
AMPS C# Development Guide

AMPS C# Development Guide
5.0

Publication date May 10, 2016
Copyright © 2016

All rights reserved. 60East, AMPS, and Advanced Message Processing System are trademarks of 60East Technologies, Inc. All other trademarks
are the property of their respective owners.

iii

Table of Contents
1. Introduction ... 1

1.1. Prerequisites .. 1
2. Installing the AMPS Client ... 2

2.1. Obtaining the Client .. 2
2.2. Test Connectivity to AMPS .. 2

3. Your First AMPS Program ... 3
3.1. About the Client Library ... 3
3.2. Connecting to AMPS .. 3
3.3. Connection Strings ... 5
3.4. Connection Parameters .. 6
3.5. Next Steps .. 7

4. Subscriptions .. 8
4.1. Subscribing ... 8
4.2. Asynchronous Message Processing Interface ... 9
4.3. Unsubscribing .. 10
4.4. Understanding Messages .. 11
4.5. Understanding Threading and Message Handlers .. 12
4.6. Advanced Subscriptions ... 12
4.7. Next Steps ... 14

5. Error Handling .. 15
5.1. Exceptions ... 15
5.2. Disconnect Handling ... 17
5.3. Unexpected Messages .. 19
5.4. Unhandled Exceptions ... 20
5.5. Detecting Write Failures .. 21

6. State of the World ... 22
6.1. Performing SOW Queries ... 22
6.2. SOW and Subscribe .. 23
6.3. Setting Batch Size .. 25
6.4. Client-Side Conflation ... 25
6.5. Managing SOW Contents ... 26

7. Using Queues ... 28
7.1. Backlog and Smart Pipelining ... 28

8. Delta Publish and Subscribe .. 31
8.1. Introduction ... 31
8.2. Delta Subscribe .. 31
8.3. Delta Publish ... 31

9. High Availability ... 33
9.1. Choosing an HAClient Protection Method ... 33
9.2. Connections and the ServerChooser ... 34
9.3. Heartbeats and Failure Detection ... 35
9.4. Considerations for Publishers .. 36
9.5. Considerations for Subscribers .. 37
9.6. Conclusion .. 40

10. AMPS Programming: Working With Commands ... 41
10.1. Understanding AMPS Messages .. 41
10.2. Creating and Populating the Command ... 41
10.3. Using execute ... 42
10.4. Command Cookbook ... 42

11. Advanced Topics ... 62
11.1. C# Client Compatibility ... 62

AMPS C# Development Guide

iv

11.2. Strong Naming ... 62
11.3. SSL Certificates and the C# Client ... 63
11.4. Transport Filtering ... 63
11.5. Working with Messages & Byte Buffers .. 63

12. Utilities .. 65
12.1. Composite Message Types .. 65
12.2. NVFIX Messages .. 67
12.3. FIX Messages .. 68

13. Performance Tips and Best Practices ... 70
13.1. Measure Performance and Set Goals .. 70
13.2. Simplify Message Format and Contents .. 71
13.3. Use Content Filtering Where Possible ... 71
13.4. Use Asychronous Message Processing .. 71
13.5. Use Hash Indexes Where Possible ... 72
13.6. Use a Failed Write Handler and Exception Listener ... 72
13.7. Reduce Bandwidth Requirements ... 72
13.8. Limit Unnecessary Copies .. 73
13.9. Manage Publish Stores ... 74
13.10. Work with 60East as Necessary ... 74

A. Exceptions ... 75
Index .. 77

1

Chapter 1. Introduction
This document explains how to use the C# client for AMPS. Use this document to learn how to install, configure,
develop applications on the Microsoft Windows operating system using AMPS.

1.1. Prerequisites
Before reading this book, it is important to have a good understanding of the following topics:

• Developing in C#. To be successful using this guide, you must possess a working knowledge of the C# language.
Visit http://msdn.microsoft.com for resources on learning Windows, .NET and the C# language.

• AMPS concepts. Before reading this book, you will need to understand the basic concepts of AMPS, such as
topics, subscriptions, messages, and SOW. Consult the AMPS User's Guide to learn more about these topics before
proceeding.

You will also need an installed and running AMPS server to use the product. You can write and compile programs
that use AMPS without a running server, but you will get the most out of this guide by running the programs against
a working server.

2

Chapter 2. Installing the AMPS Client

2.1. Obtaining the Client
You must first download and install the client on your development computer. This can be accomplished through
either of the following methods:

Use the AMPS Client executable installer. For this option, download the amps-csharp-client-
<version>.exe, where <version> is replaced by the version of the client, such as amps-csharp-
client-3.3.0.exe. Double-click the *.exe file to launch the installation wizard. Once the installation com-
pletes, you will be able to find the installed client under your computer’s Program Files directory, in a subdi-
rectory entitled AMPS.

Unpack the AMPS Client zip file. For this option, download the amps-csharp-client-<version>.zip
file from the http://crankuptheamps.com website, or copy it from the AMPS server installation directory.
Save the zip file to your development computer. Right-click the amps-csharp-client.zip file, and choose
Extract to extract the contents of the zip file. You’re welcome to extract the AMPS client to wherever suits your
needs; we’ll refer to that directory as the AMPS directory for the remainder of this guide.

2.2. Test Connectivity to AMPS
Before writing programs using AMPS, make sure connectivity to an AMPS server from this computer is working.
Launch a terminal window and change the directory to the AMPS directory in your AMPS installation, and use
spark to test connectivity to your server, for example:

./bin/spark ping -type fix -server 192.168.1.2:9004

If you receive an error message, verify that your AMPS server is up and running, and work with your systems
administrator to determine the cause of the connectivity issues. Without connectivity to AMPS, you will be unable
to make the best use of this guide.

3

Chapter 3. Your First AMPS Program
In this chapter, we will learn more about the structure and features of the AMPS C# library, and build our first C#
program using AMPS.

3.1. About the Client Library
The AMPS client is packaged as a single managed asembly, AMPS.Client.dll You can find
AMPS.Client.dll in the AMPS/bin directory of your AMPS C# client. Every .NET application you build will
need to reference this assembly file, and the assembly must be deployed along with your application in order for
your application to function properly.

3.2. Connecting to AMPS
Let’s begin by writing a simple program that connects to an AMPS server and publishes a single message to a topic:

using System;
using AMPS.Client;
using AMPS.Client.Exceptions;

namespace AMPSBookExamples
{
 class ConnectToAMPS
 {
 static void Main(string[] args)
 {
 using(Client client = new Client("exampleClient"))
 {
 try
 {
 client.connect("tcp://192.168.1.3:9007/amps");
 client.logon();
 client.publish("messages",
 @"{ ""message"" : ""Hello, World!"" }";
 }
 catch (AMPSException e)
 {
 Console.Error.WriteLine(e);
 }
 }
 }
 }
}

Example 3.1. Connecting to AMPS

In the preceding Example 3.1, we show the entire program; but future examples will isolate one or more specific
portions of the code. The next section describes how to build and run the application and explains the code in further
detail.

Your First AMPS Program

4

Build and Run
To build this program, create a new C# command-line project in Visual Studio and add a reference to
AMPS.Client.dll using the "Add Reference..."’ option in Visual Studio. Replace the code in Program.cs
with the code in Example 3.1, and then modify the client.connect() on line 14 with the address and port of
your AMPS server. Now, you should be able to compile and execute the code, and if the AMPS server is running,
the message Hello world is published to the messages topic. If an error occurs, an exception will be written
to the console.

If the message is published successfully, there is no output to the console. We will demonstrate how to create a
subscriber to receive messages in Chapter 4.

Examining the Code
Let us now revisit the code we listed earlier.

using System;
 using AMPS.Client;
 using AMPS.Client.Exceptions;

 namespace AMPSBookExamples
 {
 class ConnectToAMPS
 {
 static void Main(string[] args)
 {
 using(Client client = new Client("exampleClient"))
 {
 try
 {
 client.connect("tcp://192.168.1.3:9007/amps");
 client.logon()
 client.publish("messages",
 @"{ ""message"" : ""Hello, World!"" }";
 }
 catch (AMPSException e)
 {
 Console.Error.WriteLine(e);
 }
 }
 }
 }
 }

Example 3.2. Connecting to AMPS

The import statements add names into reference for convenience in typing later on in the code. These
import the names from the AMPS namespaces, AMPS.Client and AMPS.Client.Exceptions.
The AMPS.Client class contains the methods for interacting with AMPS, and the
AMPS.Client.Exceptions package contains the exception classes thrown by AMPS when errors occur.
When you use AMPS in your programs, you will be using classes from these namespaces.

Your First AMPS Program

5

This line creates a new Client object. Client encapsulates a single connection to an AMPS server. Methods
on Client allow for connecting, disconnecting, publishing, and subscribing to an AMPS server. The argument
to the Client constructor, "exampleClient", is a name chosen by the client to identify itself to the server.
Errors relating to this connection will be logged with reference to this name, and AMPS uses this name to help
detect duplicate messages. AMPS enforces uniqueness for client names when a transaction log is configured,
and it is good practice to always use unique client names. The using statement ensures that the connection
underlying the client is disposed of before the program exists. Client implements the .NET IDisposable
interface, making it easy to ensure that resources are freed when your Client is no longer in use. There is no
need to explicitly disconnect the Client when it is protected by a using statement.
Here, we open a try block that concludes with catch (AMPSException aex). All exceptions in AM-
PS derive from AMPSException, AMPS will wrap the exception into the InnerException of the AM-
PSException you receive. For example, if the call to connect() fails because the provided address is not
reachable, the AMPSException will contain an inner exception from the operating system, likely a Sock-
etException from System.Net.Sockets.
At this point, we have a valid AMPS connection and can begin to use it to publish and subscribe to messages.
The AMPS logon() command creates a named connection in AMPS.
Here, we publish a single message to AMPS on the messages topic, containing the data { "message" :
"Hello, world!" }. This JSON message is sent to the server.. Upon successful completion of this function,
the AMPS client has sent the message to the server, and subscribers to the messages topic will receive this
message.

3.3. Connection Strings
The AMPS clients use connection strings to determine the server, port, transport, and protocol to use to connect to
AMPS. When the connection point in AMPS accepts multiple message types, the connection string also specifies
the precise message type to use for this connection. Connection strings have a number of elements.

Figure 3.1. elements of a connection string

As shown in the figure above, connection strings have the following elements:

• Transport defines the network used to send and receive messages from AMPS. In this case, the transport is tcp.
For connections to transports that use the Secure Sockets Layer (SSL), use tcps.

• Host address defines the destination on the network where the AMPS instance receives messages. The format
of the address is dependent on the transport. For tcp and tcps, the address consists of a host name and port
number. In this case, the host address is localhost:9007.

• Protocol sets the format in which AMPS receives commands from the client. Most code uses the default amps
protocol, which sends header information in JSON format. AMPS supports the ability to develop custom protocols
as extension modules, and AMPS also supports legacy protocols for backward compatibility.

• MessageType specifies the message type that this connection uses. This component of the connection string is
required if the protocol accepts multiple message types and the transport is configured to accept multiple message

Your First AMPS Program

6

types. If the protocol does not accept multiple message types, this component of the connection string is optional,
and defaults to the message type specified in the transport.

Legacy protocols such as fix, nvfix and xml only accept a single message type, and therefore do not require
or accept a message type in the connection string.

As an example, a connection string such as

tcp://localhost:9007/amps/json

would work for programs connecting from the local host to a Transport configured as follows:

<AMPSConfig>
...
 <!-- This transport accepts any known
 message type for the instance: the
 client must specify the message type.
 -->
 <Transport>
 <Name>any-tcp</Name>
 <Type>tcp</Type>
 <InetAddr>9007</InetAddr>
 <ReuseAddr>true</ReuseAddr>
 <Protocol>amps</Protocol>
 </Transport>
...
</AMPSConfig>

See the AMPS Configuration Guide for more information on configuring transports.

Providing Credentials in a Connection String
When using the default authenticator, the AMPS clients support the standard format for including a user name and
password in a URI, as shown below:

tcp://user:password@host:port/protocol/message_type

When provided in this form, the default authenticator provides the username and password specified in the URI. If
you have implemented another authenticator, that authenticator controls how passwords are provided to the AMPS
server.

3.4. Connection Parameters
When specifying a URI for connection to an AMPS server, you may specify a number of transport-specific options
in the parameters section of the URI. Here is an example:

tcp://localhost:9007/amps/json?tcp_nodelay=true&tcp_sndbuf=100000

In this example, we have specified the AMPS instance on localhost, port 9007, connecting to a transport that
uses the amps protocol and sending JSON messages. We have also set two parameters, tcp_nodelay, a Boolean

Your First AMPS Program

7

(true/false) parameter, and tcp_sndbuf, an integer parameter. Multiple parameters may be combined to finely
tune settings available on the transport. Normally, you'll want to stick with the defaults on your platform, but there
may be some cases where experimentation and fine-tuning will yield higher or more efficient performance.

