (Older AMPS applications and AMPS installations may require a different
protocol format, such as fix or xml. There's no functional difference between these protocols, but the AMPS server
and the clients need to use the same protocol format to successfully exchange messages.)

The last portion of the configuration is Logging. In the above example, the Logging tag defines only one log
target, but it's quite common to have one or more Logging targets. Again referring to the example, all logging
messages that are at error level and above will be logged to the logging Protocol of stdout. In other words,
these messages will be logged to the terminal, and not to a file. AMPS supports a robust set of logging features
and configurations, all of which are covered in more detail in the Logging chapter in the AMPS User Guide and in
Chapter 8 of this reference.

1.1. AMPS Configuration File Special Characters
In AMPS there are a few special characters that you should be aware of when creating your configuration file. These
characters can provide some handy short cuts and make configuration creation easier, but you should also be aware
of them so as not to introduce errors.

AMPS Configuration Basics

3

State of the World File Name
When specifying the file for a State of the World database, using the %n string in the file name specifies that the
AMPS server will use the message type and topic name in that position to create a unique filename. Example 1.2
shows how to use this in the AMPS configuration file.

 <SOW>
 <Topic>
 <Topic>Customers</Topic>
 <FileName>./sow/%n.sow</FileName>
 <MessageType>json</MessageType>
 <Key>/customerId</Key>
 </Topic>
</SOW>

Example 1.2. SOW file name tokens used in configuration file

Log Rotation Name
When specifying an AMPS log file which has RotationThreshold specified, using the %n string in the log file
name is a useful mechanism for ensuring the name of the log file is unique and sequential. Example 1.3 shows a file
name token replacement in the AMPS configuration file.

<Logging>
 <Target>
 <Protocol>file</Protocol>
 <Level>info</Level>
 <FileName>log/log-%n.log</FileName>
 <RotationThreshold>2G</RotationThreshold>
 </Target>
</Logging>

Example 1.3. Log file name tokens used in configuration file

In the above example, a log file will be created in the AMPSDIR/log/ directory. The first time this file is created,
it will be named log-1.log. Once the log file reaches the RotationThreshold limit of 2G, the previous log
file will be saved, and the new log file name will be incremented by one. Thus, the next log file will be named
AMPSDIR/log/log-2.log.

Dates
AMPS allows administrators to use date-based file names when specifying the file name in the configuration, as
demonstrated in Example 1.4.

<Logging>
 <Target>

AMPS Configuration Basics

4

 <Protocol>file</Protocol>
 <Level>info</Level>
 <FileName>
 log/log-%Y-%m-%dT%H%M%S.log
 </FileName>
 <RotationThreshold>2G</RotationThreshold>
 </Target>
</Logging>

Example 1.4. Date tokens used in configuration file

In the above example, a log file will be created in the $AMPSDIR/log named 2011-01-01-120000.log if
the log was created at noon on January 1, 2011.

AMPS provides full support for the date tokens provided by the standard strftime function, with the exception of
%n, as described above. The following table shows some of the most commonly used tokens:

Table 1.1. Commonly Used Date and Time Tokens

Token Provides Example

%a Short weekday name Fri

%A Full weekday name Friday

%b Short month name Feb

%B Full month name February

%c Simple date and time Fri Feb 14 17:25:00 2014

%C Century 20

%d Day of the month (leading zero if necessary) 05

%D Short date format (MM/DD/YY) 02/20/14

%e Day of the month (leading space if necessary) 5

%F Short date format (YYYY-MM-DD) 2014-02-20

%H Hour (00-23) 17

%I Hour (00-12) 05

%j Day of the year (001-366) 051

%m Month (01-12) 02

%p AM or PM PM

%r Current time, 12 hour format 05:25:00 pm

%R Current time, 24 hour format 17:25

%T ISO 8601 Time format 17:25:00

%u ISO 8601 day of the week (1-7, Monday = 1) 5

%V ISO 8601 week number (00-53) 07

%y Year, last two digits 14

%Y Year, four digits 2014

%Z Timezone name or abbreviation (blank if undetermined) PST

AMPS Configuration Basics

5

1.2. Using Units in the Configuration
To make configuration easy, AMPS permits the use of units to expand values. For example, if a time interval is
measured in seconds, then the letter s can be appended to the value. For example, the following SOW topic definition
used the Expiration tag to set the record expiration to 86400 seconds (one day).

<SOW>
 <Topic>
 ...
 <Expiration>86400s </Expiration>
 ...
 </Topic>
</SOW>

Example 1.5. Expiration Using Seconds

An even easier way to specify an expiration of one day is to use the following Expiration:

<SOW>
 <Topic>
 ...
 <Expiration>1d</Expiration>
 ...
 </Topic>
</SOW>

Example 1.6. Expiration Using Days

Table 1.2 shows a listing of the time units AMPS supports in the configuration file.

Table 1.2. AMPS Configuration - Time Units

Units Description

ns nanoseconds

us microseconds

ms milliseconds

s seconds

m minutes

h hours

d days

w weeks

AMPS configuration supports a similar mechanism for byte-based units when specifying sizes in the configuration
file. Table 1.3 shows a listing of the byte units AMPS supports in the configuration file.

Table 1.3. AMPS Configuration - Byte Units

Units Description

kb kilobytes

mb megabytes

gb gigabytes

AMPS Configuration Basics

6

Units Description

tb terabytes

Dealing with large numbers in AMPS configuration can also be simplified by using common exponent values to
handle raw values. This means that instead of having to input 10000000 to represent ten million, a user can input
10M. Table 1.4 contains a list of the exponents supported.

Table 1.4. AMPS Configuration - Numeric Units

Units Description

k 103 - thousand

M 106 - million

To make it easier for users to remember the units, AMPS interval and byte units are not case sensitive.

1.3. Environment Variables in AMPS Configura-
tion

AMPS configuration also allows for environment variables to be used as part of the data when specifying a config-
uration file.

If a global system variable is commonly used in an organization, then it may be useful to define this in one location
and re-use it across multiple AMPS installations or applications. AMPS will replace any token wrapped in ${}
with the environment variable defined in the current user operating system environment. Example 1.7 demonstrates
how the environment variable ENV_LOG is used to define a global environment variable for the location of the host
logging.

<Logging>
 <Target>
 <Protocol>file</Protocol>
 <FileName>${ENV_LOG}</FileName>
 <Level>info</Level>
 <RotationThreshold>2G</RotationThreshold>
 </Target>
</Logging>

Example 1.7. Environment Variable Used in Configuration

Internal Environment Variables
In addition to supporting custom environment variables, AMPS includes a configuration variable,
AMPS_CONFIG_DIRECTORY, which can be used to reference the directory in which the configuration file used to
start AMPS is located. For example, assume that AMPS was started with the following command at the command
prompt:

AMPS Configuration Basics

7

%>./ampServer ../amps/config/config.xml

Given this command, the log file configuration option shown in Example 1.8 can be used to instruct AMPS to
create the log files in the same parent directory as the configuration file — in this case ../amps/config/logs/
infoLog.log.

<Logging>
 <Target>
 <Protocol>file</Protocol>
 <FileName>
 ${AMPS_CONFIG_DIRECTORY}/logs/infoLog.log
 </FileName>
 <Level>info</Level>
 <RotationThreshold>2G</RotationThreshold>
 </Target>
</Logging>

Example 1.8. AMPS_CONFIG_DIRECTORY Environment Variable Example

In addition to the AMPS_CONFIG_DIRECTORY environment variable, AMPS also supports the
AMPS_CONFIG_PATH, which is an absolute path to the configuration file used to start AMPS.

8

Chapter 2. Generating a Configuration
File

This appendix includes a listing of all AMPS configuration parameters. AMPS provides a command line option
to help an administrator quickly set up an AMPS server. In addition to the quick setup discussed in the Getting
Started chapter of the AMPS User Guide, AMPS also provides the following command line options to create a basic
XML configuration file. Running the following command will create a configuration file named config.xml.
The generated file is a bare-bones configuration that allows AMPS to start, process JSON messages, and provide
monitoring through the admin interface.

ampServer --sample-config > config.xml

The AMPS server also provides the ability to perform basic validation of the config file, using the --verify-con-
fig flag.

ampServer --verify-config config.xml

The validation process checks for errors in the configuration that would prevent AMPS from starting, and reports
warnings and informational messages about the configuration file. However, the validation process does not ensure
that the configuration file provided is suitable for any particular purpose.

9

Chapter 3. Instance Level Configuration
This chapter describes elements of the AMPS configuration that set parameters for the instance as a whole.

Table 3.1. Instance Level Configuration Parameters

Element Description

Name This element defines the name of your AMPS instance. The instance name is used to unique-
ly identify this instance for replication purposes, to generate file names for use by the AMPS
instance, and is shown in log statements and for other administrative purposes. 60East recom-
mends that the name be short and meaningful, and that each instance in your AMPS installation
have a distinct name. When creating a name, the name should not contain special characters
such as spaces, path separator characters (/ or \), or characters that will be interpreted by the
Linux shell ($ or ~).

This element is required, and there is no default.

Group Identifies the replication group for this instance. If no Group element is present, the replication
group for this instance is set to the Name of the instance. Set the group parameter when being
able to refer to a set of instances makes your replication configuration simpler.

Replication passthrough uses the group name to specify which instances to provide passthrough
for. See the AMPS User Guide for a discussion of replication, including passthrough.

Defaults to the instance Name.

Regex-
TopicSupport

Sets whether this instance supports regular expression topic matching. When this option is true,
clients can register subscriptions using regular expressions and receive messages for all match-
ing topics. When this option is false, regular expression characters are interpreted as literal
characters.

Defaults to true.

Authentica-
tion

Sets the default authentication module to use for transports that do not explicitly specify an
authentication module. Authentication modules verify the identity of a connected user.

The module specified must be one of the modules configured in the Modules element or one
of the authentication modules that AMPS loads by default. See Table 12.2 for the list of default
modules.

Defaults to amps-default-authentication-module.

Entitlement Sets the default entitlement module to use for transports that do not explicitly specify an entitle-
ment module. Entitlement modules enforce permissions for a connected user.

The module specified must be one of the modules configured in the Modules element or one
of the modules that AMPS loads by default. See for Table 13.2 for the list of default modules.

Defaults to: amps-default-entitlement-module

Authentica-
tor

Sets the default authenticator module to use for outgoing connections from AMPS that do not
explicitly specify an authenticator module. Authenticator modules provide credentials to use for
outgoing connections.

The module specified must be one of the modules configured in the Modules element or one
of hte modules that AMPS loads by default.

Instance Level Configuration

10

Element Description
Defaults to: amps-default-authenticator-module

Suggested-
MinimumVer-
sion

The suggested minimum AMPS version to use this configuration file. If the AMPS instance that
loads this configuration file has a version number less than the suggested minimum version,
AMPS issues a warning. This option can be useful when upgrading a set of AMPS instances, or
when the AMPS instance will see improved performance from a particular feature. For example,
an application that will run correctly without hash indexes, but would see improved performance
with hash indexes, could provide a SuggestedMinimumVersion of 4.3.1.0.

Defaults: when no value is provided, AMPS does not check the configuration file against the
verison number of the instance.

RequiredMin-
imumVersion

The required minimum AMPS version to use this configuration file. If the AMPS instance that
loads this configuration file has a version number less than the suggested minimum version,
AMPS issues an error and will not start. This option can be useful for enforcing upgrade on a set
of AMPS instances, or when the AMPS instance must support a particular feature. For example,
an application that uses message queues could provide a RequiredMinimumVersion of 5.0.

Defaults: when no value is provided, AMPS does not check the configuration file against the
verison number of the instance.

<AMPSConfig>

 <Name>AMPS</Name>
 <Group>Sample-AMPS</Group>

</AMPSConfig>

Example 3.1. Instance-Level Configuration Example

3.1. SOW Statistics Interval

AMPS can publish SOW statistics for each SOW topic which has been configured. The SOWStatsInterval is
specified as an interval (see Table 1.2) between updates to the /AMPS/SOWStats topic.

Table 3.2. SOW Statistics Interval Parameters

Element Description

SOWStatsInterval Interval for which SOW statistics are updated.

<AMPSConfig>
 ...
 <SOWStatsInterval>10s</SOWStatsInterval>
 ...
</AMPSConfig>

Example 3.2. SOW Statistics Interval Example

Instance Level Configuration

11

3.2. Slow Client Policies

AMPS includes a set of parameters that specify how the instance should manage slow clients. Sometimes, AMPS
can publish messages faster than an individual client can consume messages, particularly in applications where the
pattern of messages includes "bursts" of mesages. Clients that are unable to consume messages faster or equal to
the rate messages are being sent to them are ”slow clients”. By default, AMPS queues messages for a slow client
in memory to grant the slow client the opportunity to catch up. However, scenarios may arise where a client can
be over-subscribed to the point that the client cannot consume messages as fast as messages are being sent to it. In
particular, this can happen with the results of a large SOW query, where AMPS generates all of the messages for the
query much faster than the network can transmit the messages.

Slow client management is one of the ways that AMPS prevents slow clients from disrupting service to the instance.
60East recommends enabling slow client management for instances that serve high message volume or are mission
critical. Slow client policies for all Transports in the instance are set at the root level of the configuration file. A
Transport can override any of these settings, or choose to use the instance-wide settings. Details on slow client
handling are available in the AMPS User Guide.

Table 3.3. Slow Client Management

Element Description

MessageMemoryLimit The total amount of memory to allocate to messages be-
fore offlining clients.

Default: 10% of total host memory or 10% of the amount
of host memory AMPS is allowed to consume (as report-
ed by ulimit -m), whichever is lowest.

MessageDiskLimit The total amount of disk space to allocate to messages
before disconnecting clients.

Default: 1GB or the amount specified in the Message-
MemoryLimit, whichever is highest.

MessageDiskPath The path to use to write offline files.

Default: /var/tmp

ClientMessageAgeLimit The maximum amount of time for the client to lag behind.
If a message for the client has been held longer than this
time, the client will be disconnected. This parameter is an
AMPS time interval (for example, 30s for 30 seconds,
or 1h for 1 hour).

Default: No age limit

ClientMaxCapacity The amount of available capacity a single client can con-
sume. Before a client is offlined, this limit applies to the
MessageMemoryLimit. After a client is offlined, this
limit applies to the MessageDiskLimit. This para-
meter is a percentage of the total.

Default: 100% (no effective limit)

Instance Level Configuration

12

3.3. Minidump Directory

The minidump directory is used to specify a location for AMPS to create a file that contains program information
which is useful for support and diagnostics. AMPS will generate a minidump file on any crash event, or a minidump
file can be generated at any point in time through the monitoring interface (see the AMPS Monitoring Reference
Guide).

Table 3.4. Mini Dump Directory Parameters

Element Description

MiniDumpDirectory Location to store AMPS mini dumps. Default is /tmp. If the directory does not
exist, AMPS creates the directory.

The special value disabled configures AMPS not to produce mini dumps.

<MiniDumpDirectory>/var/tmp</MiniDumpDirectory>

Example 3.3. Mini Dump Directory Example

3.4. Configuration Validation

Configuration validation can be used to enable or disable the validation checking performed by AMPS on the ini-
tialization of each instance. Disabling the configuration validation can cause AMPS to start in an invalid state or not
properly log warnings or errors in the configuration file.

Configuration validation should only be disabled during testing or debugging. We strongly recommend
against disabling configuration validation in a production or development environment.

Table 3.5. Config Validation Parameters

Element Description

ConfigValidation Setting this to disabled will turn off AMPS configuration validation. The default
is enabled, ensuring that the current AMPS configuration meets valid parameter
ranges and data types.

<AMPSConfig>
 <ConfigValidation>enabled</ConfigValidation>
</AMPSConfig>

Example 3.4. Configuration Validation Example

3.5. Tuning

Instance Level Configuration

13

The Tuning section of the configuration file sets instance-level parameters for tuning the performance of AMPS.
In many cases, AMPS self-tunes to take advantage of the hardware and environment. However, explicitly setting
tuning parameters is sometimes necessary in cases where an AMPS instance cannot determine the best value. For
example, if multiple AMPS servers are running on the same system, 60East recommends disabling NUMA.

Use the Tuning element with care. Options in the Tuning element can affect AMPS performance,
and the behavior of Tuning options may be version-specific.

Table 3.6. Tuning Parameters

Element Description

NUMA/Enabled Setting this to disabled will turn off AMPS NUMA tuning. The default is en-
abled, which affinitizes certain AMPS threads to specific processors.

The default value of enabled produces significantly better performance when a
single instance of AMPS is running on a given system. However, if multiple instances
of AMPS are running on the same system, setting this value to disabled for all of
the instances on the system can reduce contention among the instances and produce
better overall performance.

Default: enabled

<AMPSConfig>
 <Tuning>
 <NUMA>
 <Enabled>enabled</Enabled>
 </NUMA>
 </Tuning>
</AMPSConfig>

Example 3.5. Tuning Example

3.6. Externals

The AMPS server depends on external libraries for some functionality. The Externals configuration item allows you
to control the exact shared object loaded for some of these external libraries, particularly those related to security.

Table 3.7. Externals Parameters

Element Description

SSL/Library The path and shared object name of the SSL library to use for this instance. AMPS
requires an SSL library that is compatible with OpenSSL 1.0.2 or later. By default,
AMPS specifies the object name, and uses the standard shared object loading mech-
anism to resolve the object name. With this configuration option, you can direct AM-
PS to load a specific shared object.

Default: libopenssl.so

Crypto/Library The path and shared object name of the cryptography library. By default, AMPS
specifies the object name, and uses the standard shared object loading mechanism
to resolve the object name. With this configuration option, you can direct AMPS to
load a specific shared object.

Instance Level Configuration

14

Element Description
Default: libcrypto.so

<AMPSConfig>
 <Externals>
 <SSL>
 <Library>/opt/audited/libopenssl.so</Library>
 </SSL>
 <Crypto>
 <Library>/opt/audited/libcrypto.so</Library>
 </Crypto>
 </Externals>
</AMPSConfig>

Example 3.6. Externals Example

15

Chapter 4. Admin Server
The Admin tag is used to control the behavior of the administration server.

Table 4.1. Admin Parameters

Element Description

InetAddr Defines a port for the embedded HTTP admin server, which can then be accessed via a browser.
This element can also specify an IP address, in which case the HTTP server listens only on that
address. If no IP address is specified, the HTTP server listens on all available addresses.

FileName Location for storing the statistics information reported by the Admin Server.

default: :memory:

Interval The refresh interval for the Admin Server to update gathered statistics.

default: 10s

minimum: 1s

Authentica-
tion

The authentication to use for the Administrative interface. This is an Authentication ele-
ment, as described in Chapter 12.

Entitlement The entitlement to use for the Administrative interface. This is an Entitlement element, as de-
scribed in Chapter 13.

 <Admin>
 <InetAddr>localhost:9090</InetAddr>
 <FileName>stats.db</FileName>
 <Interval>20s</Interval>
 </Admin>

Example 4.1. Admin Example

16

Chapter 5. Modules
The Modules section of the AMPS configuration file is used to load, configure and define any plug-in modules
used for this installation of AMPS. AMPS supports a wide variety of plug-in modules, as described in the Extending
AMPS Guide.

The following steps are required to use a plug-in module:

1. Load the module and declare the name of the module.

2. Define the AMPS object that the module contains and give the object a name and pass any required options.

3. Use the module in a specific context.

For many modules, such as Authentication and Entitlement modules, steps 2 and 3 are performed at the
same time. Steps 2 and 3 above are separate when a module must have the same definition across mutliple contexts
(for example, a MessageType which may be used in a Transport, a SOW, a View, and replicated to other instances).

The available features of a Module are listed in Table 5.1.

Table 5.1. Module Parameters

Element Description

Name

A plain text name for the module. This will be used as a reference when the module is used
elsewhere in the AMPS configuration, and is also the name that AMPS will use for logging
messages related to the module.

Library The shared object file that contains the compiled module. This must contain a path to the file.
When using relative paths, those paths are evaluated relative to the current working directory
of the AMPS process. For example to load a file from the current working directory, you must
specify the directory (for example, ./my_awesome_module.so).

AMPS automatically searches the lib directory of the AMPS distribution for shared objects.
If you install the shared object in the lib directory of the AMPS distribution, you can simply
provide the filename of the shared object without using a path.

Options A list of supported features for the implemented library. AMPS allows you to pass options to the
module by specifying elements within the Options element. The exact options that the module
requires, if any, are determined by the creator of the module.

Example 5.1 provides an example of an AMPS configuration using an authorization and entitlement plug-in module.
In our example, a custom authentication module named libauthenticate_customer001.so has been writ-
ten to manage the authentication portion of AMPS authentication. Similarly, a custom entitlements module has been
written named libentitlement_customer001.so to manage the permissions and access of the authenticat-
ed user.

The first step is to define the global Modules section of the AMPS configuration, and then list the individual
modules.

<AMPSConfig>
...
 <Modules>
 <Module>
 <Name>authentication1</Name>

Modules

17

 <Library>libauthenticate_customer001.so</Library>
 <Options>
 <LogLevel>info</LogLevel>
 <Mode>debugging</Mode>
 </Options>
 </Module>
 <Module>
 <Name>entitlement1</Name>
 <Library>libentitlement_customer001.so</Library>
 <Options>
 <LogLevel>error</LogLevel>
 <Mode>prod</Mode>
 </Options>
 </Module>
 ...
 </Modules>
...
</AMPSConfig>

Example 5.1. Sample global config of authentication and entitlements modules

We now have an authentication module and an entitlements module that we can reference elsewhere in the AMPS
configuration file to enable authentication and/or entitlements for supported features. For example, we can create
one type of Authentication module for the instance as a whole, and then create instances of a different type
of Authentication and Entitlement modules for each Transport, to ensure that our Transports are properly
enabling authentication and entitlements. In this example, the Authentication and Entitlement modules
configured for an individual Transport are used for that transport, and the instance level modules are used as a
default for transports that do not specify any Authentication or Entitlement.

This is accomplished via an entry similar to Example 5.2.

<AMPSConfig>
...
 <Authentication>
 <Module>amps-no-authorization</Module>
 </Authentication>
 <Entitlement>
 <Module>amps-no-authorization</Module>
 </Entitlement>
...
 <Transports>
 <Transport>
 <Name>fix-tcp-001</Name>
...
 <Authentication>
 <Module>authenticate_customer001</Module>
 </Authentication>
 <Entitlement>
 <Module>entitlement_customer001</Module>
 </Entitlement>
 </Transport>
 <Transport>

Modules

18

 <Name>fix-tcp-007</Name>
 ...
 <Authentication>
 <Module>authenticate_customer007</Module>
 </Authentication>
 <Entitlement>
 <Module>entitlement_customer007</Module>
 </Entitlement>
 </Transport>

 <Transport>
 <Name>json-tcp<Name>
 <!-- does not specify Authentication or
 entitlement, uses instance-level
 modules -->
 ...
 </Transport>

 </Transports>
...
</AMPSConfig>

Example 5.2. Example of security enabled transports

Example 5.2 shows how our fix-tcp-001 transport is secured with the authenticate_customer001 au-
thentication module, and the entitlement_customer001 entitlement module, which is defined in a global
Modules section similar to the one listed in Example 5.1. Similarly, the fix-tcp-007 transport is secured with
the authenticate_customer007 authentication module and the entitlement_customer007 entitle-
ment module. In contrast, the json-tcp transport does not define modules, and instead uses the authentication and
entitlement modules specified at the instance level.

19

Chapter 6. Message Types
This tag defines the message types supported by the AMPS instance. A single AMPS instance can support multiple
message types, as MessageTypes can contain multiple MessageType definitions.

MessageType definitions for fix, nvfix, xml, json, bflat, bson, and binary are automatically loaded by
AMPS. You only need to define a new MessageType these if the settings for the message type need to be changed
(for example, to create a custom FIX-based type that changes the FieldSeparator of the message).

AMPS loads the capability to use Google protocol buffer (protobuf) messages by default. To use protocol buffer
messages, you configure one or more message types that use the protobuf module and load the .proto files
that define the format of the messags you will be processing with AMPS.

AMPS also supports the ability to create a composite message type by combining a number of existing message
types. Composite message types are defined using the MessageType configuration element.

Table 6.1. Message Type Parameters

Name Description

Name This element defines the name for the message type. The name is used to
specify MessageType in other sections such as Transport, Trans-
actionLog and the elements of theSOW section.

By default, AMPS loads message types for fix, nvfix, soapfix, json,
bflat, bson, xml and binary.

Module The element specifies the name of the module that will be loaded for this
message type.

By default, AMPS loads the modules that implement the following message
types: fix, nvfix, soapfix, json, bflat, bson, xml, protobuf,
and binary.

AMPS supports creating composite message types out of existing message
types using the composite-global and composite-local mod-
ules, which are loaded by default.

AMPSVersionCompliance Sets the version compatibility for FIX messages that AMPS sends to the /
AMPS/SOWStats topic.

AMPS accepts three values for this option:

• 2 creates messages that use the FIX field tags used by AMPS 2.X versions.

• 4 creates messages that use the default FIX field tags. With this version,
FIX messages use different field numbering for /AMPS/SOWStats and
/AMPS/ClientStatus messages.

• 5 creates messages that use a unified set of FIX tags. When this option is
set to 5, AMPS uses consistent field numbering between /AMPS/SOWS-
tats and /AMPS/ClientStatus messages.

Default: 4. For compatibility with the largest number of existing installa-
tions, this parameter defaults to 4.

Message Types

20

Name Description

For message types other than FIX, there is no difference between 4 and 5.
These message types were not supported in AMPS 2.X: AMPS provides
reasonable values for these message types when this value is set to 2, but
there is no backward compatibilty to enforce.

For most cases, you can leave this option set to the default. If you are using a
system that requires consistent FIX tags across messages, set this parameter
to 5. If you are using an existing system that expects AMPS 2.X tags, set
this parameter to 2.

Options Options to pass to a custom message type module. AMPS does not speci-
fy the format or type of the elements within an Options element. AMPS
simply parses the XML and then sends the XML to the module. If you are
configuring a custom message type, see the documentation for that message
type module for details.

FieldSeparator Option: Applies to fix and nvfix message types.

Sequence of characters used to separate field items in a FIX message. Note:
this field is the ASCII value of the char sequence.

HeaderSeparator Option: Applies to fix and nvfix message types.

Sequence of characters used to separate the header from the body in a FIX
message. Note: this field is the ASCII value of the char sequence.

MessageSeparator Option: Applies to fix and nvfix message types.

Sequence of characters used to separate message items in the body in a FIX
message. Note: this field is the ASCII value of the char sequence.

EarlyTerminationOptimiza-
tion

Option: Applies to the json message type.

By default, AMPS includes a optimization to allow the server to to only
partially parse JSON messages. This may result in unexpected behavior for
some messages. For example, given a message such as { "code" : 1,
"data" : "some data", "code" : 2 }, AMPS will report the
value of code as 1 when this optimization is active. To ensure consistent
results, in this mode AMPS always reports the first value for a field even
when AMPS fully parses the message.

When set to false, the optimization is disabled. AMPS will fully parse all
JSON messages and report the last value for a field. For the message above,
AMPS would report the value of code as 2.

Default: true

Type Required: Applies to message types that use the protobuf mod-
ule. The name of the type within the .proto file to use for this
message type. The name must be namespace-qualified (for example,
MyNamespace.Message would load the type Message within the
namespace MyNamespace).

Obsolete No longer used in AMPS 4.0 and later versions: to define a base
message type to customize, use Module.