AMPS supports the value of tcp in the connection string for TCP/IP connections, and the value of shm in the
connection string for the AMPS shared memory protocol.

Transport options
The following transport options are available for TCP connections:

tcp_rcvbuf (integer) Sets the socket receive buffer size. This defaults to the system default size. (On Linux,
you can find the system default size in /proc/sys/net/core/rmem_default.)

tcp_sndbuf (integer) Sets the socket send buffer size. This defaults to the system default size. (On Linux,
you can find the system default size in /proc/sys/net/core/wmem_default.)

tcp_nodelay (boolean) Enables or disables the TCP_NODELAY setting on the socket. By default
TCP_NODELAY is disabled.

tcp_linger (integer) Enables and sets the SO_LINGER value for the socket. By default, SO_LINGER is
enabled with a value of 10, which specifies that the socket will linger for 10 seconds.

tcp_keepalive (boolean) . Enables or disables the SO_KEEPALIVE value for the socket. The default value
for this option is true.

3.5. Next Steps
Once your application is built, you will need to think about how to deploy it to additional computers. With your
application’s dependency on AMPS.Client.dll, you need to include AMPS.Client.dll along with your
application. The most straightforward way to accomplish this is to install AMPS.Client.dll into the same folder
as your .exe file. For example, if you distribute your executable in a zip file that users are expected to unpack,
simply include AMPS.Client.dll into that zip file. When your executable runs, Windows will attempt to load
AMPS.Client.dll from the same directory as your executable, and if it is not found, your executable will fail
to run.

If your organization develops and deploys many AMPS applications and would like more centralized control over the
maintenance of these AMPS client deployments, consider installing AMPS.Client.dll into the Global Assembly
Cache ("GAC"). The GAC allows you to share one copy of an assembly—like the AMPS client—across many
applications on a computer. This technique requires that the assembly have a strong name, and that you use an installer
that places AMPS.Client.dllinto the GAC. Installing the assembly in the GAC is not recommended unless many
applications will share an AMPS client. For more information on the GAC, visit the Microsoft Developer Network
documentation on the GAC at http://msdn.microsoft.com/en-us/library/yf1d93sz.aspx.

You are now able to develop and deploy an application in C# that publishes messages to AMPS. In the following
chapters, you will learn how to subscribe to messages, use content filters, work with SOW caches, and fine-tune
messages that you send.

8

Chapter 4. Subscriptions
Messages published to a topic on an AMPS server are available to other clients via a subscription. Before messages
can be received, a client must subscribe to one or more topics on the AMPS server so that the server will begin
sending messages to the client. The server will continue sending messages to the client until the client unsubscribes,
or until the client disconnects. With content filtering, the AMPS server will limit the messages sent to only those
messages that match a client-supplied filter. In this chapter, you will learn how to subscribe, unsubscribe, and supply
filters for messages using the AMPS C# client.

4.1. Subscribing
Subscribe to an AMPS topic by calling Client.subscribe(). Here is a short example (error handling and
connection details are omitted for brevity):

class MyApp
{
 public static void Main()
 {
 using(Client client = new Client("subscribe"))
 {

 client.connect("tcp://127.0.0.1/9007/amps");
 client.logon();

 foreach(Message m in client.subscribe("messages"))
 {
 System.Console.Writeline(m.getData());
 }

 }
}

Example 4.1. Subscribing to a Topic

Here, we create a Client. We protect the Client in a using block so that the connection and subscriptions
are properly cleaned up when dispose() is called.
Here we subscribe to the topic messages. We do not provide a filter, so the subscription receives all of
the messages published to the topic, regardless of content. The foreach loop, iterates over the messages
returned by the message stream. When we no longer need to subscribe, we can break out of the loop. When the
MessageStream is disposed, the client sends an unsubscribe command to AMPS and stops receiving
messages.
Within the loop, we process the message. In this case, we simply print the contents of the message.

AMPS creates a background thread that receives the messages and copies them into the MessageStream that
you iterate over. This means that the client application as a whole can continue to receive messages while you are
doing processing work.

The simple method described above is provided for convenience. The AMPS C# client provides convenience meth-
ods for the most common forms of the commands. The client also provides an interface that gives you precise control
over the command. Using that interface, the example above becomes:

Subscriptions

9

class MyApp
{
 public static void Main()
 {
 using(Client client = new Client("subscribe"))
 {

 client.connect("tcp://127.0.0.1/9007/amps");
 client.logon();

 Command command = new Command("subscribe")
 .setTopic("messages");

 foreach(Message m in client.execute(command))
 {
 System.Console.WriteLine(m.getData());
 }
 }
}

Example 4.2. Subscribing to a Topic

Here, we create a Client. We protect the Client in a using block so that the connection and subscriptions
are properly cleaned up when dispose() is called.
We create a Command object to subscribe to the messages topic.
Here we execute the command and subscribe to the topic messages. This works exactly the same way as the
command in Example 4.1. We do not provide a filter, so the subscription receives all of the messages published
to the topic, regardless of content. The foreach loop, iterates over the messages returned by the message
stream. When we no longer need to subscribe, we can break out of the loop. When the MessageStream is
disposed, the client sends an unsubscribe command to AMPS and stops receiving messages.
Within the loop, we process the message. In this case, we simply print the contents of the message.

The Command interface allows you to precisely customize the commands you send to AMPS. For flexibility and ease
of maintenance, 60East recommends using the Command interface (rather than a named method) for any command
that will receive messages from AMPS. For publishing messages, there can a slight performance advantage to using
the named commands where possible.

4.2. Asynchronous Message Processing Interface
The AMPS C# client also supports an asynchronous interface. In this case, you add a message handler to the call to
the subscribe. The client returns the command ID of the command submitted to AMPS, and returns once the server
has acknowledged that the command has been processed. As messages arrive, AMPS calls your message handler
directly on the background thread. This can be an advantage for some applications. For example, if your application
is highly multithreaded and copies message data to a work queue processed by multiple threads, there is usually a
performance benefit to enqueuing work directly from the background thread. See Section 4.5 for a discussion of
threading considerations, including considerations for message handlers.

As with the simple interface, the AMPS client provides both convenience interfaces and interfaces that use a Com-
mand object. The following example shows how to use the asynchronous interface.

class MyApp

Subscriptions

10

{
 public static void Main()
 {
 using(Client client = new Client("subscribe"))
 {

 client.connect("tcp://127.0.0.1/9007/amps");
 client.logon();

 Command command = new Command("subscribe")
 .setTopic("messages");

CommandId subscriptionId = c.executeAsync(command,
 (message) => Console.WriteLine(message.Data));
 }
 }
}

Here, we create a Client. We protect the Client in a using block so that the connection and subscriptions
are properly cleaned up when dispose() is called.
Here, we call the executeAsync() method, specifying the command and the message handler to invoke
with messages received in response to the command.
(message) => Console.WriteLine(message.Data) is a lambda function that acts as our message
handler. When a message is received, this lambda function is invoked, and in this case, the Data property from
message is printed to the screen. message is of type AMPS.Client.Message.

In the asynchronous interface, the AMPS client resets and reuses the message object provided to
this lambda function between calls. This improves performance in the client, but means that if
your handler function needs to preserve information contained within the message, you must copy
the information rather than just saving the message object. Otherwise, the AMPS client cannot
guarantee the state of the object or the contents of the object when your program goes to use it.

4.3. Unsubscribing
If the subscription is successfully made, messages will begin flowing to our MessagePrinter.invoke() func-
tion, and the Client.subscribe() call will return a CommandId that serves as the identifier for this subscrip-
tion. A Client can have any number of active subscriptions, and this CommandId instance is used to refer to the
particular subscription we have made here. For example, to unsubscribe, we simply pass in this identifier:

Client c = ...;

Command subscribe_command = new Command("subscribe")
 .setTopic("messages");

CommandId subscriptionId = c.executeAsync(subscribe_command,
 (message) => Console.WriteLine(message));

...

Command unsubscribe_command = new Command("unsubscribe")
 .setSubId(subscriptionId);

Subscriptions

11

foreach (Message msg in client.execute(unsubscribe_command))
{
 System.Console.WriteLine("Response to unsubscribe : {0}",
 msg.AckType);
}

Example 4.3. Unsubscribing from a Topic

In this example, as in the previous section, we use the Client.subscribe() method to create a subscription
to the messages topic. When our application is done listening to this topic, it unsubscribes by executing an un-
subscribe command that contains the subscriptionId returned by subscribe(). After the subscription
is removed, no more messages will flow into our (message) lambda function. For sample purposes, we receive
the result of the unsubscribe command and print the acknowledgement.

4.4. Understanding Messages
So far, we have seen that subscribing to a topic involves working with objects of type AMPS.Client.Message.
A Message represents a single message to or from an AMPS server. Messages are received or sent for every client/
server operation in AMPS.

Header properties
There are two parts of each message in AMPS: a set of headers that provide metadata for the message, and the data
that the message contains. Every AMPS message has one or more header fields defined. The precise headers present
depend on the type and context of the message. There are many possible fields in any given message, but only a few
are used for any given message. For each header field, the Message class contains a distinct property that allows
for retrieval and setting of that field. For example, the Message.getCommandId() function corresponds to the
commandId header field, the Message.getBatchSize() function corresponds to the BatchSize header
field, and so on. For more information on these header fields, consult the AMPS User Guide and AMPS Command
Reference.

To work with header fields, aMessage contains getXxx()/setXxx() methods corresponding to the header
fields. 60East does not recommend attempting to parse header fields from the raw data of the message.

In AMPS, fields sometimes need to be set to a unique identifier value. For example, when creating a new subscription,
or sending a manually constructed message, you’ll need to assign a new unique identifier to multiple fields such as
CommandId and SubscriptionId. For this purpose, Message provides newXxx() methods for each field that
generates a new unique identifier and sets the field to that new value.

Data Property.
Access to the data section of a message is provided via the Data property. The Data property will contain the
unparsed data of the message. The Data propery returns the data as a .Net string, which is suitable message formats
that can be represented as Unicode text, such as JSON, XML, FIX, or NVFIX. For binary data, the AMPS C#
client provides a getDataRaw() method to allow you to work with the underlying byte array in the message. See
Section 11.5 for details.

Subscriptions

12

The AMPS C# client contains a collection of helper classes for working with message types that are specific to
AMPS (for example, FIX, NVFIX, and AMPS composite message types). For message types that are widely used,
such as JSON or XML, you can use whichever library you typically use in your environment.

4.5. Understanding Threading and Message Han-
dlers

When you call a subscribe command, the client creates a thread that runs in the background. The command returns,
while the thread receives messages. In the simple case, using synchronous message processing, the client provides
an internal handler function that populates the MessageStream. The MessageStream is used on the calling
thread, so operations on the MessageStream do not block the background thread.

When using asynchronous message processing, AMPS calls the handler function from the background thread. Mes-
sage handlers provided for asynchronous message processing must be aware of the following considerations.

The client creates one background thread per client object. A message handler that is only provided to a single client
will only be called from a single thread. If your message handler will be used by multiple clients, then multiple
threads will call your message handler. In this case, you should take care to protect any state that will be shared
between threads.

For maximum performance, do as little work in the message handler as possible. For example, if you use the contents
of the message to update an external database, a message handler that adds the relevant data to an update queue that
is processed by a different thread will typically perform better than a message handler that does this update during
the message handler.

While your message handler is running, the thread that calls your message handler is no longer receiving messages.
This makes it easier to write a message handler, because you know that no other messages are arriving from the
same subcription. However, this also means that you cannot use the same client that called the message handler to
send commands to AMPS. Acknowledgements from AMPS cannot be processed, and your application will deadlock
waiting for the acknowledgement. Instead, enqueue the command in a work queue to be processed by a separate
thread, or use a different client object to submit the commands.

The AMPS client resets and reuses the Message provided to this function between calls. This improves performance
in the client, but means that if your handler function needs to preserve information contained within the message, you
must copy the information rather than just saving the message object. Otherwise, the AMPS client cannot guarantee
the state of the object or the contents of the object when your program goes to use it.

4.6. Advanced Subscriptions
Client.subscribe() provides options for subscribing to topics even when you do not know their exact names,
and for providing a filter that works on the server to limit the messages your application must process.

Regex topics
Regular Expression (Regex) Topics allow a regular expression to be supplied in the place of a topic name. When you
supply a regular expression, it is as if a subscription is made to every topic that matches your expression, including
topics that do not yet exist at the time of creating the subscription.