Message Types

21

Name Description

MessageType Required: Applies to message types that use the composite-local or
composite-global modules.

For composite message types, the MessageType definition must contain
one or more message type declarations that specify the types that the com-
posite message type contains.

See the AMPS User Guide for more information on composite message
types.

ProtoPath Required: Applies to message types that use the protobuf module.

The path in which to search for .proto files. The content of this element
has the following syntax:

alias ; full-path

The alias provides a short identifier to use when searching for .proto files.
The full path is the path that is substituted for that identifier.

For example, the following ProtoPath declaration sets proto-archive
as an alias for /mnt/shared/protofiles.

proto-archive;/mnt/shared/protofiles

A configuration may omit the alias, and simply provide the path. For exam-
ple:

;/mnt/repository/protodefs

You may specify any number of ProtoPath declarations.

ProtoFile Required: Applies to message types that use Google protocol buffers.

The name of the .proto file to use for this message type. To use an alias,
prefix the name of the file with the alias. For example, if your ProtoPath
declarations have created the proto-archive alias for the directory in
which your .proto files are stored, you could use the following to use the
my-messages.proto file within that directory.

proto-archive/my-messages.proto

<MessageTypes>
 <!-- Define a FIX-based message type with custom separators -->
 <MessageType>
 <Name>fix-custom</Name>
 <Module>fix</Module>
 <!-- The following are FIX specific options -->
 <FieldSeparator>1</FieldSeparator>
 <HeaderSeparator>2</HeaderSeparator>
 <MessageSeparator>5</MessageSeparator>
 </MessageType>

Message Types

22

 <!-- Define a message type for a custom
 payload. 'type-module' must be the
 Name of a Module specified in the
 configuration. -->
 <MessageType>
 <Name>custom-payload</Name>
 <Module>type-module</Module>
 </MessageType>

 <!-- Define a composite message type
 that combines a json message and
 a custom-payload message. -->

 <MessageType>
 <Name>custom-composite</Name>
 <Module>composite-local</Module>
 <MessageType>json</MessageType>
 <MessageType>custom-payload</MessageType>
 </MessageType>

</MessageTypes>

Example 6.1. Message Types Example

23

Chapter 7. Transports
The Transports element configures how AMPS communicates with publishers and subscribers, as well as how
AMPS accepts connections for replication. The Transports element is a container for one or more Transport
elements. Each Transport is a combination of a network transport, an AMPS header protocol, and a message type.

A Transport also specifies the Authentication used to validate the users that connect, and the Entitle-
ment used to enforce permissions for users that connect over that transport.

AMPS supports a variety of network transports, header protocols and message formats for communication between
publishers and subscribers. This section describes how to configure a Transport.

Table 7.1. Transport Parameters

Element Description

Name The name to use for this Transport. This name appears in the AMPS log for
messages related to the transport.

InetAddr The port on which AMPS will listen for this transport. This element can also
specify an IP address, in which case AMPS listens only on that address. If no IP
address is specified, AMPS listens on all available addresses.

Protocol This element defines the protocol to use for sending and receiving messages. The
protocol is typically amps, the name of a specific protocol for interoperability
with another system or a legacy application, or the name of a custom protocol
module specified in the Modules element.

AMPS provides support for the following protocols:

Table 7.2. Protocols

Protocol Name Description

amps Standard AMPS messaging, using
compact headers in JSON format.

AMPS accepts json as a synonym for
amps in a protocol declaration.

fix-session FIX session protocol, for use with sys-
tems that publish FIX messages using
this format.

websocket Websocket protocol, using JSON for-
mat headers.

Legacy protocols

fix Standard AMPS messaging, using
headers in FIX format.

nvfix Standard AMPS messaging, using
headers in NVFIX format.

soap Standard AMPS messaging, using
headers in SOAP format.

xml Standard AMPS messaging, using
headers in XML format.

Transports

24

Element Description
60East recommends using the amps protocol for general purpose AMPS mes-
saging. When your application uses the the FIX session layer or Websockets,
use those protocols.

Older versions of AMPS used message headers in the same format as the mes-
sage type: if your instance supports applications that expect to use a specific
message type protocol, use that protocol in your Transport configuration.

Type The type of Transport.

Valid values include: tcp, tcps, amps-replication

tcp is the standard TCP transport.

tcps is secure TCP transport: this transport type uses SSL and requires a cer-
tificate and private key to be set.

amps-replication is for inbound replication connections. Notice that AM-
PS replication does not use the same transport type as other applications.

MessageType Defines a message type for this transport, and is a reference to the name of a
specific message type defined in the MessageTypes section or one of the
message types that AMPS loads by default.

In this release, AMPS loads the following message types by default: fix,
nvfix, xml, json, bson and binary.

Each Transport requires at least one MessageType. A Transport that
uses the amps Protocol defaults to accepting all message types defined by
the instance.

The MessageType element is required for types other than amps-repli-
cation. When the transport type is amps-replication, this element is
ignored.

Default: There is no default when the Protocol is a legacy value. When the
Protocol is amps, defaults to accepting all the message types defined by the
instance.

InitialState Defines whether, when AMPS starts, the transport is enabled or disabled. When
the transport is disabled, AMPS does not listen for or accept connections on the
transport. When InitialState is disabled, the transport must be explic-
itly enabled after startup (for example, through an action or the administrative
console) for AMPS to listen for and accept connections on the transport.

This configuration option can be useful for defining a transport that is only avail-
able when certain conditions are true: for example, an instance might start with
the connection used by clients disabled, and let an external monitoring system
enable the connection during business hours and disable the connection outside
of business hours.

Default: enabled

Transports

25

Element Description

ReuseAddr Permits an AMPS instance to use a socket that is in a WAIT state. This can occur
when AMPS has been restarted using the same InetAddr and the previous
instance did not fully close the port.

Valid values: true or false

Default: false

Entitlement Specifies the entitlement module to use for this transport. If no entitlement mod-
ule is provided, the transport uses the default entitlement module for the instance.
This element must contain a Module element with the Name of an entitlement
module. If the module requires options, those options are provided in an Op-
tions element within the Entitlement element.

Default: The module specified in the Entitlement for the instance (defaults
to amps-default-entitlement-module if not provided)

Authentication Specifies the authentication module to use for this transport. If no authentication
module is provided, the transport uses the authentication module for the instance.
This element must contain a Module element with the Name of an authentica-
tion module. If the module requires options, those options are provided in an
Options element within the Authentication element.

Default: The module specified in the Authentication element for the
instance (defaults to amps-default-authentication-module if not
provided)

MessageMemoryLimit The total amount of memory to allocate to messages before offlining clients.

Default: The setting configured at the instance level. If this option is not specif-
ically set at the instance level, the instance defaults to 10% of total host memory
or 10% of the amount of host memory AMPS is allowed to consume (as reported
by ulimit -m), whichever is lowest.

MessageDiskLimit The total amount of disk space to allocate to messages before disconnecting
clients.

Default: The setting configured at the instance level. If this option is not specif-
ically set at the instance level, the instance defaults to 1GB or the amount spec-
ified in the MessageMemoryLimit, whichever is highest.

MessageDiskPath The path to use to write offline files.

Default: /var/tmp, or the setting configured at the instance level

ClientMessageAgeLimit The maximum amount of time for the client to lag behind. If a message for the
client has been held longer than this time, the client will be disconnected. This
parameter is an AMPS time interval (for example, 30s for 30 seconds, or 1h
for 1 hour).

Default: No age limit, or the setting configured at the instance level

ClientMaxCapacity The amount of available capacity a single client can consume. Before a client
is offlined, this limit applies to the MessageMemoryLimit. After a client is
offlined, this limit applies to the MessageDiskLimit. This parameter is a
percentage of the total.

Transports

26

Element Description
Default: 100% (no effective limit), or the setting configured at the instance level

Starting with 5.0, AMPS supports encrypting client connections using the SSL (Secure Sockets Layer) network
protocol. The following parameters apply to transports that use SSL. While AMPS performs additional configuration
validation if the transport is configured with a Type of tcps, if a Certificate and PrivateKey are specified
for a Transport of tcp type, AMPS will use SSL for that Transport.

Table 7.3. SSL Transport Parameters

Element Description

Certificate The certificate file to use for the server.

Default: There is no default for this option.

PrivateKey The private key to use for the server.

Default: There is no default for this option.

Ciphers The cipher list to use for this transport. The cipher list is passed to the OpenSSL
implementation without being interpreted by the AMPS server.

Default: There is no default for this option. For OpenSSL, details on the format
of the cipher list are available at https://www.openssl.org/docs/manmaster/apps/
ciphers.html.

<Transports>

 <!-- fix messages using TCP -->
 <Transport>
 <Name>fix-tcp</Name>
 <Type>tcp</Type>
 <InetAddr>9004</InetAddr>
 <ReuseAddr>true</ReuseAddr>
 <MessageType>fix</MessageType>
 </Transport>

 <!-- nvfix messages using TCP -->
 <Transport>
 <Name>nvfix-tcp</Name>
 <Type>tcp</Type>
 <InetAddr>9005</InetAddr>
 <ReuseAddr>true</ReuseAddr>
 <MessageType>nvfix</MessageType>
 </Transport>

 <!-- xml messages using TCP -->
 <Transport>
 <Name>soap-tcp</Name>
 <Type>tcp</Type>
 <InetAddr>9006</InetAddr>
 <ReuseAddr>true</ReuseAddr>
 <MessageType>xml</MessageType>
 </Transport>

https://www.openssl.org/docs/manmaster/apps/ciphers.html
https://www.openssl.org/docs/manmaster/apps/ciphers.html

Transports

27

</Transports>

Example 7.1. Transports Example

<AMPSConfig>

 ...

 <MessageMemoryLimit>10GB</MessageMemoryLimit>
 <MessageDiskPath>/mnt/fastio/AMPS/offline</MessageDiskPath>
 <ClientMessageAgeLimit>30s</ClientMessageAgeLimit>

...
 <Transports>

 <!-- This transport shares the 10GB MessageMemoryLimit
 defined for the instance. -->
 <Transport>
 <Name>regular-json-tcp</Name>
 <Type>tcp</Type>
 <InetAddr>9007</InetAddr>
 <ReuseAddr>true</ReuseAddr>
 <MessageType>json</MessageType>
 </Transport>

 <!-- This transport shares the 10GB MessageMemoryLimit
 defined for the instance. -->
 <Transport>
 <Name>regular-bson-tcp</Name>
 <Type>tcp</Type>
 <InetAddr>9010</InetAddr>
 <ReuseAddr>true</ReuseAddr>
 <MessageType>bson</MessageType>
 <!-- However, this transport does not allow
 clients to fall as far behind as the
 instance-level setting -->
 <ClientMessageAgeLimit>15s</ClientMessageAgeLimit>
 </Transport>

 <!-- This transport has a separate 35GB MessageMemoryLimit
 and a 70GB MessageDiskLimit. It uses the instance-wide
 30s parameter for the ClientMessageAgeLimit -->
 <Transport>
 <Name>highpri-json-tcp</Name>
 <Type>tcp</Type>
 <InetAddr>9995</InetAddr>
 <ReuseAddr>true</ReuseAddr>
 <MessageType>json</MessageType>
 <MessageMemoryLimit>35GB</MessageMemoryLimit>
 <MessageDiskLimit>70GB</MessageDiskLimit>

Transports

28

 </Transport>

 </Transports>

</AMPSConfig>

Example 7.2. Transports Example with Resource Management

<AMPSConfig>

 <Transports>

 <Transport>
 <Name>ssl-all-message-types</Name>
 <Type>tcps</Type>
 <InetAddr>9007</InetAddr>
 <ReuseAddr>true</ReuseAddr>
 <Certificate>${AMPS_INSTALL}/cert.pem</Certificate>
 <PrivateKey>${AMPS_INSTALL}/key.pem</PrivateKey>
 <Ciphers>HIGH:!aNULL</Ciphers>
 </Transport>

 </Transports>

</AMPSConfig>

Example 7.3. SSL Transport Example

29

Chapter 8. Logging
AMPS supports several different types of log formats, and multiple targets can be defined simultaneously.

Table 8.1. Logging Parameters

Element Description

Protocol Define the logging target protocol

Valid values: stdout, stderr, file, gzip, syslog

FileName File to log to. If RotationThreshold is specified, then -%n is added to
the file. If the protocol is gzip, then .gz is added to the file name

Default: $PWD/%Y-%m-%dT%H%M%S.log

RotationThreshold Log size at which log rotation will occur. See Table 1.3 for details on speci-
fying file size.

Level Defines a lower bound (inclusive) log level for logging. All log messages at
the specified level and up are logged.

Valid values: none, trace, debug, stats, info, warning, error,
critical, emergency

Levels A comma separated list of specific log levels. Only log messages at the speci-
fied levels will be logged. This element can be used with the Level element.
In that case, the AMPS will log all messages at Level and above, and in
addition, will log errors at the levels specified by Levels.

Valid values: none, trace, debug, stats, info, warning, error,
critical, emergency

IncludeErrors Additional errors that should be included when logging. If an error appears in
this element, it will be logged regardless of the level of the error.

ExcludeErrors Errors that should be excluded when logging. If an error appears in this ele-
ment, it will not be logged regardless of the level of the error.

If the same error appears in both IncludeErrors and ExcludeErrors,
ExcludeErrors takes precedence and the error will not be logged.

Ident Syslog identifier for the AMPS instance.

Default: AMPS Instance Name

Options A comma separated list of syslog options. If using syslog, 60East recom-
mends using LOG_CONS, LOG_NDELAY, and LOG_PID. AMPS uses the
standard options to syslog, as described in the syslog man page.

Facility Syslog facility to use.

<Logging>
 <Target>
 <Protocol>file</Protocol>
 <FileName>
 /var/tmp/amps/logs/%Y%m%d%H%M%S-%n.log

Logging

30

 </FileName>
 <RotationThreshold>2G</RotationThreshold>
 <Level>trace</Level>
 <Levels>critical</Levels>
 </Target>
 <Target>
 <Protocol>syslog</Protocol>
 <Level>critical</Level>
 <Ident>amps_dma</Ident>
 <Options>LOG_CONS,LOG_NDELAY,LOG_PID</Options>
 <Facility>LOG_USER</Facility>
 </Target>
</Logging>

Example 8.1. Logging Example

31

Chapter 9. State-of-the-World (SOW)
Features

The SOW section of the configuration file holds the configuration for State-of-the-World topics and features that
depend on State-of-the-World topics.
Table 9.1. SOW section configuration elements

Element Description

Topic Defines a SOW topic. SOW topic definitions are used directly as a last-value cache, and are
required for many of the advanced messaging features in AMPS such as out-of-focus notifi-
cations and delta messaging. SOW topic definitions are also the underlying topics for views,
aggregates, and conflated topics. SOW Topic configuration is described in Section 9.1.

Queue Defines a message queue. Rather than delivering each message to all matching subscriptions,
message queues provide features to help ensure that each message is delivered to and processed
by a single subscriber. See the User Guide for a full description of the functionality of message
queues. Queue configuration is described in Section 9.2.

View Defines a View over one or more SOW topics. A view can perform aggregation, can JOIN
multiple topics together. A view can be based on a SOW topic of one message type and project
results of a different message type. View configuration is described in Section 9.3.

Conflated-
Topic

Defines a copy of a SOW topic that receives current value updates at a specified interval,
conflating any changes to values that occur between the scheduled updates. ConflatedTopic
configuration is described in Section 9.4.

The elements within the SOW section are described in detail in the following sections.

9.1. SOW/Topic

State of the World (SOW) provides a mechanism for AMPS to persist the most recent publish for each message.
Notice that AMPS does not require topics to be predeclared: defining topics in this way enables the State of the
World for the topic. This configuration is not required to publish messages to the topic.

Table 9.2 contains a listing of the parameters for a Topic section in the SOW section of an AMPS configuration file.
AMPS accepts TopicDefinition as a synonym for Topic, since this was the element name used in versions
before 5.0.
Table 9.2. SOW/Topic

Element Description

FileName The file where the State of the World (SOW) data will be stored.

This element is required for SOW topics with a Durability of persistent (the
default) because those topics are persisted to the filesystem. This is not required for
SOW topics with a durability of transient.

MessageType Type of messages to be stored. To use AMPS generated SOW keys, the message type
specified must support content filtering so that AMPS can determine the SOW key for
the message. All of the default message types, except binary, support content filtering.
Since the binary message type does not support content filtering, that type can only
be used for a SOW when publishers use explict keys.

State-of-the-World (SOW) Features

32

Element Description
See the "Message Types" chapter in the AMPS User Guide for a discussion of the mes-
sage types that AMPS loads by default. Some message types (such as Google Protocol
Buffers) require additional configuration, and must be configured before using the mes-
sage type in a SOW topic.

Name The name of the SOW topic - all unique messages (see Key) on this topic will be stored
in a topic-specific SOW database.

If no Name is provided, AMPS accepts Topic as a synonym for Name to provide
compatibility with versions of AMPS previous to 5.0.

Key Specifies an XPath within each message that AMPS will use to determine whether a
message is unique. This element can be specified multiple times to create a composite
key.

A SOW topic can have either a key determined by AMPS, or publishers can provide
the SOW key for a message with each message. 60East recommends having AMPS
determine the key unless your application has specific needs that make this impractical.

AMPS automatically creates a hash index for the SOW key.

HashIndex AMPS provides the ability to do fast lookup for SOW records based on specific fields.

When one or more HashIndex elements are provided, AMPS creates a hash index for
the fields specified in the element. These indexes are created on startup, and are kept up
to date as records are added, removed, and updated.

The HashIndex element contains a Key element for each field in the hash index.

AMPS uses a hash index when a query uses a exact matching for all of the fields in the
index. AMPS does not use hash indexes for range queries or regular expressions.

AMPS automatically creates a hash index for the SOW key.

RecoveryPoint For SOW topics that are covered by the transaction log, the point from which to recover
the SOW if the SOW file is removed, or if the SOW topic has transient duration.

This configuration item allows two values:

• epoch recovers the SOW from the beginning of the transaction log

• now recovers the SOW from the current point in the transaction log

Defaults to epoch.

Index AMPS supports the ability to precreate memo indexes for specific fields using the In-
dex configuration option.

When one or more Index elements are provided, AMPS creates memo indexes for any
field specified in an Index element on startup, before a query that uses that field runs.
Otherwise, AMPS indexes each field the first time a query uses the field. Adding one or
more Index configurations to a SOW/Topic can improve retrieval performance the
first time a query that contains the indexed fields runs for large SOW topics.

SlabSize The size of each allocation for the SOW file, as a number of bytes. When AMPS needs
more space for the SOW, it requests this amount of space from the operating system.

State-of-the-World (SOW) Features

33

Element Description
This effectively sets the maximum message size that AMPS guarantees can be stored
in the SOW.

60East recommends setting this value only if you will be storing messages larger than
the default SlabSize or if performance or capacity testing indicates a need to tune
SOW performance. If you plan to store messages larger than the default setting, 60East
recommends a starting value of several times the maximum message size. For example,
if your maximum message size is 2MB, a good starting point for SlabSize would
be 8MB.

If it becomes necessary to tune the SlabSize, see the Best Practices and Capacity
Planning sections of the AMPS User Guide for a full discussion tuning the SlabSize.

Default: 1MB

InitialSlabCount The number of SOW slabs that AMPS will allocate on startup.

Default: 1

Maximum: 1024

Expiration Time for how long a record should live in the SOW database for this topic. The expiration
time is stored on each message, so changing the expiration time in the configuration file
will not affect the expiration of messages currently in the SOW.

AMPS accepts interval values for the Expiration, using the interval format described in
the AMPS Configuration Guide section on units, or one of the following special values:

• A value of disabled specifies that AMPS will not process SOW expiration for
this topic, regardless of any expiration value set on the message. In this case, AMPS
saves the expiration for the message, but does not process it. The value must be set to
disabled (the default) if History is enabled for this topic.

• A value of enabled specifies that AMPS will process SOW expiration for this topic,
with no expiration set by default. Instead, AMPS uses the value set on the individual
messages (with no expiration set for messages that do not contain an expiration value).

Default: disabled (never expire)

KeyDomain The seed value for SowKeys used within the topic. The default is the topic name, but
it can be changed to a string value to unify SowKey values between different topics.

For example, if your application has a ShippingAddress SOW and a CreditRat-
ing SOW that both use /customerID as the SOW key, you can use a KeyDomain
to ensure that the generated SowKey for a given /customerId is identical for both
SOW topics. This does not affect how AMPS processes the SOW topics, but can make
correlating information from different SOW topics easier in your application.

Default: the name of the SOW topic

Durability Defines the data durability of a SOW topic. SOW databases listed as persistent
are stored to the file system, and retain their data across instance restarts. Those listed
as transient are not persisted to the file system, and are reset each time the AMPS
instance restarts.

State-of-the-World (SOW) Features

34

Element Description
Default: persistent

Valid values: persistent or transient

Synonyms: Duration is also accepted for this parameter for backward compatibility
with configuration prior to 4.0.0.1

History Enable historical query for this SOW. This element contains a Window and Granu-
larity element. When the History element is present, historical query is enabled
for this sow. Otherwise, AMPS does not enable historical query and does not store the
historical state of the SOW.

Expiration must be disabled when History is enabled.

Window For a historical SOW, the length of time to store history. For example, when the value
is 1w, AMPS will store one week of history for this SOW.

Used within the History element.

Default: By default, AMPS does not expire historical SOW data.

Granularity For a historical SOW, the granularity of the history to store. For many applications, it is
not necessary for AMPS to store all of the updates to the SOW. This parameter sets the
resolution at which AMPS will save the state of a message.

For example, when you set a granularity of 1m, AMPS will save the state of the message
no more frequently than once per minute, even when the state of the message is updated
several times a minute.

Used within the History element.

DEPRECATED:

RecordSize

This parameter is deprecated beginning in AMPS 5.0. Use the SlabSize parameter
instead. Size (in bytes) of a SOW record for this topic.

Default: 512

DEPRECATED:

InitialSize

This parameter is deprecated beginning in AMPS 5.0. Use the InitialSlabCount
parameter instead.Initial size (in records) of the SOW database file for this topic.

Default: 2048

DEPRECATED:

IncrementSize

This parameter is deprecated beginning in AMPS 5.0. Use the SlabSize parameter
instead. Number of records to expand the SOW database (for this topic) by when more
space is required.

Default: 1000

An example of a SOW configuration looks like the following:

<SOW>

 <!-- Simple SOW topic definition -->
 <Topic>
 <Name>orders</Name>
 <Key>/orderId</Key>
 <MessageType>nvfix</MessageType>

State-of-the-World (SOW) Features

35

 <FileName>./sow/%n.sow</FileName>
 </Topic>

 <!-- SOW with hash indexes -->
 <Topic>
 <Name>customers</Name>
 <Key>/customerId</Key>
 <MessageType>json</MessageType>
 <FileName>./sow/%n.sow</FileName>
 <HashIndex>
 <Key>/customerName</Key>
 </HashIndex>
 <HashIndex>
 <Key>/zipCode</Key>
 <Key>/customerType</Key
 </HashIndex>
 </Topic>

 <!-- Historical SOW -->
 <Topic>
 <Name>catalog</Name>
 <Key>/sku</Key>
 <MessageType>json</MessageType>
 <FileName>./sow/%n.sow</FileName>
 <History>
 <Window>7d</Window>
 <Granularity>15m</Granularity>
 </History>
 </Topic>
</SOW>

Example 9.1. SOW Topic Configuration

9.2. SOW/Queue
This section lists configuration parameters for queues.

The Queue tag is used to configure message queues. AMPS accepts QueueDefinition as a synonym for Queue.

Table 9.3. Queue configuration elements

Element Description

Name The name of the queue topic. This name is the name that
consumers subscribe to.

If no Name is provided, AMPS accepts Topic as a syn-
onym for Name in the Queue definition.

MessageType The message type of the queue.

UnderlyingTopic A topic name or regular expression for the topic that con-
tains the messages to capture in the queue. These topics
must be recorded in a transaction log, and all must be of the
same message type as the queue.

State-of-the-World (SOW) Features

36

Element Description
If an UnderlyingTopic is not provided, the Under-
lyingTopic defaults to the Topic.

DefaultPublishTarget The topic to publish to when an application publishes a mes-
sage to the queue. For simplicity, AMPS allows applications
to publish messages to the queue, and for those messages to
be routed to one of the underlying topics.

This element is required if the UnderlyingTopic con-
tains regular expression characters. Otherwise, the Under-
lyingTopic is a single topic and this element is optional
and defaults to the UnderlyingTopic.

LeasePeriod The amount of time that a subscriber has ownership of the
message before the message is returned to the queue. For
at-least-once delivery semantics, the consumer must
process and acknowledge the message within this lease pe-
riod, or the message may be provided to another subscriber.

The LeasePeriod is measured from the time that AMPS
sends the message to the subscriber. Set the LeasePeri-
od to account for round trip network latency as well as the
expected processing time for the subscribers.

Default: infinite (no expiration)

Semantics The delivery semantics to use for this queue. There are two
accepted values:

• at-least-once With these semantics, you can guar-
antee that a message has been processed by at least one
subscriber, as described in the introduction to Queues in
the AMPS User Guide. With this value, a subscriber must
explicitly remove the message from the queue once the
message is processed.

• at-most-once With these semantics, AMPS removes
removes the message from the queue immediately when
AMPS sends the message. This allows you to guarantee
that no more than one subscriber will process the mes-
sage.

Default: at-least-once

MaxBacklog The maximum number of outstanding, unacknowledged
messages in the queue at any one time. This parameter
allows you to set limits on the number of pending mes-
sages from the queue overall. When the queue reaches the
MaxBacklog, no incoming messages are delivered from the
queue until a message is removed from the queue (either by
expiring, or being acknowledged by a client). This parame-
ter allows you to avoid overwhelming clients during peri-
ods of heavy activity.

State-of-the-World (SOW) Features

37

Element Description
Notice that this does not set a limit of any sort on the ca-
pacity of the queue. This parameter allows you to limit the
number of messages that the queue will make available to
subscribers at a given time, but does not restrict the capacity
of the queue to track messages.

Default: infinite

MaxPerSubscriptionBacklog The maximum number of outstanding, unacknowledged
messages in the queue for an individual subscription. This
parameter allows you to avoid overwhelming a single sub-
scriber during a period of heavy activity.

Subscribers can declare the maximum number of messages
that the subscription is prepared to lease at a given time.
This maximum defaults to 1 when there is no maximum
explicitly specified for a subscription. AMPS will lease the
number specified in the subscription or the maximum set
for the queue, whichever is lower.

Notice that this does not set a limit of any sort on the ca-
pacity of the queue. This parameter allows you to limit the
number of messages that the queue will make available for
a single subscription at a given time, but does not restrict
the capacity of the queue to track messages.

Default: 1

Expiration The length of time a message can remain in the queue before
AMPS considers the message undeliverable.

Messages may expire while a subscriber has a lease on the
message. AMPS does not send an additional notification in
this case.

Default: infinite

Filter An AMPS Filter that is applied to the Underly-
ingTopic. When a Filter is specified, only messages
matching the Filter appear in the queue.

By default, there is no filter and all messages from the Un-
derlyingTopic are presented in the queue.

RecoveryPoint This option allows you to specify the point at which AMPS
begins reviewing the transaction log to recover the state of
the queue when AMPS restarts. By default, AMPS reviews
the full log to determine the contents and state of the queue.