Subscriptions

13

To use a regular expression, simply supply the regular expression in place of the topic name in the subscribe()
call. For example:

Client c = ...;

foreach (Message msg in c.subscribe("client.*"))
{
 Console.WriteLine("{0}:{1}", msg.Topic,
 msg.Data);
}

Example 4.4. Regex Topic Subscription

In this example, messages on topics client and client1 would match the regular expression, and those messages
would all be received by our subscription. As in the example, you can use the Topic property to determine the
actual topic of the message sent to the lambda function.

Content Filtering
One of the most powerful features of AMPS is content filtering. With content filtering, filters based on message
content are applied at the server, so that your application and the network are not utilized by messages that are
uninteresting for your application. For example, if your application is only displaying messages from a particular
user, you can send a content filter to the server so that only messages from that particular user are sent to the client.

To apply a content filter to a subscription, simply pass it into the Client.subscribe() call:

Client c = ...;

CommandId subscriptionId = c.subscribe(
 (m) => Console.WriteLine(m), "messages",
 "/message/sender = 'mom' ", 5000); // Timeout

Example 4.5. Using Content Filters

In this example, we have passed in a content filter "/sender = 'mom'". This will cause the server to only send
us messages from the messages topic that additionally have a sender field equal to mom.

For example, the AMPS server will send the following message, where /sender is mom:

{ "sender" : "mom",
 "text" : "Happy Birthday!",
 "reminder" : "Call me Thursday!" }

The AMPS server will not send a message with a different /sender value:

{ "sender" : "henry dave",
 "text" : "Things do not change; we change." }

Updating the Filter on a Subscription

AMPS allows you to update the filter on a subscription. When you replace a filter on the the subscription, AMPS
immediately begins sending only messages that match the updated filter. Notice that if the subscription was entered

Subscriptions

14

with a command that includes a SOW query, using the replace option can re-issue the SOW query (as described
in the AMPS User Guide).

To update a the filter on a subscription, you create a subscribe command. You set the SubscriptionId
provided on the Command to the identifier of the existing subscription, and include the replace option on the
Command. When you send the Command, AMPS atomically replaces the filter and sends messages that match the
updated filter from that point forward.

4.7. Next Steps
At this point, you are able to build AMPS programs in C# that publish and subscribe to AMPS topics. For an AMPS
application to be truly robust, it needs to be able to handle the errors and disconnections that occur in any distributed
system. In the next chapter, we will take a closer look at error handling and recovery, and how you can use it to make
your application ready for the real world.

15

Chapter 5. Error Handling
In every distributed system, the robustness of your application depends on its ability to recover gracefully from
unexpected events. The AMPS client provides the building blocks necessary to ensure your application can recover
from the kinds of errors and special events that may occur when using AMPS.

5.1. Exceptions
Generally speaking, when an error occurs that prohibits an operation from succeeding, AMPS will throw an excep-
tion. AMPS exceptions universally derive from AMPS.Client.Exceptions.AMPSException, so by catch-
ing AMPSException, you will be sure to catch anything AMPS throws, for example:

 using AMPS.Client;
 using AMPS.Client.Exceptions;
 ...
 public static void ReadAndEvaluate(Client client)
 {
 // read a new payload from the user
 string payload = Console.ReadLine();

 // write a new message to AMPS
 if(!string.IsNullOrEmpty(payload)) {
 try {
 client.publish("UserMessage",
 @"{ ""data"" : """ + payload + @""" }");
 } catch (AMPSException exception)
 {
 Console.Error.WriteLine("An AMPS exception " +
 "occurred: {0}", exception);
 }
 }
 }

Example 5.1. Catching an AMPS Exception

In this example, if an error occurs the program writes the error to Console.Error, and the publish() com-
mand fails. However, client is still usable for continued publishing and subscribing. When the error occurs, the
exception is written to the console, which implicitly calls the exception’s ToString() method. As with most .NET
exceptions, ToString() will convert the Exception into a string that includes a message, stacktrace and informa-
tion on any "inner" exceptions (exception from outside of AMPS that caused AMPS to throw an exception).

AMPS exception types vary, based on the nature of the error that occurs. In your program, if you would like to handle
certain kinds of errors differently than others, then you can catch the appropriate subclass of AMPSException
to detect those specific errors and do something different.

 public CommandId CreateNewSubscription(Client client)
 {

Error Handling

16

 CommandId id = null;
 string topicName;
 while(id == null)
 {
 topicName = AskUserForTopicName();
 try {
 Command command = new Command("subscribe")
 .setTopic(topicName);

 id = client.executeAsync(
 command, (x)=>HandleMessage(x)));
 }
 catch(BadRegexTopicException ex)
 {
 DisplayError(
 string.Format(
 "Error: bad topic name or regular " +
 "expression ’{0}’. The error was: {1}",
 topicName, ex.Message));
 // we’ll ask the user for another topic
 }
 catch(AMPSException ex)
 {
 DisplayError(
 string.Format(
 "Error: error setting up subscription " +
 "to topic ’{0}’. The error was: {1}",
 topicName, ex.Message));
 return null; // give up
 }
 }
 return id;
 }

Example 5.2. Catching AMPSException Subclasses

In Example 5.2 our program is an interactive program that attempts to retrieve a topic name (or regular expres-
sion) from the user.
If an error occurs when setting up the subscription whether or not to try again based on the subclass of AM-
PSException that is thrown. If a BadRegexTopicException, this exception is thrown during subscrip-
tion to indicate that a bad regular expression was supplied, so we would like to give the user a chance to correct.
This line indicates that the program catches the BadRegexTopicException exception and displays a
specific error to the user, indicating the topic name or expression was invalid. By not returning from the function
in this catch block, the while loop runs again and the user is asked for another topic name.
If an AMPS exception of a type other than BadRegexTopicException is thrown by AMPS, it is caught
here. In that case, the program emits a different error message to the user.
At this point the code stops attempting to subscribe to the client by the return null statement.

Exception Types
Each method in AMPS documents the kinds of exceptions that it throws. For reference, Table A.1 contains a list of
all of the exception types you may encounter while using AMPS, when they occur, and what they mean.

Error Handling

17

Exception Handling and Asynchronous Message Processing
When using asynchronous message processing, exceptions thrown form the message handler are silently absorbed
by the AMPS C# client by default. The AMPS C# client allows you to register an exception listener to detect and
respond to these exceptions. When an exception listener is registered, AMPS will call the exception listener with
the exception. See Example 5.6 for details.

5.2. Disconnect Handling
Every distributed system will experience occasional disconnections between one or more nodes. The reliability of
the overall system depends on an application’s ability to efficiently detect and recover from these disconnections.
Using the AMPS C# client’s disconnect handling, you can build powerful applications that are resilient in the face
of connection failures and spurious disconnects.

The HAClient class, included with the AMPS C# client, contains a disconnect handler and other features for build-
ing highly-available applications. 60East recommends using the HAClient for automatic reconnection wherever
possible, as the HAClient disconnect handler has been carefully crafted to handle a wide variety of edge cases and
potential failures. This section covers the use of a custom disconnect handler in the event that the behavior of the
HAClient does not suit the needs of your application.

AMPS disconnect handling gives you the ultimate in control and flexibility regarding how to respond to discon-
nects. Your application gets to specify exactly what happens when an exception occurs by supplying a function to
Client.setDisconnectHandler(), which is invoked whenever a disconnect occurs.

Example 5.3 shows the basics:

 public class MyApp
 {
 string _uri;
 public MyApp(string uri)
 {
 _uri = uri;
 Client client = new Client("sampleClient");
 client.setDisconnectHandler(
 AttemptReconnection);
 client.connect(uri);
 client.subscribe((m) =>
 ShowMessage(m), "orders", 5000) ;
 }

 public void ShowMessage(Message m)
 {
 // display order data to the user
 ...
 }

 public void AttemptReconnection(Client client)
 {
 // simple: just sleep and reconnect
 System.Threading.Thread.Sleep(5000);

Error Handling

18

 client.connect(_uri);
 }
 }

Example 5.3. Supplying a Disconnect Handler

In Example 5.3 the setDisconnectHandler() method is called to supply a function for use when AMPS
detects a disconnect. At any time, this function may be called by AMPS to indicate that the client has discon-
nected from the server, and to allow your application to choose what to do about it. The application continues
on to connect and subscribe to the orders topic.
Our disconnect handler’s implementation begins here. In this example, we simply try to reconnect to the original
server after a 5000 millisecond pause. Errors are likely to occur here—therefore we must have disconnected
for a reason—but Client takes care of catching errors from our disconnect handler. If an error occurs in our
attempt to reconnect and an exception is thrown by connect(), then Client will catch it and absorb it,
passing it to the ExceptionListener if registered. If the client is not connected by the time the disconnect
handler returns, AMPS throws DisconnectedException.

By creating a more advanced disconnect handler, you can implement logic to make your application even more ro-
bust. For example, imagine you have a group of AMPS servers configured for high availability—you could imple-
ment fail-over by simply trying the next server in the list until one is found. Example 5.4 shows a brief example.

 public class MyApp
 {
 string[] _uris;
 int _currentUri = 0;
 public MyApp(string[] uris)
 {
 _uris = uri;
 Client client = new Client(...);
 client.setDisconnectHandler(
 ConnectToNextUri(client));
 ConnectToNextUri(client);
 }
 private void ConnectToNextUri(Client client)
 {
 while(true)
 {
 try {
 client.connect(_uris[_currentUri]);
 client.subscribe(
 (x)=>MySubscriptionHandler(x),
 "orders", 5000);
 return;
 } catch(AMPSException e) {
 _currentUri = (_currentUri + 1) % _uris.Length;
 ShowWarning(
 "Connection failed: {0}. Failing " +
 " over to {1}",
 e.ToString(), _uris[_currentUri]);
 }
 }
 }

Error Handling

19

 }

Example 5.4. Simple Client Failover Implementation

Here our application is configured with an array of AMPS server URIs to choose from, instead of a single URI.
These will be used in the ConnectToNextUri() method as explained below.
ConnectToNextUri() is invoked by our disconnect handler, TestDisconnectHandler. Since our
client is currently disconnected, we manually invoke our disconnect handler to initiate the first connection.
In our disconnect handler, we invoke ConnectToNextUri(), which loops around our array of URIs at-
tempting to connect to each one. In the invoke() method it attempts to connect to the current URI, and if it is
successful, returns immediately. If the connection attempt fails, the exception handler for AMPSException
is invoked. In the exception handler, we advance to the next URI, display a warning message, and continue
around the loop. This simplistic handler never gives up, but in a typical implementation, you would likely stop
attempting to reconnect at some point.
At this point the registers a subscription to the server we have connected to. It is important to note that, once
a new server is connected, it the responsibility of the application to re-establish any subscriptions placed pre-
viously. This behavior provides an important benefit to your application: one reason for disconnect is due to a
client’s inability to keep up with the rate of message flow. In a more advanced disconnect handler, you could
choose to not re-establish subscriptions that are the cause of your application’s demise.

Using a Heartbeat to Detect Disconnection
The AMPS client includes a heartbeat feature to help applications detect disconnection from the server within a
predictiable amount of time. Without using a heartbeat, an application must rely on the operating system to notify
the application when a disconnect occurs. For applications that are simply receiving messages, it can be impossible
to tell whether a socket is disconnected or whether there are simply no incoming messages for the client.

When you set a heartbeat, the AMPS client sends a heartbeat message to the AMPS server at a regular interval, and
waits a specified amount of time for the response. If the operating system reports an error on send, or if the server
does not respond within the specified amount of time, the AMPS client considers the server to be disconnected.

5.3. Unexpected Messages
The AMPS C# client handles most incoming messages and takes appropriate action. Some messages are unexpected
or occur only in very rare circumstances. The AMPS C# client provides a way for clients to process these messages.
Rather than providing handlers for all of these unusual events, AMPS provides a single handler function for messages
that can't be handled during normal processing.

Your application registers this handler by setting the lastChanceMessageHandler for the client. This handler
is called when the client receives a message that can't be processed by any other handler. This is a rare event, and
typically indicates an unexpected condition.

For example, if a client publishes a message that AMPS cannot parse, AMPS returns a failure acknowledgement. This
is an unexpected event, so AMPS does not include an explicit handler for this event, and failure acknowledgements
are received in the method registered as the lastChanceMessageHandler.

Your application is responsible for taking any corrective action needed. For example, if a message publication fails,
your application can decide to republish the message, publish a compensating message, log the error, stop publication
altogether, or any other action that is appropriate.