The RecoveryPoint can be one of the following:

• epoch - Recovery begins at the beginning of the trans-
action log

• creation - Recovery begins at the time the queue was
created

State-of-the-World (SOW) Features

38

Element Description
• AMPS bookmark - When an AMPS bookmark is provid-

ed, AMPS starts recovery at the specified bookmark.

• ISO-8601 timestamp - When a timestamp is provided,
AMPS starts recovery at the specified timestamp.

Default: epoch

FairnessModel AMPS provides different methods to distribute messages
across active subscriptions:

• fast - AMPS delivers to the first subscription found that
can process the message

• round-robin - AMPS distributes to the next subscrip-
tion found that can process the message

• proportional - AMPS delivers to the subscription
with the lowest ratio of active messages to available
backlog

Default: proportional for at-least-once queues,
round-robin for at-most-once queues

Leasing Ownership model for leased messages. AMPS supports the
following models:

• strict - AMPS allows a client to acknowledge
(sow_delete) only messages that are leased to the
client or currently unleased. If a client acknowledges a
message leased to another client, there is no effect.

• sublet - AMPS allows any client to acknowledge any
message, regardless of whether another client has a lease
on the message.

Default: sublet

<!--
 Notice that the topics to use for
 the queue (ORDERS_.*) must be
 recorded in a transaction log.
-->

<SOW>
 <Queue>
 <Name>MQ</Name>
 <MessageType>json</MessageType>
 <UnderlyingTopic>ORDERS_.*</UnderlyingTopic>
 <DefaultPublishTarget>ORDERS_DIRECT</DefaultPublishTarget>
 <LeasePeriod>60s</LeasePeriod>
 <Expiration>1d</Expiration>
 <MaxBacklog>3</MaxBacklog>
 </Queue>

State-of-the-World (SOW) Features

39

</SOW>

Example 9.2. Queue Example

9.3. SOW/View

Table 9.4 contains a listing of the parameters for a View section in the SOW section of an AMPS configuration file.
For backward compatibility, AMPS accepts ViewDefinition as a synonym for View.

Table 9.4. SOW/View

Element Definition

MessageType One of the message types configured for the instance. AMPS includes fix, xml,
nvfix, json, and bson message types. You can also use any custom message type
defined for the configuration file, provided that the message type supports views.

Notice that the binary message type does not specify a fixed format for the message
contents, so that message type cannot be used in a view.

Name Defines the topic name for this view.

If no Name is provided, AMPS accepts Topic as a synonym for Name to provide
compatibility with versions of AMPS previous to 5.0.

UnderlyingTopic Defines the SOW topic or topics on which this view is based. This element can contain
a single topic name, or any number of Join elements.

MessageType The message type of the view. This does not need to be the same type as any of the
topics in the aggregation, but does need to be a message type that supports views.

Projection/Field Defines what the view will contain. This element can be specified multiple times to
compose a complex view. Complex expressions that use aggregation functions and
conditional branching can also be used.

Grouping/Field Defines how the records in the underlying topic will be grouped. This is analogous to
a SQL GROUP BY clause.

KeyDomain The seed value for SowKeys used within this topic. The default is the topic name, but
it can be changed to a string value to unify SowKey values between different topics.

Join Within an UnderlyingTopic, each Join specifies two topics to join together to
create the view, as well as the relationship between those topics.

An UnderlyingTopic can have any number of Join specifications. For more in-
formation on Join specifications, see the AMPS User Guide.

FileName File location to store view data. Unused in this version of AMPS.

<SOW>
 <Topic>
 <Topic>/ett/order</Topic>
 <MessageType>fix</MessageType>
 <Key>/orderId</Key>
 </Topic>
 <View>

State-of-the-World (SOW) Features

40

 <FileName>./sow/%n.view.sow</FileName>
 <MessageType>nvfix</MessageType>
 <Topic>TOTAL_VALUE</Topic>
 <UnderlyingTopic>/ett/order</UnderlyingTopic>
 <Projection>
 <Field>/109</Field>
 <Field>SUM(/14 * /6) AS /71406</Field>
 </Projection>
 <Grouping>
 <Field>/109</Field>
 </Grouping>
 </View>
</SOW>

Example 9.3. View Example

9.4. SOW/ConflatedTopic

AMPS provides the ability to create ongoing snapshots of a SOW topic, called conflated topics (also called topic
replicas in previous releases of AMPS). Topic replicas are updated on an interval, and store a snapshot of the current
state of the world at each interval. This helps to manage bandwidth to clients that do not act on each update, such as
a client UI that refreshes every second rather than with every update.

For compatibility with previous versions of AMPS, AMPS allows you to use TopicReplica as a synonym for
ConflatedTopic.

Table 9.5. SOW/ConflatedTopic Parameters

Element Description

Name String used to define the name of the conflated topic. While AMPS doesn't enforce nam-
ing conventions, it can be convenient to name the conflated topic based on the underly-
ing topic name. For example, if the underlying topic is orders, it can be convenient
to name the conflated topic orders-C.

If no Name is provided, AMPS accepts Topic as a synonym for Name to provide com-
patibility with versions of AMPS previous to 5.0.

UnderlyingTopic String used to define the SOW topic which provides updates to the conflated topic. This
must exactly match the name of a SOW topic.

MessageType The message format of the underlying topic. This MessageType must be the Mes-
sageType of the provided UnderlyingTopic.

Interval The frequency at which AMPS updates the data in the conflated topic.

Default: 5 seconds

Filter Content filter that is applied to the underlying topic. Only messages that match the con-
tent filter are stored in the conflated topic.

<ConflatedTopic>
 <Topic>FastPublishTopic-C</Topic>
 <MessageType>nvfix</MessageType>

State-of-the-World (SOW) Features

41

 <UnderlyingTopic>FastPublishTopic</UnderlyingTopic>
 <Interval>5s</Interval>
 <Filter>/region = 'A'</Filter>
</ConflatedTopic>

42

Chapter 10. Replication Destination
An AMPS replication target is defined within the Replication section of an AMPS configuration file. Within
the Replication section, there are one or more Destination sections, each specifying a unique replication
target. Table 10.1 contains a listing of the parameters for the Destination section in the Replication section
of an AMPS configuration file.

Table 10.1. Replication Destination

Element Description

Destination Required parent tag, which defines a unique replication target.

SyncType Defines how synchronization of ack messages is handled, either sync or async.

Transport The message type and URI where messages will be replicated. Requires a Type, which
must be “amps-replication”, and one or more InetAddr elements.

AMPS supports multiple Transport items within a Destination. When multiple
Transports are provided, AMPS interprets these as transports for redundant servers, listed
in priority order. If AMPS cannot connect to any of the internet addresses in a transport,
AMPS tries the next Transport, in the order in which the Transport items appear
in the file. When AMPS has tried all of the Transport items, AMPS tries again at the
beginning of the list of transports.

To provide failover, use multiple InetAddr elements within a single Transport for
servers that can use the same Authenticator context (that is, the same credentials
provided with the same authentication scheme). Use multiple Transport elements if
the failover servers require different authentication.

Type

The Type of a replication destination must always be amps-replication.

InetAddr

A Transport for a replicaiton destination can contain one or more InetAddr elements.

When a single InetAddr element is present, AMPS connects to that address for repli-
cation.

When more than one InetAddr element is present, AMPS uses the list of addresses as a
prioritized list of failover servers to provide high availability. The list is in priority order,
with the most preferred server at the beginning of the list. Each time AMPS needs to make
a connection for this Destination, AMPS starts with the first address in the list and
tries each address in order until a connection succeeds. If no connection succeeds, AMPS
waits for a timeout period and then either moves to the next Transport (if more than
one Transport is present in the destination) or starts again with the first address in the
list. Each time AMPS tries all of the addresses in the list without a successful connection,
AMPS increases the timeout period between tries, up to a maximum timeout. The first
time through the list, upon startup, AMPS gives addresses extra time, up to 60 seconds,
to connect successfully.

Replication Destination

43

Element Description
If no InetAddr is specified, then this Destination does not make an outgoing con-
nection. Instead, this instance will wait for the remote instance specified in the Desti-
nation to connect, and replicate to that instance once the connection is established.

Authenticator

A Transport element within a Destination may contain an Authenticator
element, which specifies a module that provides credentials to use when connecting to
the destination. All of the InetAddr elements specified within a Transport use the
same Authenticator.

Group The group that the downstream destination is a member of. The Group of the downstream
instance must match the Group specified in this destination, or AMPS reports an error
and will not replicate to that destination.

There is no default for this value. AMPS requires a Group for replication. If a Group
is specified and no Name is specified, AMPS uses the value of the Group as the Name.
Notice that the Name must be unique within an AMPS instance. If your replication con-
figuration requires more than one Destination that replicates to the same Group,
add a Name element to each Destination.

Name The name of the destination. This name appears in the AMPS logs when AMPS logs a
message about this destination. The Name must be unique in the AMPS instance. When
not present, AMPS uses the Group provided as the destination Name. The Name should
match the Group of the remote instance.

60East recommends setting the Name only when your replication configuration replicates
to more than one instance in a given group. For example, if you have three servers in the
AMPS-LA group, the server AMPS-LA-1 would have separate Destination configu-
rations for AMPS-LA-2 and AMPS-LA-3. Those Destination configurations would
use the same Group (AMPS-LA), but would each have the Name of the remote server.

There is no default for this value. If a Group is specified and no Name is specified,
AMPS uses the value of the Group as the Name of the destination.

Topic Defines the topic name to replicate. Requires a Name and MessageType. See the fol-
lowing table (Replication Destination : Topic Definition) for details.

PassThrough Specifies source instances to pass through to this destination. The value of this element
is a regular expression which is matched against the group name of the instance that
sent the replication message to this instance. When the regular expression matches, the
replication message is eligible for passthrough, and will be sent to the destination if the
Topic specifications match the message.

Compression Specifies whether to use compression for this destination. When set to enabled, AMPS
compresses traffic to this destination.

Default: disabled

A replication destination can contain any number of Topic definition elements. For simplicity in working with the
configuration file, 60East recommends using a few Topic elements with regular expression patterns over large
numbers of individual topic declarations.

Replication Destination

44

Table 10.2. Replication Destination : Topic Definition

Element Description

Name The name of the topic to replicate. The Name can be either a literal topic name or a regular
expression.

When Name is a literal topic, a topic with that name and the specified message type must
be captured in a transaction log. When Name is a regular expression, only topics that
match the expression., match the message type, and are present in a transaction log are
replicated.

MessageType The message type of the topic to replicate.

Filter A content filter to apply to the topics. When present, only messages that match the filter
are replicated. This filter follows the standard AMPS filter syntax.

IncludeValida-
tion

The set of configuration checks to validate for this topic.

Default: All validation options listed below are included by default.

ExcludeValida-
tion

The set of configuration checks to exclude for this topic. If the same check appears in
both IncludeValidation and ExcludeValidation, ExcludeValidation
takes precedence and the check will not be run.

Default: None of the validation options listed below are excluded by default.

AMPS supports the following automatic configuration validation checks:

Table 10.3. Replication Configuration Validation

Check Validates

txlog The topic is contained in the transaction log of the remote
instance.

replicate The topic is replicated from the remote instance back to
this instance.

sow If the topic is a SOW topic in this instance, it must also
be a SOW topic in the remote instance.

cascade The remote instance must enforce the same set of valida-
tion checks for this topic as this instance does.

queue If the topic is a queue in this instance, it must also be a
queue in the remote instance.

This option cannot be excluded.

keys If the topic is a SOW topic in this instance, it must also
be a SOW topic in the remote instance and the SOW in
the remote instance must use the same Key definitions.

replicate_filter If this topic uses a replication filter, the remote instance
must use the same replication filter for replication back
to this instance.

queue_underlying If the topic is a queue in this instance, it must use the
same underlying topic definition and filters in the remote
instance.

This option cannot be excluded.

Replication Destination

45

<Replication>
 <Destination>
 <Name>amps-2</Name>
 <Group>Data-Center-NYC-1</Group>
 <Topic>
 <Name>ORDER_STATE-Replication</Name>
 <MessageType>xml</MessageType>
 </Topic>
 <Topic>
 <Name>REFERENCE_INFO-.*</Name>
 <MessageType>json</MessageType>
 <Filter>/state = 'published'</Filter>
 </Topic>
 <SyncType>sync</SyncType>
 <Compression>enabled</Compression>
 <Transport>
 <Type>amps-replication</Type>
 <InetAddr>interface1.example.com:19005</InetAddr>
 <InetAddr>interface2.example.com:19080</InetAddr>
 <Authenticator>
 <Module>my-credentials-store-module</Module>
 </Authenticator>
 </Transport>
 <PassThrough>Data-Center-(ORD|HKG)-.*</PassThrough>
 </Destination>
 <Destination>
 <Name>NYC-View-Server</Name>
 <Group>Data-Center-NYC-1</Group>
 <Topic>
 <Name>ORDER_STATE</Name>
 <MessageType>json</MessageType>
 <ExcludeValidation>replication,cascade,sow</ExcludeValidation>
 </Topic>
 <SyncType>async</SyncType>
 <Compression>enabled</Compression>
 <Transport>
 <Type>amps-replication</Type>
 <InetAddr>view-server-a.example.com:19005</InetAddr>
 <InetAddr>view-server-b.example.com:19080</InetAddr>
 </Transport>
 </Destination>
</Replication>

Example 10.1. Replication Example

46

Chapter 11. Transaction Log
AMPS includes the ability to record and replay messages. This capability can be used by applications for durable
subscriptions, reliable publish, and historical replay. The AMPS transaction log is also the foundation of the high
availability features in AMPS. To enable message recording and replay, configure a TransactionLog to keep
a journal of messages published to an AMPS instance. The Transactional Messaging and Bookmark Subscriptions
chapter in the AMPS User Guide covers how to use the transaction log for historical replay, durable publish, and
durable subscriptions. The Replication and High Availability chapter in the AMPS User Guide covers the use cases
where a TransactionLog can be used to maximize the up-time of your AMPS instance.