Error Handling

20

5.4. Unhandled Exceptions
In the AMPS C# client, exceptions can occur that are not thrown to the user. For example, when an exception occurs
in the process of reading subscription data from the AMPS server, the exception occurs on a thread inside of AMPS.
Consider the following example:

 public class MyApp
 {
 ...
 public static void WaitToBePoked(Client client)
 {
 client.subscribe(
 x=>Console.WriteLine("Hey! {0} poked you!",
 x.UserId),
 "pokes",
 string.Format("/Pokee LIKE '{0}-.*'",
 System.Environment.UserName),
 5000);
 Console.ReadKey();
 }
 }

Example 5.5. Where do exceptions go?

In this example, we set up a simple subscription to wait for messages on the pokes topic, whose Pokee tag begins
with our user name. When messages arrive, we print a message out to the console, but otherwise our application
waits for a key to be pressed.

Inside of the AMPS client, the client creates a new thread of execution that reads data from the server, and invokes
message handlers and disconnect handlers when those events occur. When exceptions occur inside this thread, how-
ever, there is no caller for them to be thrown to, and by default they are ignored.

In applications where it is important to deal with every issue that occurs in using AMPS, you can set an Excep-
tionHandler via Client.setExceptionHandler() that receives these otherwise-unhandled exceptions.
Making the modifications shown in Example 5.6 to our previous example will allow those exceptions to be caught
and handled. In this case we are simply printing those caught exceptions out to the console.

 public class MyApp
 {
 ...
 public static void WaitToBePoked(Client client)
 {
 client.setExceptionListener(
 ex=>Console.Error.WriteLine(ex));
 client.subscribe(
 x=>Console.WriteLine("Hey! {0} poked you!",
 x.UserId),
 "pokes",
 string.Format("/Pokee LIKE ’{0}-.*’",
 System.Environment.UserName),
 5000);
 Console.ReadKey();

Error Handling

21

 }
 }

Example 5.6. Exception Listener

In this example we have added a call to client.setExceptionHandler(), registering a simple function
that writes the text of the exception out to the console. Even though our application waits for a user to press a key,
messages to the console will still be produced, both as incoming poke topics arrive, and as issues arise inside of
AMPS.

5.5. Detecting Write Failures
The publish methods in the C# client deliver the message to be published to AMPS and then return immediately,
without waiting for AMPS to return an acknowledgement. Likewise, the sowDelete methods request deletion of
SOW messages, and return before AMPS processes the message and performs the deletion. This approach provides
high performance for operations that are unlikely to fail in production. However, this means that the methods return
before AMPS has processed the command, without the ability to return an error in the event that the command fails.

The AMPS C# client provides a FailedWriteHandler that is called when the client receives an acknowledge-
ment that indicates a failure to persist data within AMPS. To use this functionality, you implement the Failed-
WriteHandler interface, construct an instance of your new class, and register that instance with the set-
FailedWriteHandler() function on the client. When an acknowledgement returns that indicates a failed write,
AMPS calls the registered handler method with information from the acknowledgement message, supplemented with
information from the client publish store if one is available. Your client can log this information, present an error to
the user, or take whatever action is appropriate for the failure.

When no FailedWriteHandler is registered, acknowledgements that indicate errors in persisting data are treat-
ed as unexpected messages and routed to the LastChanceMessageHandler. In this case, AMPS provides only
the acknowledgement message and does not provide the additional information from the client publish store.

22

Chapter 6. State of the World
AMPS State of the World (SOW) allows you to automatically keep and query the latest information about a topic on
the AMPS server, without building a separate database. Using SOW lets you build impressively high-performance
applications that provide rich experiences to users. The AMPS C# client lets you query SOW topics and subscribe
to changes with ease.

6.1. Performing SOW Queries
To begin, we will look at a simple example of issuing a SOW query.

public void ExecuteSOWQuery(Client client)
{

 foreach (Message m in client.sow("messages-sow",
 "/id > 20"))
 {
 if (m.Command == Message.Command.BeginGroup)
 {
 System.Console.WriteLine("--- Begin SOW Results ---");
 }
 if (m.Command == Message.Command.EndGroup)
 {
 System.Console.WriteLine("--- End SOW Results ---");
 }
 if (m.Command == Message.Command.SOW)
 {
 System.Console.WriteLine(m.Data);
 }
 }
}

Example 6.1. Basic SOW Query

In Example 6.1 the ExecuteSOWQuery() function invokes Client.sow() to initiate a SOW query on the
orders topic, for all entries that have a symbol of ’ROL’.

As the query executes, the body of the loop is invoked for each matching entry in the topic. Messages containing the
data of matching entries have a Command of value sow; as those arrive, we write them to the console. AMPS sends
a begin_group message at the beginning of the results and an end_group message at the end of the results. We
use those messages to delimit the results of the query.

As with subscribe, the sow command also provides an asynchronous version, as well as versions that accept a Com-
mand. For example, the listing below shows an asychronous SOW command that specifies the batch size, or the
maximum number of records that AMPS will return at a time.

private void HandleSOW(Message message)
{
 if (message.Command == Message.Commands.SOW)
 {
 Console.WriteLine(message.Data);
 }

State of the World

23

}

public void ExecuteSOWQuery(Client client)
{
 Command command = new Command(Message.Commands.SOW)
 .setTopic("messages-sow")
 .setFilter("/id > 20")
 .setBatchSize(100);

 client.executeAsync(command, message => HandleSOW(message));

}

Example 6.2. Asynchronous SOW Query

In Example 6.2 the ExecuteSOWQuery() function invokes Client.executeAsync() to initiate a SOW
query on the messages-sow topic, for all entries that have an id greater than 20. The SOW query is requested
with a batch size of 100, meaning that AMPS will attempt to send 100 messages at a time as results are returned.

As the query executes, the HandleSOW() method is invoked for each matching entry in the topic. Messages con-
taining the data of matching entries have a Command of value sow; as those arrive, we write them to the console.

6.2. SOW and Subscribe
Imagine an application that displays real-time information about the position and status of a fleet of delivery vans.
When the application starts, it should display the current location of each of the vans, along with their current status.
As vans move around the city and post other status updates, the application should keep its display up to date. Vans
upload information to the system by posting message to a van location topic, configured with a key of van_id
on the AMPS server.

In this application, it is important to not only stay up-to-date on the latest information about each van, but to ensure
all of the active vans are displayed as soon as the application starts. Combining a SOW with a subscription to the
topic is exactly what is needed, and that is accomplished by the AMPS sow_and_subscribe command. Now
we will look at an example:

private void UpdateVanPosition(Message message)
{
 switch (message.Command) {
 case Message.Commands.SOW:
 case Message.Commands.Publish:
 AddOrUpdateVan(message);
 break;
 case Message.Commands.OOF:
 RemoveVan(message);
 break;
 }
}

public void SubscribeToVanLocation(Client client) {
 Command command = new Command("sow")
 .setTopic("van_location")
 .setFilter("/status = 'ACTIVE'")
 .setBatchSize(100)

State of the World

24

 .setOptions("oof");

 foreach (Message msg in client.execute(command))
 {
 updateVanPosition(message);
 }

}

public void addOrUpdateVan(message) {
 // use information in the message to add the van or update
 // the van position
}

public void removeVan(message) {
 // use information in the message to remove information on
 // the van position
}

Example 6.3. Using sowAndSubscribe

In Example 6.3, we issue a sow_and_subscribe command to begin receiving information about all of the
active delivery vans in the system. All of the vans in the system now are returned as Message objects with
a Command of sow. Updates to the vans, or new vans entering the system, are received as Message objects
with a Command of publish.
For each of these messages we call AddOrUpdateVan(), that presumably adds the van to our application’s
display. As vans send updates to the AMPS server, those are also received by the client because of the sub-
scription placed by sowAndSubscribe(). Our application does not need to distinguish between updates
and the original set of vans we found via the SOW query, so we use addOrUpdateVan() to display the
new position of vans as well.
Notice here that we specified an Option of “oof”. Including this option causes us to receive Out-of-Focus
("OOF") messages for topic. OOF messages are sent when an entry that was sent to us in the past no longer
matches our query. This happens when an entry is removed from the SOW cache via a sowDelete() oper-
ation, when the entry expires (as specified by the expiration time on the message or by the configuration of that
topic on the AMPS server), or when the entry no longer matches the content filter specified. In our case, if a
van’s status changes to something other than ACTIVE, it no longer matches the content filter, and becomes
out of focus. When this occurs, a Message is sent with Command set to oof. We use OOF messages to remove
vans from the display as they become inactive, expire, or are deleted.

Now we will look at an example that uses the asynchronous form of execute to place a sow_and_subscribe command:

private void UpdateVanPosition(Message message)
{
 switch (message.Command) {
 case Message.Commands.SOW:
 case Message.Commands.Publish:
 AddOrUpdateVan(message);
 break;
 case Message.Commands.OOF:
 RemoveVan(message);
 break;
 }
}

State of the World

25

public void SubscribeToVanLocation(Client client) {
 Command command = new Command("sow")
 .setTopic("van_location")
 .setFilter("/status = 'ACTIVE'")
 .setBatchSize(100)
 .setOptions("oof");

 client.executeAsync(command, msg => UpdateVanPosition(msg));
}

Example 6.4. Asynchronous SOW and Subscribe

6.3. Setting Batch Size
The AMPS clients include a batch size parameter that specifies how many messages the AMPS server will return to
the client in a single batch when returning the results of a SOW query. The 60East clients set a batch size of 10 by
default. This batch size works well for common message sizes and network configurations.

Adjusting the batch size may produce better network utilitization and produce better performance overall for the
application. The larger the batch size, the more messages AMPS will send to the network layer at a time. This can
result in fewer packets being sent, and therefore less overhead in the network layer. The effect on performance is
generally most noticeable for small messages, where setting a larger batch size will allow several messages to fit
into a single packet. For larger messages, a batch size may still improve performance, but the improvement is less
noticeable.

In general, 60East recommends setting a batch size that is large enough to produce few partially-filled packets. Bear
in mind that AMPS holds the messages in memory while batching them, and the client must also hold the messages in
memory while receiving the messages. Using batch sizes that require large amounts of memory for these operations
can reduce overall application peformance, even if network utilization is good.

For smaller message sizes, 60East recommends using the default batch size, and experimenting with tuning the batch
size if performance improvements are necessary. For relatively large messages (especially messages with sizes over
1MB), 60East recommends explicitly setting a batch size of 1 as an initial value, and increasing the batch size only
if performance testing with a larger batch size shows improved network utilization or faster overall performance.

6.4. Client-Side Conflation
In many cases, applications that use SOW topics only need the current value of a message at the time the message
is processed, rather than processing each change that lead to the current value. On the server side, AMPS provides
conflated topics to meet this need. Conflated topics are described in more detail in the AMPS User Guide, and require
no special handling on the client side.

In some cases, though, it's important to conflate messages on the client side. This can be particularly useful for
applications that do expensive processing on each message, applications that are more efficient when processing
batches of messages, or for situations where you cannot provide an appropriate conflation interval for the server
to use.

A MessageStream has the ability to conflate messages recieved for a subscription to a SOW topic, view, or
conflated topic. When conflation is enabled, for each message recieved, the client checks to see whether it has already

State of the World

26

received an unprocessed message with the same SowKey. If so, the client replaces the unprocessed message with
the new message. The application never receives the message that has been replaced.

To enable client-side conflation, you call conflate() on the MessageStream, and then use the Mes-
sageStream as usual:

// Query and subscribe
MessageStream results =
 ampsClient.sowAndSubscribe("orders", "/symbol == 'ROL'");

// Turn on conflation
results.conflate();

// Process the results
foreach (Message m in results)
{
 // Process message here
}

Notice that if the MessageStream is used for a subscription that does not include SowKeys (such as a subscription
to a topic that does not have a SOW), no conflation will occur.

When using client-side conflation with delta subscriptions, bear in mind that client-side conflation replaces the whole
message, and does not attempt to merge deltas. This means that updates can be lost when messages are replaced. For
some applications (for example, a ticker application that simply sends delta updates that replace the current price),
this causes no problems. For other applications (for example, when several processors may be updating different
fields of a message simultaneously), using conflation with deltas could result in lost data, and server-side conflation
is a safer alternative.

6.5. Managing SOW Contents
AMPS allows application to manage the contents of the SOW by explicitly deleting messages that are no longer
relevant. For example, if a particular delivery van is retired from service, the application can remove the record for
the van by deleting the record for the van.