Table 11.1. TransactionLog Configuration Parameters

Element Description

JournalDirectory Filesystem location where journal files will be stored.

JournalArchiveDirectory File system location where journal files are archived.

PreallocatedJournalFiles The number of journal files AMPS will create as part of the server start-
up. Default: 2. Minimum: 1

MinJournalSize Sets the minimum size for AMPS to use when calculating the size of
journal files.

AMPS allocates journal files based on the size of an internal buffer. This
option sets the lower limit of the journal file: AMPS will use the smallest
file size that is an even multiple of the internal buffer without going under
the MinJournalSize. Notice that AMPS does not grow journal files
once they are allocated. When a journal file is full, AMPS uses the next
journal file.

Default: 1GB. Minimum: 10M

Topic The topic to include in the transaction log. When no Topic is specified,
AMPS initializes transaction log management for the instance, but does
not persist messages.If a Topic is specified, then all messages which
match exactly the specified topic or regular expression will be included
in the transaction log. If you want all topics of a specific message type
to be persisted, use the regular expression .* for the name of the topic.

Multiple Topic elements can be included in a TransactionLog el-
ement.

FlushInterval The interval at which messages will be flushed the journal file during
periods of slow activity. Default: 100ms Maximum: 100ms Minimum:
30us

MetadataIndexing Specifies whether to create journal index files for the journal. When set
to persistent, AMPS creates journal index files. When set to tran-
sient, AMPS does not create journal index files. Default: persistent

O_DIRECT Where supported, O_DIRECT will perform DMA directly from/to phys-
ical memory to a userspace buffer. Having this enabled can improve AM-
PS performance, however not all devices support O_DIRECT. Default:
enabled.

DEPRECATED BatchSize This element is no longer necessary in releases of AMPS 4.0 and greater.
If this element is present in the configuration, AMPS emits a deprecation
warning and ignores the configured value.

Transaction Log

47

Example 11.1 demonstrates a transaction log where the journal file will be written to ./amps/journal. When
AMPS starts, a single journal file will be pre-allocated as noted by the PreallocatedJournalFiles setting;
and when the first journal file is completely full, 128 new journal files will be created. This journal is going to contain
only those messages which match the topic orders and also have a message type of fix. If, at any time, there is
40us of inactivity while there is data to be flushed to the journal file, AMPS will proactively flush the data to the file.

<AMPSConfig>
...

 <TransactionLog>
 <JournalDirectory>./amps/journal/</JournalDirectory>
 <PreallocatedJournalFiles>1</PreallocatedJournalFiles>
 <MinJournalSize>10MB</MinJournalSize>
 <Topic>
 <Name>orders</Name>
 <MessageType>nvfix</MessageType>
 <Filter>/price > 5</Filter>
 </Topic>
 <Topic>
 <Name>LOGGED_.*</Name>
 <MessageType>json</MessageType>
 </Topic>
 <FlushInterval>40ms</FlushInterval>
 </TransactionLog>

...
</AMPSConfig>

Example 11.1. Transaction Log Configuration Example

48

Chapter 12. Authentication
The Authentication element specifies the module to use for validating user identity. AMPS allows you to
set the default Authentication for the instance as a whole, and also to set the Authentication on each
Transport individually.

Authentication elements are not required. The instance authentication defaults to using the amps-de-
fault-authentication-module if no Authentication element is specified for the instance. An indi-
vidual Transport defaults to using the instance Authentication if no Authentication element is pro-
vided for that Transport.

Table 12.1. Authentication Parameters

Name Description

Module The element specifies the name of the module that will be used for authen-
tication. The value of this element must be the name of an authentication
module loaded in the Modules section of the configuration file or one of the
authentication modules that AMPS loads by default.

By default, AMPS loads the authentication modules listed in Table 12.2.

Options A list of supported features for the implemented library. AMPS allows you
to pass options to the module by specifying elements within the Options
element. The exact options that the module requires, if any, are determined
by the creator of the module.

AMPS loads the following authentication modules by default:

Table 12.2. AMPS default authentication modules

Module Name Policy

amps-default-authentication-module Authenticate any user, regardless of the credentials pro-
vided. Does not provide the user name to AMPS by de-
fault, and does not allow implicit authentication by de-
fault.

The amps-default-authentication-module
accepts two options:

• AllowSpoofing. When set to enabled, this mod-
ule provides the user name to AMPS. The Al-
lowSpoofing option is set to disabled by de-
fault.

• RequireLogon. When set to enabled, this module
does not allow implicit logon. Connections must ex-
plicitly logon or the module will refuse to authentica-
tion them. This option is set to enabled by default.

amps-implicit-authentication-module Authenticate any user, regardless of the credentials pro-
vided. Allows implicit authentication. Does not provide
the user name to AMPS by default. This module accepts
the following option:

Authentication

49

Module Name Policy
• AllowSpoofing. When set to enabled, this mod-

ule provides the user name to AMPS. The Al-
lowSpoofing option is set to disabled by de-
fault.

This module is provided to mimic the default behavior
of the amps-default-authentication-mod-
ule in versions prior to 5.0. To restore that behavior,
set amps-implicit-authentication-module
to the Authenticator for the instance.

amps-default-no-authentication-module Do not authenticate any user.

50

Chapter 13. Entitlement
The Entitlement element specifies the module to use for validating permissions to resources within AMPS.
AMPS allows you to set the default Entitlement for the instance as a whole, and also to set the Entitlement
on each Transport individually.

Entitlement elements are not required. The instance authentication defaults to using the amps-default-en-
titlement-module if no Entitlement element is specified for the instance. An individual Transport
defaults to using the instance Entitlement if no Entitlement element is provided for that Transport.

Table 13.1. Entitlement Parameters

Name Description

Module The element specifies the name of the module that will be used for entitle-
ment. The value of this element must be the name of an entitlement module
loaded in the Modules section of the configuration file or one of the entitle-
ment modules that AMPS loads by default.

By default, AMPS loads the entitlement modules listed in Table 13.2.

Options A list of options to provide to the module for this instance of the module.
AMPS allows you to pass options to the module by specifying elements with-
in the Options element. The exact options that the module requires, if any,
are determined by the creator of the module.

AMPS loads the following entitlement modules by default:

Table 13.2. AMPS default entitlement modules

Module Name Policy

amps-default-entitlement-module Allow all permissions to every user.

amps-default-no-entitlement-module Deny all permissions to every user.

51

Chapter 14. Actions
AMPS includes the ability to perform administrative tasks in response to Linux signals or on a set schedule. The
Actions element allows you to specify these actions and when they occur.

The Actions element contains one or more Action elements. An Action element contains an On element,
which tells AMPS when to perform the task, and a Do element, which tells AMPS what task to perform.

14.1. Running an Action on a Schedule
AMPS provides the amps-action-on-schedule module for running actions on a specified schedule.

The options provided to the module define the schedule on which AMPS will run the actions in the Do element.

Table 14.1. Parameters for Scheduling Actions

Parameter Description

Every Specifies a recurring action that runs whenever the time matches the provided specification.
Specifications can take three forms:

• Timer action. A specification that is simply a duration, such as 4h or 1d, creates a timer
action. AMPS starts the timer when the instance starts. When the timer expires, AMPS runs
the action and resets the timer.

• Daily action. A specification that is a time of day, such as 00:30 or 17:45, creates a
daily action. AMPS runs the action every day at the specified time. AMPS uses a 24 hour
notation for daily actions.

• Weekly action. A specification that includes a day of the week and a time, such as Satur-
day at 11:00 or Wednesday at 03:30 creates a weekly action. AMPS runs the
action each week on the day specified, at the time specified. AMPS uses a 24 hour notation
for weekly actions.

AMPS accepts both local time and UTC for time specifications. To use UTC, append a Z to
the time specifier. For example, the time specification 11:30 is 11:30 AM local time. The
time specification 11:30Z is 11:30 AM UTC.

Name The name of the schedule. This name appears in log messages related to this schedule.

Default: unknown

This module does not add any variables to the AMPS context.

14.2. Running an Action in Response to a Signal
AMPS provides the amps-action-on-signal module for running actions when AMPS receives a specified
signal.

The module requires the Signal parameter:

Actions

52

Table 14.2. Parameters for Responding to Signals

Parameter Description

Signal Specifies the signal to respond to. This module supports the standard Linux signals. Configuring
an action uses the standard name of the signal.

For example, to configure an action to SIGUSR1, the value for the Signal element is
SIGUSR1. To configure an action for SIGHUP, the value for the Signal element is SIGHUP
and so on.

AMPS reserves SIGQUIT for producing minidumps, and does not allow this module to override
SIGQUIT. AMPS registers actions for several signals by default. See the section called “Default
Signal Actions” for details.

This module does not add any variables to the AMPS context.

Actions can be used to override the default signal behavior for AMPS.

Default Signal Actions
By default, AMPS registers the following actions for signals.

Table 14.3. Default Actions

On Event Action

SIGUSR1 amps-action-do-disable-authentication

SIGUSR1 amps-action-do-disable-entititlement

SIGUSR2 amps-action-do-enable-authentication

SIGUSR2 amps-action-do-enable-entitlement

SIGINT amps-action-do-shutdown

SIGTERM amps-action-do-shutdown

SIGHUP amps-action-do-shutdown

The actions in the table above can be be overriden by creating an explicit action in the configuration file.

AMPS reserves SIGQUIT to perform the action amps-action-do-minidump. This behavior is reserved, and
cannot be overriden.

14.3. Running an Action on Startup or Shutdown
AMPS includes modules to run actions when AMPS starts up or shuts down.

The amps-action-on-startup module runs actions as the last step in the startup sequence. The amps-ac-
tion-on-shutdown module runs actions as the first step in the AMPS shutdown sequence.

In both cases, actions run in the order that the actions appear in the configuration file.

Actions

53

These modules do not require any parameters.

These modules do not add any variables to the AMPS context.

14.4. Running an Action on Client Connection
AMPS provides modules for running actions on the connection or disconnection of an AMPS client.

The amps-action-on-disconnect-client runs actions once an AMPS client instance disconnects. The
amps-action-on-connect-client runs actions once an instance of an AMPS client successfully connects.

These modules do not require any parameters.

These modules add the following variables to the AMPS context.

Table 14.4. Context Variables for On Connect and Disconnect Client

Variable Description

AMPS_CLIENT_NAME The name of the AMPS client.

AMPS_CONNECTION_NAME The name of the AMPS connection.

14.5. Running an Action on Message Delivery
AMPS provides modules to run actions when AMPS delivers a message to subscribers. The basic flow of AMPS
messaging is to first receive a published message, find the subscriber(s) to which this message will be sent, then
deliver the message.

The amps-action-on-deliver-message runs actions when AMPS delivers a message to subscribers.

This modules requires the MessageType and the Topic of the message that has been delivered:

Table 14.5. Parameters for On Deliver Message

Parameter Description

MessageType The message type of the topic to monitor for message delivery. There is no default for this
parameter.

Topic The name of the topic to monitor for message delivery. This parameter supports regular ex-
pressions. There is no default for this parameter.

This module adds the following variables to the AMPS context:

Table 14.6. Context Variables for On Deliver Message

Variable Description

AMPS_TOPIC The topic of the message.

AMPS_DATA The data the message contains.

AMPS_DATA_LENGTH The length of the data the message contains.

AMPS_BOOKMARK The bookmark associated with this message. This is an empty string
if the message does not have a bookmark.

AMPS_CLIENT_NAME The name of the client to which this message was delivered.

Actions

54

14.6. Running an Action on Message Publish
AMPS provides modules to run actions when a message is published to AMPS. The basic flow of AMPS messaging
is to first receive a published message, find the subscriber(s) to which this message will be sent, then deliver that
message to the subscriber(s).

The amps-action-on-publish-message runs actions as soon as a message is published to AMPS.

This module requires the MessageType and the Topic of the message that was published. In addition to that, this
module also accepts an optional MessageSource parameter:

Table 14.7. Parameters for On Publish Message

MessageType The message type of the topic to monitor for publishes. There is no default for this
parameter.

Topic The name of the topic to monitor for publishes. This parameter supports regular
expressions. There is no default for this parameter.

MessageSource The source to monitor for publishes. The source of the message defaults to all,
which monitors both publishes directly to this AMPS instance and messages re-
ceived via replication.

This parameter also accepts local for when the message source is published di-
rectly to this AMPS instance and replicated for messages received via repli-
cation.

Filter Sets the filter to apply. Only messages that match this filter will cause the action
to run.

This module adds the following variables to the AMPS context:

Table 14.8. Context Variables for On Publish Message

Variable Description

AMPS_TOPIC The topic of the message.

AMPS_DATA The data the message contains.

AMPS_DATA_LENGTH The length of the data that the message contains.

AMPS_BOOKMARK The bookmark associated with this message.

AMPS_TIMESTAMP The time at which the message was processed by AMPS.

AMPS_CLIENT_NAME The name of the client from which the message was pub-
lished.

14.7. Running an Action on OOF Message
When a record that previously matched a subscription has been updated so that the record no longer matches its
subscription, AMPS sends an out-of-focus (OOF) message to let subscribers know that their record no longer matches
the subscription. With amps-action-on-oof-message, you can enter a subscription within AMPS and run
actions when an OOF message for that subscription is produced.

Actions

55

This module requires the following parameters:

Table 14.9. Parameters for On OOF Message

Parameter Description

MessageType The message type of the topic to monitor for OOF messages. This parameter sup-
ports regular expressions. There is no default for this parameter.

Topic The topic to monitor for OOF messages.The topic specified must be a SOW topic,
view, or conflated topic. This parameter supports regular expressions. There is no
default for this parameter.

Filter Set the filter to apply. This filter forms the internal subscription for which OOF
messages will be generated.

Type The message type for the topic to monitor.