The client provides the following methods for deleting records from the SOW:

• sowDelete accepts a filter, and deletes all messages that match the filter

• sowDeleteByKeys accepts a set of SOW keys as a comma-delimited string and deletes messages for those
keys, regardless of the contents of the messages. SOW keys are provided in the header of a SOW message, and
is the internal identifier AMPS uses for that SOW message

• sowDeleteByData accepts a message, and deletes the record that would be updated by that message

Most applications use sowDelete, since this is the most useful and flexible method for removing items from the
SOW. However, this operation is relatively expensive in cases where the application has the data or the SOW keys
of the messages to be removed. In some cases, particularly when working with extremely large SOW databases,
sowDeleteByKeys can provide better performance.

Regardless of the command used, AMPS sends an OOF message to all subscribers who have received updates for
the messages removed, as described in the previous section.

State of the World

27

The simple form of the sowDelete command returns a MessageStream that receives the response. This re-
sponse is an acknowledgement message that contains information on the delete command. For example, the follow-
ing snippet simply prints informational text with the number of messages deleted:

foreach (Message msg in client.SowDelete("sow_topic",
 "/id IN (42, 64, 37)")
{
 System.Console.WriteLine("Got an {0} containing {1} : " +
 "deleted {2} messages.",
 msg.Command,
 msg.AckType,
 msg.Matches);
}

In either case, AMPS sends an OOF message to all subscribers who have received updates for the messages removed,
as described in the previous section.

Acknowledging messages from a queue uses a form of the sow_delete command that is only supported for queues.
Acknowledgement is discussed in the chapter on queues.

28

Chapter 7. Using Queues
AMPS message queues provide a high-performance way of distributing messages across a set of workers. The AMPS
User Guide describes AMPS queues in detail, including the features of AMPS referred to in this chapter. This chapter
does not describe message queues in detail, but instead explains how to use the AMPS C# client with message queues.

To publish messages to an AMPS queue, publishers simply publish to any topic that is collected by the queue. There
is no difference between publishing to a queue and publishing to any other topic, and a publisher does not need to
be aware that the topic will be collected into a queue.

Subscribers must be aware that they are subscribing to a queue, and acknowledge messages from the queue when
the message is processed.

7.1. Backlog and Smart Pipelining
AMPS queues are designed for high-volume applications that need minimal latency and overhead. One of the features
that helps performance is the subscription backlog feature, which allows applications to receive multiple messages
at a time. The subscription backlog sets the maximum number of unacknowledged messages that AMPS will provide
to the subscription.

When the subscription backlog is larger than 1, AMPS delivers additional messages to a subscriber before the sub-
scriber has acknowledged the first message received. This technique allows subscribers to process messages as fast
as possible, without ever having to wait for messages to be delivered. The technique of providing a consistent flow
of messages to the application is called smart pipelining.

Subscription Backlog
The AMPS server determines the backlog for each subscription. An application can set the maximum backlog that
it is willing to accept with the max_backlog option. Depending on the configuration of the queue (or queues)
specified in the subscription, AMPS may assign a smaller backlog to the subscription. If no max_backlog option
is specified, AMPS uses a max_backlog of 1 for that subscription.

In general, applications that have a constant flow of messages perform better with a max_backlog setting higher
than 1. The reason for this is that, with a backlog greater than 1, the application can always have a message waiting
when the previous message is processed. Setting the optimum max_backlog is a matter of understanding the
messaging pattern of your application and how quickly your application can process messages.

To request a max_backlog for a subscription, you explicitly set the option on the subscribe command, as shown
below:

Command cmd = new Command("subscribe");
cmd.setTopic("my_queue")
 .setOptions("max_backlog=10");

Acknowledging Messages
For each message delivered on a subscription, AMPS counts the message gainst the subscription backlog until the
message is explicitly acknowledged. In addition, when a queue specifies at-least-once delivery, AMPS re-

Using Queues

29

tains the message in the queue until the message expires or until the message has been explicitly acknowledged
and removed from the queue. From the point of view of the AMPS server, acknowledgement is implemented as a
sow_delete from the queue with the bookmarks of the messages to remove. The AMPS C# client provides several
ways to make it easier for applications to create and send the appropriate sow_delete.

Automatic Acknowledgement

The AMPS client allows you to specify that messages should be automatically acknowledged. When this mode is
on, AMPS acknowledges the message automatically in the following cases:

• Asynchronous message processing interface. The message handler returns without throwing an exception.

• Synchronous message processing interface. The application requests the next message from the Mes-
sageStream.

AMPS batches acknowledgements created with this method, as described in the following section.

To enable automatic acknowledgement batching, use the setAutoAck() method.

client.setAutoAck(true); // enable AutoAck

Message Convenience Method

The AMPS C# client provides a convenience method, ack(), on delivered messages. When the application is
finished with the message, the application simply calls ack() on the message.

For messages that originated from a queue with at-least-once semantics, this adds the bookmark from the
message to the batch of messages to acknowledge. For other messages, this method has no effect.

message.ack(); // Add this message to the next
 // acknowledgement batch.

Manual Acknowledgement

To manually acknowledge processed messages and remove the messages from the queue, applications use the
sow_delete command with the bookmarks of the messages to remove. Notice that AMPS only supports using a
bookmark with sow_delete when removing messages from a queue, not when removing records from a SOW.

For example, given a Message object to acknowledge and a client, the code below acknowledges the message.

void acknowledgeSingle(Client client, Message message)
{
 Message acknowledge = new Message();
 acknowledge.setCommand("sow_delete")
 .setTopic(message.getTopic())
 .setBookmark(message.getBookmark());
 client.send(acknowledge);
}

Example 7.1. Simple Queue Acknowledgement

Using Queues

30

In listing Example 7.1 the program creates a sow_delete command, specifies the topic and the bookmark, and
then sends the command to the server. Because the program does not need or expect a response from AMPS, this
function uses the Message object rather than the Command object.

While this method works, creating and sending an acknowledgement for each individual message can be inefficient
if your application is processing a large volume of messages. Rather than acknowledging each message individually,
your application can build a comma-delimited list of bookmarks from the processed messages and acknowledge all
of the messages at the same time. In this case, it's important to be sure that the number of messages you wait for is
less than the maximum backlog -- the number of messages your client can have unacknowledged at a given time.
Notice that both automatic acknowledgement and the helper method on the Message object take the maxiumum
backlog into account.

Acknowledgement Batching
The AMPS C# client automatically batches acknowledgements when either of the convenience methods is used.
Batching acknowledgements reduces the number of round-trips to AMPS, reducing network traffic and improving
overall performance. AMPS sends the batch of acknowledgements when the number of acknowledgements exceeds
a specified size, or when the amount of time since the last batch was sent exceeds a specified timeout.

You can set the number of messages to batch and the maximum amount of time between batches:

client.setAckBatchSize(10); // Send batch after 10 messages
client.setAckTimeout(1000); // ... or 1 second

The AMPS C# client is aware of the subscription backlog for a subscription. When AMPS returns the acknowledge-
ment for a subscription that contains queues, AMPS includes information on the subscription backlog for the sub-
scription. If the batch size is larger than the subscription backlog, the AMPS C# client adjusts the requested batch
size to match the subscription backlog.

31

Chapter 8. Delta Publish and Subscribe

8.1. Introduction
Delta messaging in AMPS has two independent aspects:

• delta subscribe allows subscribers to receive just the fields that are updated within a message.

• delta publish allows publishers to update and add fields within a message by publishing only the updates into
the SOW.

This chapter describes how to create delta publish and delta subscribe commands using the AMPS C++ client. For a
discussion of this capability, how it works, and how message types support this capability see the AMPS User Guide.

8.2. Delta Subscribe
To delta subscribe, you simply use the delta_subscribe command as follows:

// assumes that client is connected and logged on

Command cmd("delta_subscribe");
cmd.setTopic("delta_topic");
cmd.setFilter("/thingIWant = 'true'");

for (Message m in client.execute(cmd))
{
 // Work with message here
}

As described in the AMPS User Guide, messages provided to a delta subscription will contain the fields used to
generate the SOW key and any changed fields in the message. Your application is responsible for choosing how to
handle the changed fields.

8.3. Delta Publish
To delta publish, you use the delta_publish command as follows:

// assumes that client is connected and logged on

String msg = ... ; // obtain changed fields here

client.deltaPublish("myTopic", msg);

The message that you provide to AMPS must include the fields that the topic uses to generate the SOW key. Other-
wise, AMPS will not be able to identify the message to update. For SOW topics that use a User-Generated SOW
Key, use the Command form of delta_publish to set the SowKey.

// assumes that client is connected and logged on

Delta Publish and Subscribe

32

msg = ... ; // obtain changed fields here
key = ... ; // obtain user-generated SOW key

Command cmd("delta_publish");
cmd.setTopic("delta_topic");
cmd.setSowKey(key);
cmd.setData(msg);

// Execute the delta publish. Use null for
// a message handler since any failure acks will
// be routed to the FailedWriteHandler
client.executeAsync(cmd,null);

33

Chapter 9. High Availability
The AMPS C# Client provides an easy way to create highly-available applications using AMPS, via the HAClient
class. Using HAClient allows applications to automatically:

• Recover from temporary disconnects between client and server.

• Failover from one server to another when a server becomes unavailable.

• Ensure no messages are lost or duplicated after a reconnect or failover.

• Persist messages and bookmarks on disk for protection against client failure.

You can choose how your application uses HAClient features. For example, you might need automatic reconnec-
tion, but have no need to resume subscriptions or republish messages. The high availability behavior in HAClient is
provided by implementations of defined interfaces. You can combine different implementations provided by 60East
to meet your needs, and implement those interfaces to provide your own policies.

Some of these features require specific configuration settings on your AMPS instance(s). This chapter mentions
these features, but you can find full documentation for these settings and server features in the User Guide.

9.1. Choosing an HAClient Protection Method
Use the HAClient class to create a highly-available connection to one or more AMPS instances. HAClient de-
rives from Client and offers the same methods, but also adds protection against network, server, and client out-
ages. Most code written with Client will also work with HAClient, and major differences involve constructing
and connecting the HAClient.

The HAClient provides protection from disconnection using Stores. As the name implies, stores hold information
about the state of the client. There are two types of store:

• A bookmark store tracks received messages, and is used to resume subscriptions.

• A publish store tracks published messages, and is used to ensure that messages are persisted in AMPS.

The AMPS client provides a memory-backed version of each store and a file-backed version of each store. An HA-
Client can use either a memory backed store or a file backed store for protection. Each method provides resilience
to different failures:

• Memory-backed stores protect against disconnection from AMPS by storing messages and bookmarks in your
process’ address space. This is the highest performance option for working with AMPS in a highly available
manner. The trade-off with this method is there is no protection from a crash or failure of your client application. If
your application is terminated prematurely or, if the application terminates at the same time as an AMPS instance
failure or network outage, then messages may be lost or duplicated.

• File-backed stores protect against client failure and disconnection from AMPS by storing messages and bookmarks
on disk. To use this protection method, the create_file_backed method requests additional arguments for
the two files that will be used for both bookmark storage and message storage. If these files exist and are non-
empty (as they would be after a client application is restarted), the HAClient loads their contents and ensures
synchronization with the AMPS server once connected. The performance of this option depends heavily on the
speed of the device on which these files are placed. When the files do not exist (as they would the first time a
client starts on a given system), the HAClient creates and initializes the files, and in this case the client does not
have a point at which to resume the subscription or messages to republish.

High Availability

34

The store interface is public, and an application can create and provide a custom store as necessary. While clients
provide convenience methods for creating file-backed and memory-backed HAClient objects with the appropriate
stores, you can also create and set the stores in your application code.

In this example, we create two clients, one for ”less-important” messages that uses memory for its store, and one
which uses a pair of files for its store:

HAClient memoryClient = HAClient.createMemoryBacked(
 "lessImportantMessages");
HAClient diskClient = HAClient.createFileBacked(
 "moreImportantMessages",
 "/mnt/fastDisk/moreImportantMessages.outgoing",
 "/mnt/fastDisk/moreImportantMessages.incoming");

Example 9.1. HAClient creation examples

While this chapter presents the built-in file and memory-based stores, the AMPS C# Client
provides open interfaces that allow development of custom persistent message stores. You
can implement the Store and BookmarkStore interfaces in your code, and then pass in-
stances of those to setPublishStore() or setBookmarkStore() methods in your
Client. Instructions on developing a custom store are beyond the scope of this document;
please refer to the AMPS Client HA Whitepaper for more information.

9.2. Connections and the ServerChooser
Unlike Client, the HAClient attempts to keep itself connected to an AMPS instance at all times, by automat-
ically reconnecting or failing over when it detects disconnect. When you are using the Client directly, your dis-
connect handler usually takes care of reconnection. HAClient, on the other hand, provides a disconnect handler
that automatically reconnects to the current server or to the next available server.