This module adds the following variables to the AMPS context:

Table 14.10. Context Variables for On OOF Message

Variable Description

AMPS_TOPIC The topic of the OOF message.

AMPS_DATA The data of the OOF message.

AMPS_DATA_LENGTH The length of the data of the OOF message.

AMPS_PREVIOUS_DATA The data previously contained from the updated
record.

AMPS_PREVIOUS_DATA_LENGTH The length of the data previously contained from
the updated record.

14.8. Running an Action on Minidump
AMPS provides the amps-action-on-minidump module for running actions when AMPS generates a
minidump.

This module does not require parameters.

This module adds the following variable to the AMPS context:

Table 14.11. Context Variable for On Minidump

Variable Description

AMPS_MINIDUMP_PATH The path to where the minidump is created.

14.9. Running an Action on Offline Start or Stop
AMPS provides modules to run actions when an AMPS client is marked as a slow client, and also for when the
AMPS client catches up to no longer be subject to slow client offlining.

Slow client offlining is a feature in AMPS that reduces the memory resources consumed by slow clients. More on
this feature can be found in ???.

Actions

56

The amps-action-on-offline-start module runs actions as the first step when AMPS's result set reaches
its disk limit and has to disconnect the client. The amps-action-on-offline-stop module runs actions as
AMPS is no longer subject to slow client offlining.

In both cases, actions run in the order that the actions appear in the configuration file.

Both modules do not require any parameters.

Both modules add the following variables to the AMPS context:

Table 14.12. Context Variables for On Offline Start and Stop

Variable Description

AMPS_CLIENT_NAME The name of the AMPS client.

AMPS_CONNECTION_NAME The name of the AMPS connection.

14.10. Rotate Log Files
AMPS provides the following module for rotating log files. AMPS loads this module by default:

Table 14.13. Managing Logs

Module Name Does

amps-action-do-
rotate-logs

Rotates logs that are older than a specified age, for log types that support
log rotation. Rotating a log involves closing the log and opening the next
log in sequence.

AMPS will use the name specifier provided in the AMPS configuration for
the new log file. This may overwrite the current log file if the specifier
results in the same name as the current log file.

This module does not require options.

This module does not add any variables to the AMPS context:

14.11. Manage the Statistics Database
AMPS provides the following modules for managing the statistics database. As a maintenance strategy, 60East
recommends truncating statistics on a regular basis. This frees space in the database file, which will be reused as
new statistics are generated. It is generally not necessary to vacuum statistics unless you have changed your retention
policy so that less data is retained between truncation operations. With regular truncation, the statistics database file
will usually stabilize at the correct size to hold the amount of data your application generates between truncation
operations.

AMPS loads these modules by default.

Table 14.14. Managing Logs

Module Name Does

amps-action-do-truncate-statistics Removes statistics that are older than a specified age.
This frees space in the statistics file, but does not reduce
the size of the file.

Actions

57

Module Name Does

amps-action-do-vacuum-statistics Remove unused space in the statistics file to reduce the
size of the file.

In general, it is not necessary to remove unused space
in the statistics file. This operation can be expensive,
and query access to the statistics database can be un-
available for an extended period of time if the file is
large. If storage space is in high demand, and the in-
terval at which the file is vacuumed has been reduced,
removing space from the file can sometimes reduce the
space needs.

60East recommends using this action only in long-run-
ning AMPS environments where space is at a premi-
um, and scheduling the action during times when it is
acceptable for monitoring of the system to be unavail-
able while the file is processed.

The amps-action-do-truncate-statistics module requires an Age parameter that specifies the age of
the statistics to process.

Table 14.15. Parameters for Managing Statistics

Parameter Description

Age Specifies the age of the statistics to remove. The module processes any file older
than the specified Age. For example, when the Age is 5d, the module removes
statistics that are older than 5d.

There is no default for this parameter.

These modules do not add any variables to the AMPS context.

14.12. Manage Journal Files
AMPS provides the following modules for managing journal files. AMPS loads these modules by default:

Table 14.16. Managing Journals

Module Name Does

amps-action-do-archive-journal Archives journal files that are older than a specified age to the
JournalArchiveDirectory specified for the transac-
tion log.

amps-action-do-compress-journal Compresses journal files that are older than a specified age.

amps-action-do-remove-journal Deletes journal files that are older than a specified age.

Each of these modules requires an Age parameter that specifies the age of the journal files to process.

Table 14.17. Parameters for Managing Journals

Parameter Description

Age Specifies the age of files to process. The module processes any file older than the
specified Age. For example, when the Age is 5d, only files that have not been

Actions

58

Parameter Description
written to for longer than 5 days will be processed by the module. AMPS does not
process the current log file, or files that are being used for replay, files that are being
used for replication, or files that contain unacknowledged and unexpired messages
in a queue; even if the file has been inactive for longer than the Age parameter.
AMPS does not allow gaps in the journal files, so it will only remove a given file
if all previous files have been removed.

There is no default for this parameter.

These modules do not add any variables to the AMPS context.

14.13. Removing Files
AMPS provides the following module for removing files. Use this action to remove error log files that are no longer
needed. AMPS loads this module by default. This action cannot be used to safely remove journal files (also known
as transaction log files). For those files, use the journal management actions described in Section 14.12.

This action removes files that match an arbitrary pattern. If the pattern is not specified carefully, this
action can remove files that contain important data, are required for AMPS, or are required by the
operating system.

This action cannot be used to safely remove journal files. Use the actions in Section 14.12 to manage
journal files.

Table 14.18. Removing Files

Module Name Does

amps-action-do-
remove-files

Removes files that match the specified pattern that are older than the spec-
ified age. This action accepts an arbitrary pattern, and removes files that
match that pattern. While AMPS attempts to protect against deleting journal
files, using a pattern that removes files that are critical for AMPS, for the
application, or for the operating system may result in loss of data.

The module does not recurse into directories. It skips open files. The module
does not remove AMPS journals (that is, files that end with a .journal
extension), and reports an error if a file with that extension matches the
specified Pattern.

The commands to remove files are executed with the current permissions
of the AMPS process.

This module requires an Age parameter that specifies the age of the files to remove, as determined by the update to
the file. This module also requires a Pattern parameter that specifies a pattern for locating files to remove.

Table 14.19. Parameters for Removing Files

Parameter Description

Age Specifies the age of files to process. The module removes any file older than the
specified Age that matches the specified Pattern. For example, when the Age is

Actions

59

Parameter Description
5d, only files that have not modified within 5 days and that match the pattern will
be processed by the module.

There is no default for this parameter.

Pattern Specifies the pattern for files to remove. The module removes any files that match
the specified Pattern that have not been modified more recently than the specified
Age.

This parameter is interpreted as a Unix shell globbing pattern. It is not interpreted
as a regular expression.

As with other parameters that use the file system, when the pattern specified is a
relative path the parameter is interpreted relative to the current working directory
of the AMPS process. When the pattern specified is an absolute path, AMPS uses
the absolute path.

There is no default for this parameter.

This module does not add any variables to the AMPS context.

14.14. Deleting Messages from SOW
AMPS also provides modules for deleting SOW contents. The amps-action-do-delete-sow module deletes
messages from the specified SOW topic.

This module requires the MessageType, topic, and Filter parameters in order to delete the desired message.

Table 14.20. Parameters for Deleting SOW Messages

Parameter Description

MessageType The MessageType of the SOW topic or topics to delete from.

There is no default for this parameter.

Topic The name of the SOW topic from which to delete messages. This parameter sup-
ports regular expressions.

There is no default for this parameter.

Filter Set the filter to apply. Only messages matching that filter will be deleted.

These modules do not add any variables to the AMPS context.

14.15. Querying a SOW Topic
AMPS provides a module for querying a SOW topic. The amps-action-do-query-sow queries the SOW
topic, and stores the first message returned by the SOW query into a user-defined variable.

This module requires the MessageType, Topic, and Filter parameters to identify the query to run. This module
requires the CaptureData parameter in order to be able to store the result of the query.

Actions

60

Table 14.21. Parameters for Querying SOW Messages

Parameter Description

MessageType The message type of the topic to query. There is no default for this parameter

Topic The name of the topic to query. This topic must be a SOW topic, a view, a queue,
or a conflated topic. There is no default for this parameter. This parameter supports
regular expressions.

Filter Set the filter to apply. If a Filter is present, only messages matching that filter
will be returned by the query.

CaptureData Sets the name of the variable within which AMPS will store the first message re-
turned.

DefaultData If no records are found, AMPS stores the DefaultData in the variable specified
by CaptureData.

OrderBy An OrderBy expression to use to order the results returned by the query. For ex-
ample, to order in descending order of the /date field in the messages, you would
provide an OrderBy option of /date DESC.

Once you query messages from the SOW topic, you can use the captured data in other actions. The example below
uses amps-action-do-query-sow to query the SOW on a schedule in order to echo messages to the log for
diagnostic purposes:

<Actions>
 <Action>
 <On>
 <Module>amps-action-on-schedule</Module>
 <Options>
 <Every>Saturday at 23:59</Every>
 <Name>Diagnostic_Schedule</Name>
 </Options>
 </On>
 <Do>
 <Module>amps-action-do-query-sow</Module>
 <Options>
 <MessageType>xml</MessageType>
 <Topic>SOW_TOPIC</Topic>
 <Filter>/Trans/Order/@Oname = 'PURCHASE'</Filter>
 <CaptureData>AMPS_DATA</CaptureData>
 </Options>
 </Do>
 <Do>
 <Module>amps-action-do-extract-values</Module>
 <Options>
 <MessageType>xml</MessageType>
 <Data>{{AMPS_DATA}}</Data>
 <Value>VALUE = /VALUE</Value>
 </Options>
 <Do>
 <Module>amps-action-do-echo-message</Module>
 <Options>
 <Message>{{VALUE}} was in the message</Message>
 </Options>
 </Do>

Actions

61

 </Action>
</Actions>

14.16. Manage Security
AMPS provides modules for managing the security features of an instance.

Authentication and entitlement can be enabled or disabled, which is useful for debugging or auditing purposes. You
can also reset security and authentication, which clears the AMPS internal caches and gives security and authenti-
cation modules the opportunity to reinitialize themselves, for example, by re-parsing an entitlements file.

AMPS loads the following modules by default:

Table 14.22. Security Modules

Module Name Does

amps-action-do-disable-authentication Disables authentication for the instance.

amps-action-do-disable-entitlement Disables entitlement for the instance.

amps-action-do-enable-authentication Enables authentication for the instance.

amps-action-do-enable-entitlement Enables entitlement for the instance.

amps-action-do-reset-authentication Resets authentication by clearing AMPS caches and reini-
tializing authentication

amps-action-do-reset-entitlement Resets entitlement by clearing AMPS caches and reini-
tializing entitlement

These modules require no parameters.

These modules do not add any variables to the AMPS context.

14.17. Enable and Disable a Transport
AMPS provides modules that can enable and disable specific transports. The amps-action-do-en-
able-transport module enables a transport. The amps-action-do-disable-transport module dis-
ables a transport.

Table 14.23. Transport Action Modules

Module Name Does

amps-action-do-enable-transport Enables a specific transport.

amps-action-do-disable-transport Disables a specific transport.

Both modules require the name of the transport to disable or enable.

Table 14.24. Parameters for Managing Transports

Parameter Description

Transport The Name of the transport to enable or disable.

If no Name is provided, the module affects all transports.

Actions

62

Both modules do not add any variables to the AMPS context.

14.18. Publishing Messages
The amps-action-do-publish-message module publishes a message into a specified topic.

To publish a message, this module requires the MessageType, a Topic to publish on, and also the Data that
the message will contain.

Table 14.25. Parameters for Publishing Messages

Parameter Description

MessageType The MessageType for the topic. There is no default for this parameter.

Topic The topic of the message being published.

Data The data that the message will contain.

This module does not add any variables to the AMPS context.

14.19. Manage Replication
AMPS provides modules for downgrading replication destinations that fall behind and upgrading them again when
they catch up.

Table 14.26. Replication Modules

Module Name Does

amps-action-do-
downgrade-replication

Downgrades replication connections from synchronous to
asynchronous if the age of the last acknowledged message is
older than a specified time period.

amps-action-do-
upgrade-replication

Upgrades previously-downgraded replication connections
from asynchronous to synchronous if the age of the last ac-
knowledged message is more recent than a specified time peri-
od. This action has no effect on replication destinations that are
specified as async in the configuration file.

The modules determine when to downgrade and upgrade based on the age of the oldest message that a destination
has not yet acknowledged. When using these modules, it is important that the thresholds for the modules are not set
too close together. Otherwise, AMPS may repeatedly upgrade and downgrade the connection when the destination
is consistently acknowledging messages at a rate close to the threshold values. To avoid this, 60East recommends
that the Age set for the upgrade module is 1/2 of the age used for the downgrade module.

The amps-action-do-downgrade-replication module accepts the following options:

Table 14.27. Parameters for Downgrading Replication

Parameter Description

Age Specifies the maximum message age at which AMPS downgrades a replication des-
tination to async. When this action runs, AMPS downgrades any destination for
which the oldest unacknowledge message is older than the specified Age.

Actions

63

Parameter Description
For example, when the Age is 5m, AMPS will downgrade any destination where a
message older than 5 minutes has not been acknowledged.

There is no default for this parameter.

GracePeriod The approximate time to wait after start up before beginning to check whether to
downgrade links. The GracePeriod allows time for other AMPS instances to
start up, and for connections to be established between AMPS instances.

The amps-action-do-upgrade-replication module only applies to destinations configured as sync that
have been previously downgraded. The module accepts the following options:

Table 14.28. Parameters for Upgrading Replication

Parameter Description

Age Specifies the maximum message age at which a previously-downgraded destination
will be upgraded to sync mode. When this action runs, AMPS upgrades any desti-
nation that has been previously downgraded where the oldest unacknowledged mes-
sage to AMPS is more recent than time value specified in the Age parameter.