To inform the HAClient of the addresses of the AMPS instances in your system, you pass a ServerChooser
instance to the HAClient. ServerChooser acts as a smart enumerator over the servers available: HAClient
calls ServerChooser methods to inquire about what server should be connected, and also calls methods to indi-
cate whether a given server succeeded or failed.

The AMPS C# Client provides a simple implementation of ServerChooser, called DefaultServerChoos-
er, which you can use in applications with simple requirements around choosing which server to connect with. Or,
you can implement ServerChooser yourself for more advanced logic, such as choosing a backup server based
on your network topology. In either case, you must provide a ServerChooser to HAClient to get started, and
then invoke connectAndLogon() to create the first connection:

HAClient myClient = HAClient.createMemoryBacked(
 "myClient");

// primary.amps.xyz.com is the primary AMPS instance, and
// secondary.amps.xyz.com is the secondary
DefaultServerChooser chooser =
 new DefaultServerChooser();
chooser.add("tcp://primary.amps.xyz.com:12345/fix");

High Availability

35

chooser.add("tcp://secondary.amps.xyz.com:12345/fix");
myClient.setServerChooser(chooser);
myClient.connectAndLogon();
...
myClient.disconnect();

Example 9.2. HAClient logon

Similar to Client, HAClient remains connected to the server until disconnect() is called. Unlike Client,
HAClient automatically attempts to reconnect to your server if it detects a disconnect and, if that server cannot
be connected, fails over to the next server provided by the ServerChooser. In this example, the call to con-
nectAndLogon() attempts to connect and log in to primary.amps.xyz.com, and returns if that is success-
ful. If it cannot connect, it tries secondary.amps.xyz.com, and continues trying servers from the Server-
Chooser until a connection is established. Likewise, if it detects a disconnection while the client is in use, HA-
Client attempts to reconnect to the server with which it was most recently connected; if that is not possible, it
moves on to the next server provided by the ServerChooser.

While this chapter presents the built-in file and memory-based stores, the AMPS C# Client
provides open interfaces that allow development of custom persistent message stores. You
can implement the Store and BookmarkStore interfaces in your code, and then pass in-
stances of those to setPublishStore() or setBookmarkStore() methods in your
Client. Instructions on developing a custom store are beyond the scope of this document;
please refer to the AMPS Client HA Whitepaper for more information.

9.3. Heartbeats and Failure Detection
Use of the HAClient allows your application to quickly recover from detected connection failures. By default,
connection failure detection occurs when AMPS receives an operating system error on the connection. This system
may result in unpredictable delays in detecting a connection failure on the client, particularly when failures in network
routing hardware occur, and the client primarily acts as a subscriber.

The heartbeat feature of the AMPS client allows connection failure to be detected quickly. Heartbeats ensure that
regular messages are sent between the AMPS client and server on a predictable schedule. The AMPS client and
server both assume disconnection has occurred if these regular heartbeats cease, ensuring disconnection is detected
in a timely manner. To utilize heartbeat, call the setHeartbeat method on Client or HAClient:

HAClient client = HAClient.createMemoryBacked(
 "importantStuff");
...
client.connectAndLogon();
client.setHeartbeat(3);
...

Method setHeartbeat takes one parameter: the heartbeat interval. The heartbeat interval specifies the periodicity
of heartbeat messages sent by the server: the value 3 indicates messages are sent on a three-second interval. If the
client receives no messages in a six-second window (two heartbeat intervals), the connection is assumed to be dead,
and the HAClient attempts reconnection. An additional variant of setHeartbeat allows the idle period to be
set to a value other than two heartbeat intervals.

High Availability

36

9.4. Considerations for Publishers
Publishing with an HAClient is nearly identical to regular publishing; you simply call the publish() method
with your message’s topic and data. The AMPS client sends these messages asynchronously for maximum perfor-
mance; but before exiting or terminating your connection, you should ensure that the server has received all of your
messages. The AMPS server occasionally sends persisted acknowledgement messages that indicate messages it has
successfully received and persisted. For safety, your application should wait until it has successfully received the
final acknowledgement from the AMPS instance. Use the unpersistedCount() method in the Store to de-
termine how many messages remain unacknowledged by the AMPS instance, as in the following example:

HAClient pub = HAClient.createMemoryBacked(
 "importantStuff");
...
pub.connectAndLogon();
String topic = "loggedTopic";
String data = ...;
for(int i = 0; i < MESSAGE_COUNT; i++)
{
 pub.publish(topic, data);
}

// We think we are done, but the server may not
// have acknowledged us yet.
while(pub.getPublishStore().unpersistedCount() > 0)
{
 Console.WriteLine("waiting for final ack from "+
 "the server...");
 Thread.Sleep(1000);
}
pub.disconnect();

Example 9.3. HA Publisher

In this example, the client sends each message immediately when publish() is called, but if AMPS becomes
unavailable between the final publish() and the disconnect(), the client may not have received an acknowl-
edgement for all of the published messages. It is possible that not every message has been received or persisted by the
AMPS server. By waiting until unpersistedCount() becomes 0, the application ensures that it has received
acknowledgement for every message published. If a disconnect or failover occurs while waiting, HAClient auto-
matically reconnects and correlates its internal store with the AMPS server (via the client sequence number returned
in the acknowledgement message from the logon), replaying any messages the AMPS server might need in order
to be consistent.

AMPS uses the name of the HAClient to determine the origin of messages. For the AMPS
server to correctly identify duplicate messages, each instance of an application that publishes
messages must use a distinct name. That name must be consistent across different runs of
the application.

If your application crashes or is terminated by an outside force, some published messages may not have been
persisted in the AMPS server. If you use the file-based store (in other words, the store created by using
HAClient.createFileBacked()), the HAClient will recover the messages, and once logged on, correlate
the message store to what the AMPS server has received, re-publishing any missing messages. This occurs automat-

High Availability

37

ically when HAClientconnects, without any explicit consideration in your code, other than ensuring that the same
file name is passed to createFileBacked() if recovery is desired.

AMPS provides persisted acknowledgement messages for topics that do not have a transac-
tion log enabled; however, the level of durability provided for topics with no transaction log
is minimal. Learn more about transaction logs in the User Guide.

9.5. Considerations for Subscribers
HAClient provides two important features for applications that subscribe to one or more topics: re-subscription,
and a bookmark store to track the correct point at which to resume a bookmark subscription.

Resubscription With Asynchronous Message Processing
Any asynchronous subscription placed using an HAClient is automatically reinstated after a disconnect or a
failover. These subscriptions are placed in an in-memory SubscriptionManager, which is created automati-
cally when the HAClient is instantiated. Most applications will use this built-in subscription manager, but for ap-
plications that create a varying number of subscriptions, you may wish to implement SubscriptionManager to
store subscriptions in a more durable place. Note that these subscriptions contain no message data, but rather simply
contain the the parameters of the subscription itself (for instance, the command, topic, message handler, options,
and filter).

When a re-subscription occurs, the AMPS C# Client re-executes the command as originally submitted, including
the original topic, options, and so on. AMPS sends the subscriber any messages for the specified topic (or topic
expression) that are published after the subscription is placed. For a sow_and_subscribe command, this means
that the client reissues the full command, including the SOW query as well as the subscription.

Resubscription With Synchronous Message Processing
The HAClient (starting with the AMPS C# Client version 4.3.1.1) does not track synchronous message processing
subscriptions in the SubscriptionManager. Once the MessageStream indicates that there are no more ele-
ments in the stream, you can consider the stream to be closed. The MessageStream does not suddenly produce
more elements.

To resubscribe when the HAClient fails over, you can simply reissue the subscription. For example, the snippet
below re-issues the subscribe command when the message stream ends:

boolean still_need_to_process = true;

while (still_need_to_process == true)
{
 MessageStream ms = client.subscribe("topic");
 try
 {
 for (Message m : ms)
 {
 // process message

High Availability

38

 // check condition on still_need_to_process
 if (still_need_to_process == false) break;
 }
 // end of stream, for a subscribe this means
 // that the connection is likely closed.
 }
 finally
 {
 if (ms != null) ms.close();
 }
}

Bookmark Stores
In cases where it is critical not to miss a single message, it is important to be able to resume a subscription at the
exact point that a failure occurred. In this case, simply recreating a subscription isn't sufficient. Even though the
subscription is recreated, the subscriber may have been disconnected at precisely the wrong time, and will not see
the message.

To ensure delivery of every message from a topic or set of topics, the AMPS HAClient includes a BookmarkS-
tore that, combined with the bookmark subscription and transaction log functionality in the AMPS server, ensures
that clients receive any messages that might have been missed. The client stores the bookmark associated with each
message received, and tracks whether the application has processed that message; if a disconnect occurs, the client
uses the BookmarkStore to determine the correct resubscription point, and sends that bookmark to AMPS when it
re-subscribes. AMPS then replays messages from its transaction log from the point after the specified bookmark,
thus ensuring the client is completely up-to-date.

HAClient helps you to take advantage of this bookmark mechanism through the BookmarkStore interface and
bookmarkSubscribe() method on Client. When you create subscriptions with bookmarkSubscribe(),
whenever a disconnection or failover occurs, your application automatically re-subscribes to the message after the
last message it processed. HAClients created by createFileBacked() additionally store these bookmarks
on disk, so that the application can restart with the appropriate message if the client application fails and restarts.

To take advantage of bookmark subscriptions, do the following:

• Ensure the topic(s) to be subscribed are included in a transaction log. See the User Guide for information on how
to specify the contents of a transaction log.

• Use bookmarkSubscribe() instead of subscribe() when creating a subscription(), and decide
how the application will manage subscription identifiers (SubIds).

• Use the BookmarkStore.discard() method in message handlers to indicate when a message has been fully
processed by the application.

The following example creates a bookmark subscription against a transaction-logged topic, and fully processes each
message as soon as it is delivered:

final HAClient client = HAClient.createFileBacked(
 "aClient",
 "/logs/aClient.publishLog",
 "/logs/aClient.subscribeLog");

High Availability

39

class MyMessageHandler implements MessageHandler
{
 public void invoke(Message message)
 {
 ...
 client.getBookmarkStore().discard(
 message.getSubIdRaw(),
 message.getBookmarkSeqNo());
 ...
 }
}

...

// Set the commandId to a previously saved GUID.
Guid cmdIdGuid = new Guid("0066e1dc-9cfd-4b02-934b-2376a52cb412");
String cmdIdData = Convert.ToBase64String(cmdIdGuid.ToByteArray(), 0, 16);

CommandId cmdId = new CommandId();
cmdId.set(System.Text.Encoding.UTF8.GetBytes(cmdIdData), 0, 24);

Command command = new Command("subscribe")
 .setTopic("myTopic")
 .setSubId(cmdId)
 .setBookMark(Client.Bookmarks.MOST_RECENT);

client.executeAsync(command, new MyMessageHandler());

Example 9.4. HAClient Subscription

In this example, the client is a file-backed client, meaning that arriving bookmarks will be stored in a file
(Client.subscribeLog). Storing these bookmarks in a file allows the application to restart the subscription
from the last message processed, in the event of either server or client failure.

For optimum performance, it is critical to discard every message once its processing is com-
plete. If a message is never discarded, it remains in the bookmark store. During re-sub-
scription, HAClient always restarts the bookmark subscription with the oldest undiscarded
message, and then filters out any more recent messages that have been discarded. If an old
message remains in the store, but is no longer important for the application’s functioning,
the client and the AMPS server will incur unnecessary network, disk, and CPU activity.

The subscriptionId parameter specifies an identifier to be used for this subscription. Passing null, or leaving
the field unset, causes HAClient to generate a subscription ID, like most other Client functions. However,
if you wish to resume a subscription from a previous point after the application has terminated and restarted, the
application must pass the same subscription ID as during its previous run. Passing a different subscription ID bypasses
any recovery mechanisms, creating an entirely new subscription. When you use an existing subscription ID, the
HAClient locates the last-used bookmark for that subscription in the local store, and attempts to re-subscribe from
that point.

• Client.Bookmarks.NOW specifies that the subscription should begin from the moment the server receives
the subscription request. This results in the same messages being delivered as if you had invoked subscribe()
instead, except that the messages will be accompanied by bookmarks. This is also the behavior that results if you
supply an invalid bookmark.

High Availability

40

• Client.Bookmarks.EPOCH specifies that the subscription should begin from the beginning of the AMPS
transaction log.

• Client.Bookmarks.MOST_RECENT specifies that the subscription should begin from the last-used message
in the associated BookmarkStore. Alternatively, if this subscription has not been seen before, to begin with
EPOCH. This is the most common value for this parameter, and is the value used in the preceding example. By
using MOST_RECENT, the application automatically resumes from wherever the subscription left off, taking into
account any messages that have already been processed and discarded.

When the HAClient re-subscribes after a disconnection and reconnection, it always uses MOST_RECENT, ensuring
that the continued subscription always begins from the last message used before the disconnect, so that no messages
are missed.

9.6. Conclusion
With only a few changes, most AMPS applications can take advantage of the HAClient and associated classes to
become more highly-available and resilient. Using the PublishStore, publishers can ensure that every message
published has actually been persisted by AMPS. Using BookmarkStore, subscribers can make sure that there
are no gaps or duplicates in the messages received. HAClient makes both kinds of applications more resilient
to network and server outages and temporary issues, and, by using the filebased HAClient, clients can recover
their state after an unexpected termination or crash. Though HAClient provides useful defaults for the Store,
BookmarkStore, SubscriptionManager, and ServerChooser, you can customize any or all of these to
the specific needs of your application and architecture.

41

Chapter 10. AMPS Programming:
Working With Commands

The AMPS clients provide named methods for core AMPS functionality. These named methods work by creating
messages and sending those messages to AMPS. All communication with AMPS occurs through messages.

You can use the Command object to customize the messages that the AMPS client sends. This can be useful for more
advanced scenarios, where you need precise control over AMPS, in cases where you need to use an earlier version of
the client to communicate with a more recent version of AMPS, or in cases where a named method is not available.

10.1. Understanding AMPS Messages
AMPS messages are represented in the client as AMPS.Message objects. The Message object is generic, and can
represent any type of AMPS message, including both outgoing and incoming messages. This section includes a brief
overview of elements common to AMPS command message. Full details of commands to AMPS are provided in
the AMPS Command Reference Guide.

All AMPS command messages contain the following elements:

• Command. The command tells AMPS how to interpret the message. Without a command, AMPS will reject the
message. Examples of commands include publish, subscribe, and sow.

• CommandId. The command id, together with the name of the client, uniquely identifies a command to AMPS.
The command ID can be used later on to refer to the command or the results of the command. For example, the
command id for a subscribe message becomes the identifier for the subscription. The AMPS client provides
a command id when the command requires one and no command id is set.

Most AMPS messages contain the following fields:

• Topic. The topic that the command applies to, or a regular expression that identifies a set of topics that the com-
mand applies to. For most commands, the topic is required. Commands such as logon, start_timer, and
stop_timer do not apply to a specific topic, and do not need this field.

• Ack Type. The ack type tells AMPS how to acknowledge the message to the client. Each command has a default
acknowledgement type that AMPS uses if no other type is provided.

• Options. The options are a comma-separated list of options that affect how AMPS processes and responds
to the message.

Beyond these fields, different commands include fields that are relevant to that particular command. For example,
SOW queries, subscriptions, and some forms of SOW deletes accept the Filter field, which specifies the filter to
apply to the subscription or query. As another example, publish commands accept the Expiration field, which sets
the SOW expiration for the message.

For full details on the options available for each command and the acknowledgement messages returned by AMPS,
see the AMPS Command Reference Guide.

10.2. Creating and Populating the Command
To create a command, you simply allocate a message object of the appropriate type:

AMPS Programming: Working With Commands

42

Command command = new Command("sow");

Once created, you set the appropriate fields on the message. For example, the following code creates a publish
message, setting the command, topic, data to publish, and an expiration for the message:

Command command = new Command("sow")
 .setTopic("messages-sow")
 .setFilter("/id > 20");

When sent to AMPS using the execute() method, AMPS performs a SOW query from the topic messages-sow
using a filter of /id > 20. The results of sending this message to AMPS are no different than using the form of
the sow method that sets these fields.

10.3. Using execute
Once you've created a message, use the execute method to send the message to AMPS. The execute method
returns a MessageStream that provides response messages. The executeAsync method sends the command to
AMPS, waits for a processed acknowledgement, then returns. Messages are processed on the client background
thread.

For example, the following snippet sends the message created above:

client.execute(message);

This returns a MessageStream identical to the MessageStream returned by the equivalent client.sow()
method.

You can also provide a message handler to receive acknowledgements, statistics, or the results of subscriptions and
SOW queries. The AMPS client maintains a background thread that receives and processes incoming messages. The
call to executeAsync returns on the main thread as soon as AMPS acknowledges the command as having been
processed, and messages are received and processed on the background thread.

To send a message and use an asynchronous message handler, pass the handler and the message to executeA-
sync(). For example, the following snippet uses a lambda expression to create a simple message handler, passing
that message handler and the message to executeAsync().

client.executeAsync(command, (m) => Console.WriteLine(m.getAckType() + " : "
 + m.getReason));

While this message handler simply prints the ack type and reason for sample purposes, message handlers in produc-
tion applications are typically designed with a specific purpose. For example, your message handler may fill a work
queue, or check for success and throw an exception if the command failed.

Notice that the publish command does not provide typically return results other than acknowledgement messages.
To send a publish command, use the executeAsync() method with a null message handler:

client.executeAsync(publishCmd, null);

10.4. Command Cookbook
This section is a quick guide to commonly used AMPS commands. For the full range of options on AMPS commands,
see the AMPS Command Reference.

AMPS Programming: Working With Commands

43

Publishing
This section presents common recipes for publishing to a topic in AMPS using the Command or Message interfaces.
This section provides information on how to configure the request to AMPS. You can adapt this information to your
application and the specific interface you are using.

The AMPS server does not return a stream of messages in response to a publish command.

AMPS publish commands do not return a stream of messages. A publish command must be used
with asynchronous message processing, while passing an empty message handler.

Basic Publish

In its simplest form, a subscription needs only the topic to publish to and the data to publish. The AMPS client
automatically constructs the necessary AMPS headers and formats the full publish command.

In many cases, a publisher only needs to use the basic publish command.

Table 10.1. Basic Publish

Header Comment

Topic Sets the topic to publish to. The topic specified must be
a literal topic name. Regular expression characters in the
topic name are not interpreted.

Some topics in AMPS, such as views and conflated top-
ics, cannot be published to directly. Instead, a publisher
must publish to the underlying topics.

Data The data to publish to the topic. The AMPS client does
not interpret, escape, or validate this data: the data is pro-
vided to the server verbatim.

Publish With CorrelationId

AMPS provides publishers with a header field that can be used to contain arbitrary data, the CorrelationId.

Table 10.2. Publish With CorrelationId

Header Comment

Topic Sets the topic to publish to. The topic specified must be
a literal topic name. Regular expression characters in the
topic name are not interpreted.

Some topics in AMPS, such as views and conflated top-
ics, cannot be published to directly. Instead, a publisher
must publish to the underlying topics.

Data The data to publish to the topic. The AMPS client does
not interpret, escape, or validate this data: the data is pro-
vided to the server verbatim.

AMPS Programming: Working With Commands

44

Header Comment

CorrelationId The CorrelationId to provide on the message. AM-
PS provides the CorrelationId to subscribers. The
CorrelationId has no significance for AMPS.

The CorrelationId may only contain characters that
are valid in base-64 encoding.

Publish With Explicit SOW Key

When publishing to a SOW topic that is configured to require an explicit SOW key, the publisher needs to set the
SowKey header on the message.

Table 10.3. Publish with Explicit SOW Key

Header Comment

Topic Sets the topic to publish to. The topic specified must be
a literal topic name. Regular expression characters in the
topic name are not interpreted.

Some topics in AMPS, such as views and conflated top-
ics, cannot be published to directly. Instead, a publisher
must publish to the underlying topics.

Data The data to publish to the topic. The AMPS client does
not interpret, escape, or validate this data: the data is pro-
vided to the server verbatim.

SowKey The SOW Key to use for this message. This header is
only supported for publishes to a topic that requires an
explicit SOW Key.

Command Cookbook: Subscribing
This section presents common recipes for subscribing to a topic in AMPS using the Command or Message inter-
faces. This section provides information on how to configure the request to AMPS. You can adapt this information
to your application and the specific interface you are using.

Basic Subscription

In its simplest form, a subscription needs only the topic to subscribe to.

Table 10.4. Basic Subscription

Header Comment

Topic Sets the topic to subscribe to. All messages from the topic
will be delivered on this subscription. The topic specified
can be the literal topic name, or a regular expression that
matches multiple topics.

AMPS Programming: Working With Commands

45

Basic Subscription With Options

In its simplest form, a subscription needs only the topic to subscribe to. To add options to the subscription, set the
Options header on the Command.

Table 10.5. Basic Subscription with Options

Header Comment

Topic Sets the topic to subscribe to. All messages from the topic
will be delivered on this subscription. The topic specified
can be the literal topic name, or a regular expression that
matches multiple topics.

Options A comma-delimited set of options for this command. See
the AMPS Command Reference for a description of sup-
ported options.

Content Filtered Subscription

To provide a content filter on a subscription, set the Filter property on the command. The AMPS User Guide
provides details on the filter syntax.

Table 10.6. Content Filtered Subscription

Header Comment

Topic Sets the topic to subscribe to. The topic provided can be
either the exact name of the topic, or a regular expression
that matches the names of the topics for the subscription.

Filter Sets the content filter to be applied to the subscription.
Only messages that match the content filter will be pro-
vided to the subscription.

Bookmark Subscription

To create a bookmark subscription, set the Bookmark property on the command. The value of this property can be
either a specific bookmark, a timestamp, or one of the client-provided constants. The AMPS User Guide provides
details on creating timestamps. Notice that the MOST_RECENT constant tells the AMPS client to find the appro-
priate message in the client bookmark store and begin the subscription at that point. In this case, the client sends
that bookmark value to AMPS. The Bookmark option is only supported for topics that are recorded in an AMPS
transaction log.

Table 10.7. Bookmark Subscription

Header Comment

Topic Sets the topic to subscribe to. The topic provided can be
either the exact name of the topic, or a regular expression
that matches the names of the topics for the subscription.

Bookmark Sets the point in the transaction log at which the subscrip-
tion will begin. The bookmark provided can be a specific

AMPS Programming: Working With Commands

46

Header Comment
AMPS bookmark, a timestamp, or one of the client-pro-
vided constants.

AMPS also accepts a comma-delimited list of book-
marks. In this case, AMPS begins the subscription from
whichever of the bookmarks is earliest in the transaction
log.

Rate Controlled Bookmark Subscription

To create a bookmark subscription, set the Bookmark property on the command. The value of this property can be
either a specific bookmark, a timestamp, or one of the client-provided constants. The AMPS User Guide provides
details on creating timestamps. Notice that the MOST_RECENT constant tells the AMPS client to find the appro-
priate message in the client bookmark store and begin the subscription at that point. In this case, the client sends
that bookmark value to AMPS. The Bookmark option is only supported for topics that are recorded in an AMPS
transaction log.

Table 10.8. Bookmark Subscription

Header Comment

Topic Sets the topic to subscribe to. The topic provided can be
either the exact name of the topic, or a regular expression
that matches the names of the topics for the subscription.

Bookmark Sets the point in the transaction log at which the subscrip-
tion will begin. The bookmark provided can be a specific
AMPS bookmark, a timestamp, or one of the client-pro-
vided constants.

AMPS also accepts a comma-delimited list of book-
marks. In this case, AMPS begins the subscription from
whichever of the bookmarks is earliest in the transaction
log.

Options A comma-separated list of options for the command. To
control the rate at which AMPS delivers messages, the
options for the command must include a rate specifier.
For example, to specify a limit of 750 messages per sec-
ond, include rate=750 in the options string.

Bookmark Subscription With Content Filter

To create a bookmark subscription, set the Bookmark property on the command. The property can be either a
specific bookmark, a timestamp, or one of the client-provided constants. The AMPS User Guide provides details on
creating timestamps. Notice that the MOST_RECENT constant tells the AMPS client to find the appropriate message
in the client bookmark store and begin the subscription at that point. In this case, the client sends that bookmark
value to AMPS.

To add a filter to a bookmark subscription, set the Filter property on the command. The AMPS User Guide
provides details on the filter syntax.

AMPS Programming: Working With Commands

47

Table 10.9. Bookmark Subscription With Content Filter

Header Comment

Topic Sets the topic to subscribe to. The topic provided can be
either the exact name of the topic, or a regular expression
that matches the names of the topics for the subscription.

Bookmark Sets the point in the transaction log at which the subscrip-
tion will begin. The bookmark provided can be a specific
AMPS bookmark, a timestamp, or one of the client-pro-
vided constants.

AMPS also accepts a comma-delimited list of book-
marks. In this case, AMPS begins the subscription from
whichever of the bookmarks is earliest in the transaction
log.