For example, if a destination has been downgraded to async mode and the Age is
2m, AMPS will upgrade the destination when the oldest unacknowledged message
to that destination is less than 2 minutes old.

There is no default for this parameter.

GracePeriod The approximate time to wait after start up before beginning to check whether to
upgrade links. The GracePeriod allows time for other AMPS instances to start
up, and for connections to be established between AMPS instances.

These modules do not add any variables to the AMPS context.

14.20. Extract Values
The amps-action-do-extract-values module extracts message values from a message and stores the val-
ues in a variable.

To extract values from a message, this module requires the MessageType, Data, and Value parameters.

Table 14.29. Parameters for Extract Values

Parameter Description

MessageType The MessageType for the topic. There is no default for this parameter.

Data Contains the data to parse: typically a message recieved from a publish event or re-
trieved from a SOW query. There is no default value for this parameter. If it is omit-
ted, AMPS will not parse data when the action is run.

Value An assignment statement that specifies the variable to store the extracted value in and
the XPath identifier for the value to extract. This action can contain any number of
Value elements, each providing an assignment statement.

For example, the following assigment statement stores the value of the /previ-
ousRegionCode within the message to the variable PREVIOUS_REGION.

Actions

64

Parameter Description
PREVIOUS_REGION = /previousRegionCode

There is no default for this option. If no Value options are provided, AMPS does
not save any values from the parsed message.

The module amps-action-do-extract-values adds the variables specified by the Value options to the
current context.

14.21. Increment Counter
The amps-action-do-increment-counter module allows AMPS to increment a counter by a value. Coun-
ters persist across action runs, and are saved in the instance memory until the instance is restarted.

If a counter with the specified name does not currently exist in the instance when the action runs, AMPS creates
the counter with a value of 0 and then immediately increments it with the specified value. If the counter is already
present, AMPS will simply increment the counter.

To see an example of amps-action-do-increment-counter, refer to the Action Configuration Examples
section at the end of this chapter.

This module requires a Key that tells AMPS which counter to increment and a Value that tells AMPS where to
store the incremented value.

Table 14.30. Parameter for Increment Counter

Parameter Description

Key The name of the counter that AMPS will increment. There is no default value for this
parameter.

Value The variable in which to store the current value of the counter.

This module adds variable that contains the counter, as specified in the Value parameter, to the current context.

14.22. Executing System Commands
The amps-action-do-execute-system module allows AMPS to execute system commands.

The parameter for this module is simply the command. The command executes in the current working directory of
the AMPS process, with the credentials and environment of the AMPS process.

Table 14.31. Parameter for Execute System

Parameter Description

Command The command to execute. When the action runs, this command is executed as a shell
command on the system where AMPS is running.

This module does not add any variables to the AMPS context.

This module executes system commands with the credentials of the AMPS process. It is possible to
damage the system, interrupt the AMPS service, or cause data loss by executing commands with this
module. 60East recommends against using any data extracted from an AMPS message in the command
executed.

Actions

65

14.23. Debugging AMPS
AMPS provides modules for debugging your AMPS applications.

Table 14.32. Debugging Modules

Module Name Does

amps-action-do-nothing Takes no action. Does not modify the state of AMPS in any way. The module
simply logs that it was called.

amps-action-do-echo-
message

Echoes the specified message to the log. The message appears in the log
as message 29-0103,at info level.The logging configuration must allow
this message to be recorded for the output of this action to appear in the log.

The amps-action-do-nothing module requires no parameters.

The amps-action-do-echo-message module requires the following parameter:

Table 14.33. Parameter for Echo Message

Parameter Descsription

Message The message to echo. The default for this parameter is simply an empty string.

These modules do not add any variables to the AMPS context.

14.24. Creating a Minidump
AMPS provides a module for creating a minidumps. The amps-action-do-minidumpmodule provides a way
for developers and/or administrators to easily create minidumps for diagnostic purposes.

Table 14.34. Creating a Minidump Module

Module Name Does

amps-action-do-minidump Creates a minidump.

This module does not require any parameters.

This module does not add any variables to the AMPS context.

14.25. Shut Down AMPS
The amps-action-do-shutdown module shuts down AMPS. This module is registered as the default action
for several Linux signals, as described in the section called “Default Signal Actions”.

Table 14.35. Shut Down Module

Module Name Does

amps-action-do-
shutdown

Shuts down AMPS.

This module does not require any parameters.

Actions

66

This module does not add any variables to the the AMPS context.

14.26. Action Configuration Examples

Archive Files Older Than One Week, Every Saturday
The listing below asks AMPS to archive files older than 1 week, every Saturday at 12:30 AM:

<Actions>
 <Action>
 <On>
 <Module>amps-action-on-schedule</Module>
 <Options>
 <Every>Saturday at 00:30</Every>
 <Name>Saturday Night Fever</Name>
 </Options>
 </On>
 <Do>
 <Module>amps-action-do-archive-journal</Module>
 <Options>
 <Age>7d</Age>
 </Options>
 </Do>
 </Action>
 </Actions>

Disable and Re-enable Security on Signal
The listing below disables authentication and entitlement when AMPS receives on the USR1 signal. When AMPS
receives the USR2 signal, AMPS re-enables authentication and entitlement. This configuration is, in effect, the
configuration that AMPS installs by default for these signals:

<Actions>
 <Action>
 <On>
 <Module>amps-action-on-signal</Module>
 <Options>
 <Signal>SIGUSR1</Signal>
 </Options>
 </On>
 <Do>
 <Module>amps-action-do-disable-authentication</Module>
 </Do>
 <Do>
 <Module>amps-action-do-disable-entitlement</Module>
 </Do>
 </Action>

Actions

67

 <Action>
 <On>
 <Module>amps-action-on-signal</Module>
 <Options>
 <Signal>SIGUSR2</Signal>
 </Options>
 </On>
 <Do>
 <Module>amps-action-do-enable-authentication</Module>
 </Do>
 <Do>
 <Module>amps-action-do-enable-entitlement</Module>
 </Do>
 </Action>
 </Actions>

Extract Values on Publish of a Message
The listing below extracts values from a locally published xml message and stores them into VALUE.

<Actions>
 <Action>
 <On>
 <Module>amps-action-on-publish-message</Module>
 <Options>
 <Topic>message-sow</Topic>
 <MessageType>xml</MessageType>
 <MessageSource>local</MessageSource
 </Options>
 </On>
 <Do>
 <Module>amps-action-do-extract-values</Module>
 <Options>
 <MessageType>xml</MessageType>
 <Data>{{AMPS_DATA}}</Data>
 <Value>VALUE = /VALUE</Value>
 </Options>
 </Do>
 </Action>
</Actions>

Increment a Counter and Echo a Message on Signal
The listing below increments a counter and echoes the counter's value when AMPS receives on the USR1 signal.

<Actions>
 <Action>
 <On>
 <Module>amps-action-on-signal</Module>
 <Options>
 <Signal>SIGUSR1</Signal>

Actions

68

 </Options>
 </On>
 <Do>
 <Module>amps-action-do-increment-counter</Module>
 <Options>
 <Key>MY_COUNTER</Key>
 <Value>CURRENT_COUNTER_VALUE</Value>
 </Options>
 </Do>
 <Do>
 <Module>amps-action-do-echo-message</Module>
 <Options>
 <Message>AMPS has gotten {{CURRENT_COUNTER_VALUE}}
 SIGUSR1 signals.</Message>
 </Options>
 </Do>
 </Action>
</Actions>

69

Appendix A. Obsolete Configuration
Parameters

This section lists obsolete configuration parameters and provides pointers to the current parameters, where applicable.

Table A.1. Obsolete Parameters

Element Description

ClientOffline Beginning with AMPS 5.0, slow client offlining no longer uses this
parameter. To disable slow client offlining, set MessageMemo-
ryLimit to 100%.

ClientBufferThreshold Beginning with AMPS 5.0, slow client offlining no longer uses this
parameter. To set a limit for an individual client, set ClientMax-
Capacity to the appropriate percentage.

ClientMaxBufferThreshold Beginning with AMPS 5.0, slow client offlining no longer uses this
parameter. To set a limit for an individual client, set ClientMax-
Capacity to the appropriate percentage.

ClientOfflineThreshold Beginning with AMPS 5.0, slow client offlining no longer uses this
parameter: offlining occurs when the total amount of space uses for
messages exceeds the MessageMemoryLimit.

ClientOfflineDirectory Beginning with AMPS 5.0, slow client offlining no longer uses this
parameter. Use MessageDiskPath instead.

IncrementSize Beginning with AMPS 5.0, SOW configuration no longer uses In-
crementSize. Rather than setting RecordSize and Incre-
mentSize, use the SlabSize parameter (to convert files, use
RecordSize * IncrementSize for the SlabSize parameter)

RecordSize Beginning with AMPS 5.0, SOW configuration no longer uses
RecordSize. Rather than setting RecordSize and Incre-
mentSize, use the SlabSize parameter (to convert files, use
RecordSize * IncrementSize for the SlabSize parameter)

SlowClientDisconnect Beginning with AMPS 5.0, slow client offlining no longer uses this
parameter. To disable SlowClientDisconnect, set a large value for
MessageMemoryLimit or MessageDiskLimit (for example,
setting 100% of the MessageMemoryLimit will allow unrestricted
memory growth, while setting the capacity of the device as Mes-
sageDiskLimit will allow unrestricted offlining).

70

Index
A
action

loading modules, 16
actions, 51
Admin server, 15
authentication

configuring, 48
default for instance, 9, 9
loading modules, 16

Authentication
Transport, 25

authenticator
default for instance, 9
loading modules, 16

C
ClientBufferThreshold, 69
ClientMaxBufferThreshold, 69
ClientOffline, 69
ClientOfflineDirectory, 69
configuration validation, 12
conflated topics, 40

D
default actions, 52
defining in configuration file, 35

E
entitlement

configuring, 50
default for instance, 9, 9
loading modules, 16

Entitlement
Transport, 25

error log
rotation size, 29

external libraries, 13

F
FileName

Logging, 29
SOW/Topic, 31

H
historical SOW

enabling, 34

I
Instance name, 9

instance name, 9
Interval

Admin, 15

J
joining topics, 39

L
logging

configuration, 29
including specific levels, 29

M
message expiration, 33
message type

loading modules, 16
specifying module, 19

MessageType
defining and configuring, 19
SOW/View, 39
Transport, 24

minidump
configuring dump location, 12
disabling, 12

minimum version
required, 10
suggested, 10

module
setting name, 16

Module
MessageType, 19

Modules
configuration, 16

N
Name

AMPSConfig, 9
MessageType, 19
Module, 16
Transport, 23

O
Options

Logging, 29

P
projecting topics, 39
protocol

loading modules, 16
Protocol

Logging, 29
Transport, 23

Index

71

Q
Queue

configuration element, 35
queues, 35

R
recording messages, 46
replication, 42

setting group name, 9
reserved signals

SIGQUIT, 52

S
shared object loading, 13
SIGHUP, 52
SIGINT, 52
SIGQUIT, 52
SIGTERM, 52
SIGUSR1, 52
SIGUSR2, 52
slow client, 11
slow client conversion, 69
SlowClientDisconnect, 69
SOW, 31

configuration, 31
ConflatedTopic, 40
topic, 31
View, 39

sow statistics interval, 10
State of the World (SOW)

configuration, 31
stats.db file location, 15

T
topic replicas, 40
TopicDefinition, 31
transaction log, 46
Transport, 23
tuning, 12

V
ViewDefinition, 39

(see also View)
views

configuring, 39

	AMPS Configuration Reference Guide
	Table of Contents
	Chapter 1. AMPS Configuration Basics
	1.1. AMPS Configuration File Special Characters
	State of the World File Name
	Log Rotation Name
	Dates

	1.2. Using Units in the Configuration
	1.3. Environment Variables in AMPS Configuration
	Internal Environment Variables

	Chapter 2. Generating a Configuration File
	Chapter 3. Instance Level Configuration
	3.1. SOW Statistics Interval
	3.2. Slow Client Policies
	3.3. Minidump Directory
	3.4. Configuration Validation
	3.5. Tuning
	3.6. Externals

	Chapter 4. Admin Server
	Chapter 5. Modules
	Chapter 6. Message Types
	Chapter 7. Transports
	Chapter 8. Logging
	Chapter 9. State-of-the-World (SOW) Features
	9.1. SOW/Topic
	9.2. SOW/Queue
	9.3. SOW/View
	9.4. SOW/ConflatedTopic

	Chapter 10. Replication Destination
	Chapter 11. Transaction Log
	Chapter 12. Authentication
	Chapter 13. Entitlement
	Chapter 14. Actions
	14.1. Running an Action on a Schedule
	14.2. Running an Action in Response to a Signal
	Default Signal Actions

	14.3. Running an Action on Startup or Shutdown
	14.4. Running an Action on Client Connection
	14.5. Running an Action on Message Delivery
	14.6. Running an Action on Message Publish
	14.7. Running an Action on OOF Message
	14.8. Running an Action on Minidump
	14.9. Running an Action on Offline Start or Stop
	14.10. Rotate Log Files
	14.11. Manage the Statistics Database
	14.12. Manage Journal Files
	14.13. Removing Files
	14.14. Deleting Messages from SOW
	14.15. Querying a SOW Topic
	14.16. Manage Security
	14.17. Enable and Disable a Transport
	14.18. Publishing Messages
	14.19. Manage Replication
	14.20. Extract Values
	14.21. Increment Counter
	14.22. Executing System Commands
	14.23. Debugging AMPS
	14.24. Creating a Minidump
	14.25. Shut Down AMPS
	14.26. Action Configuration Examples
	Archive Files Older Than One Week, Every Saturday
	Disable and Re-enable Security on Signal
	Extract Values on Publish of a Message
	Increment a Counter and Echo a Message on Signal

	Appendix A. Obsolete Configuration Parameters
	Index