Filter Sets the content filter to be applied to the subscription.
Only messages that match the content filter will be pro-
vided to the subscription.

Pausing a Bookmark Subscription

To pause a bookmark subscription, you must provide the subscription ID and the pause option on a subscribe
command.

Table 10.10. Pause a Bookmark Subscription

Header Comment

Topic Sets the topic to subscribe to. The topic provided can be
either the exact name of the topic, or a regular expression
that matches the names of the topics for the subscription.

SubId A comma-delimited list of subscription IDs to pause.

Options A comma-delimited list of options for the command. To
pause a subscription, the options must include pause.

Resuming a Bookmark Subscription

To resume a bookmark subscription, you must provide the subscription ID and the resume option on a subscribe
command.

Table 10.11. Resume a Bookmark Subscription

Header Comment

Topic Sets the topic to subscribe to. The topic provided can be
either the exact name of the topic, or a regular expression
that matches the names of the topics for the subscription.

SubId A comma-delimited list of subscription IDs to resume.

Options A comma-delimited list of options for the command. To
resume a subscription, the options must include resume.

AMPS Programming: Working With Commands

48

Replacing the Filter on a Subscription

To replace the content filter on a subscription, provide the SubId of the subscription to be replaced, add the re-
place option, and set the Filter property on the command with the new filter. The AMPS User Guide provides
details on the filter syntax.

Table 10.12. Replacing the Filter on a Subscription

Header Comment

Topic Sets the topic to subscribe to. The topic provided can be
either the exact name of the topic, or a regular expression
that matches the names of the topics for the subscription.

SubId The identifier for the subscription to update. The SubId
is the CommandId for the original subscribe com-
mand.

Options A comma-separated list of options. To replace the filter
on a subscription, include replace in the list of options.

Filter Sets the content filter to be applied to the subscription.
Only messages that match the content filter will be pro-
vided to the subscription.

Subscribing to a Queue and Requesting a max_backlog

To subscribe to a queue and request a max_backlog greater than 1, use the Options field of the subscribe
command to set the requested max_backlog.

Table 10.13. Requesting a max_backlog

Header Comment

Topic Sets the topic to subscribe to. The topic provided can be
either the exact name of the topic, or a regular expression
that matches the names of the topics for the subscription.

Options A comma-separated list of options. To request a value for
the max_backlog, pass the value in the options as follows:

max_backlog=NN

For example, to request a max backlog of 7, your appli-
cation would pass the following option:

max_backlog=7

SOW Query
This section presents common recipes for querying a SOW topic in AMPS using the Command or Message inter-
faces. This section provides information on how to configure the request to AMPS. You can adapt this information
to your application and the specific interface you are using.

AMPS Programming: Working With Commands

49

Basic SOW Query

In its simplest form, a SOW query needs only the topic to query.

Table 10.14. Basic SOW Query

Header Comment

Topic Sets the topic to query. The SOW query returns all mes-
sages in the SOW. The topic specified can be the literal
topic name, or a regular expression that matches multiple
topics.

Basic SOW With Options

In its simplest form, a SOW needs only the topic to subscribe to. To add options to the subscription, set the Options
header on the Command.

Table 10.15. Basic SOW Query with Options

Header Comment

Topic Sets the topic to query. The SOW query returns all mes-
sages in the SOW. The topic specified can be the literal
topic name, or a regular expression that matches multiple
topics.

Options A comma-delimited set of options for this command. See
the AMPS Command Reference for a description of
supported options.

SOW Query With Ordered Results

In its simplest form, a SOW needs only the topic to subscribe to. To return the results in a specific order, provide
an ordering expression in the OrderBy header.

Table 10.16. Basic SOW Query with Ordered Results

Header Comment

Topic Sets the topic to query. The SOW query returns all mes-
sages in the SOW. The topic specified can be the literal
topic name, or a regular expression that matches multiple
topics.

OrderBy Orders the results returned as specified. Requires a com-
ma-separated list of identifiers of the form:

/field [ASC | DESC]

For example, to sort in descending order by orderDate
so that the most recent orders are first, and ascending or-
der by customerName for orders with the same date,
you might use a specifier such as:

/orderDate DESC, /customerName ASC

AMPS Programming: Working With Commands

50

Header Comment
If no sort order is specified for an identifer, AMPS de-
faults to ascending order.

SOW Query With TopN Results

In its simplest form, a SOW needs only the topic to subscribe to. To return only a specific number of records, provide
the number of records to return in the TopN header.

Table 10.17. SOW Query with TopN Results

Header Comment

Topic Sets the topic to query. The SOW query returns all mes-
sages in the SOW. The topic specified can be the literal
topic name, or a regular expression that matches multiple
topics.

TopN The maximum number of records to return. AMPS us-
es the OrderBy header to determine the order of the
records.

If no OrderBy header is provided, records are returned
in an indeterminate order. In most cases, using an Order-
By header when you use the TopN header will guarantee
that you get the records of interest.

OrderBy Orders the results returned as specified. Requires a com-
ma-separated list of identifiers of the form:

/field [ASC | DESC]

For example, to sort in descending order by orderDate
so that the most recent orders are first, and ascending or-
der by customerName for orders with the same date,
you might use a specifier such as:

/orderDate DESC, /customerName ASC

If no sort order is specified for an identifer, AMPS de-
faults to ascending order.

Content Filtered SOW Query

To provide a content filter on a SOW query, set the Filter property on the command. The AMPS User Guide
provides details on the filter syntax.

Table 10.18. Content Filtered SOW Query Subscription

Header Comment

Topic Sets the topic to query. The topic specified can be the
literal topic name, or a regular expression that matches
multiple topics.

AMPS Programming: Working With Commands

51

Header Comment

Filter Sets the content filter to be applied to the query. Only
messages that match the content filter will be returned in
response to the query.

Historical SOW Query

To create a historical SOW query, set the Bookmark property on the command. The property can be either a specific
bookmark or a timestamp. The AMPS User Guide provides details on creating timestamps.

This command is only supported on SOW topics that have History enabled.

Table 10.19. Historical SOW Query

Header Comment

Topic Sets the topic to query. The topic specified can be the
literal topic name, or a regular expression that matches
multiple topics.

Bookmark Sets the historical point in the SOW at which to query.
The query returns the saved state of the records in the
SOW as of the point in time specified in this header.

Historical SOW Query With Content Filter

To create a historical SOW query, set the Bookmark property on the command. The property can be either a specific
bookmark or a timestamp. The AMPS User Guide provides details on creating timestamps. To add a filter to the
query, set the Filter property on the command. The AMPS User Guide provides details on the filter syntax.

This command is only supported on SOW topics that have History enabled.

Table 10.20. Historical SOW Query With Content Filter

Header Comment

Topic Sets the topic to query. The topic specified can be the
literal topic name, or a regular expression that matches
multiple topics.

Bookmark Sets the historical point in the SOW at which to query.
The query returns the saved state of the records in the
SOW as of the point in time specified in this header.

Filter Sets the content filter to be applied to the query. Only
messages that match the content filter will be provided to
the query.

SOW Query for Specific Records

AMPS allows a consumer to query for specific records as identified by a set of SowKeys. For topics where AMPS
assigns the SowKey, the SowKey for the record is the AMPS-assigned identifier. For topics configured to require
a user-provided SowKey, the SowKey for the record is the original key provided when the record was published.
The AMPS User Guide provides more details on SOW keys.

AMPS Programming: Working With Commands

52

Table 10.21. SOW Query by SOW Key

Header Comment

Topic Sets the topic to query. The topic specified can be the
literal topic name, or a regular expression that matches
multiple topics.

SowKeys A comma-delimited list of SowKey values. AMPS re-
turns only the records specified in this list.

For example, a valid format for a list of keys would be:

1853097931817257202,10402779940201650075,22363879930342650852

SOW and Subscribe
This section presents common recipes for atomic sow and subscribe in AMPS using the Command or Message
interfaces. This section provides information on how to configure the request to AMPS. You can adapt this informa-
tion to your application and the specific interface you are using.

Basic SOW and Subscribe

In its simplest form, a SOW and Subscribe needs only the topic to subscribe to.

Table 10.22. Basic SOW and Subscribe

Header Comment

Topic Sets the topic to query and subscribe to. The topic speci-
fied can be the literal topic name, or a regular expression
that matches multiple topics.

SOW and Subscribe With Options

In its simplest form, a SOW and subscribe command needs only the topic to subscribe to. To add options to the
subscription, set the Options header on the Command.

Table 10.23. Basic SOW and Subscribe with Options

Header Comment

Topic Sets the topic to query and subscribe to. The topic speci-
fied can be the literal topic name, or a regular expression
that matches multiple topics.

Options A comma-delimited set of options for this command. See
the AMPS Command Reference for a full description
of supported options.

The most common options for this command are:

oof Request out of order notifi-
cations

timestamp Include timestamps on mes-
sages

AMPS Programming: Working With Commands

53

Content Filtered SOW and Subscribe

To provide a content filter on a SOW and Subscribe, set the Filter property on the command. The AMPS User
Guide provides details on the filter syntax.

Table 10.24. Content Filtered SOW and Subscribe

Header Comment

Topic Sets the topic to query and subscribe to. The topic speci-
fied can be the literal topic name, or a regular expression
that matches multiple topics.

Filter Sets the content filter to be applied to the query. Only
messages that match the content filter will be returned in
response to the query.

Historical SOW and Subscribe

To create a historical SOW query with a subscription, set the Bookmark property on the command. The property
can be either a specific bookmark or a timestamp. The AMPS User Guide provides details on creating timestamps.
This command is only supported on SOW topics that are recorded in an AMPS transaction log. If the Bookmark
provided is a value other than NOW (0|1|), the SOW topic must have History enabled.

Table 10.25. Historical SOW and Subscribe

Header Comment

Topic Sets the topic to query and subscribe to. The topic speci-
fied can be the literal topic name, or a regular expression
that matches multiple topics.

Bookmark Sets the historical point in the SOW at which to query.
The query returns the saved state of the records in the
SOW as of the point in time specified in this header.

Historical SOW and Subscribe With Content Filter

To create a historical SOW query with a subscription, set the Bookmark property on the command. The property
can be either a specific bookmark or a timestamp. The AMPS User Guide provides details on creating timestamps.
This command is only supported on SOW topics that are recorded in an AMPS transaction log. If the Bookmark
provided is a value other than NOW (0|1|), the SOW topic must have History enabled.

Table 10.26. Historical SOW and Subscribe With Content Filter

Header Comment

Topic Sets the topic to query. The topic specified can be the
literal topic name, or a regular expression that matches
multiple topics.

Bookmark Sets the historical point in the SOW at which to query.
The query returns the saved state of the records in the
SOW as of the point in time specified in this header.

AMPS Programming: Working With Commands

54

Header Comment

Filter Sets the content filter to be applied to the query. Only
messages that match the content filter will be provided to
the query.

Delta Publishing
This section presents common recipes for publishing to a topic in AMPS using the Command or Message interfaces.
This section provides information on how to configure the request to AMPS. You can adapt this information to your
application and the specific interface you are using.

Basic Delta Publish

In its simplest form, a subscription needs only the topic to publish to and the data to publish. The AMPS client
automatically constructs the necessary AMPS headers and formats the full delta_publish command.

In many cases, a publisher only needs to use the basic delta publish command.

Table 10.27. Basic Delta Publish

Header Comment

Topic Sets the topic to publish to. The topic specified must be
a literal topic name. Regular expression characters in the
topic name are not interpreted.

Some topics in AMPS, such as views and conflated top-
ics, cannot be published to directly. Instead, a publisher
must publish to the underlying topics.

Data The data to publish to the topic. The AMPS client does
not interpret, escape, or validate this data: the data is pro-
vided to the server verbatim.

Delta Publish With CorrelationId

AMPS provides publishers with a header field that can be used to contain arbitrary data, the CorrelationId. A
delta publish message can be used to update the CorrelationId as well as the data within the message.

Table 10.28. Delta Publish With CorrelationId

Header Comment

Topic Sets the topic to publish to. The topic specified must be
a literal topic name. Regular expression characters in the
topic name are not interpreted.

Some topics in AMPS, such as views and conflated top-
ics, cannot be published to directly. Instead, a publisher
must publish to the underlying topics.

Data The data to publish to the topic. The AMPS client does
not interpret, escape, or validate this data: the data is pro-
vided to the server verbatim.

AMPS Programming: Working With Commands

55

Header Comment

CorrelationId The CorrelationId to provide on the message. AM-
PS provides the CorrelationId to subscribers. The
CorrelationId has no significance for AMPS.

The CorrelationId may only contain characters that
are valid in base-64 encoding.

Delta Publish With Explicit SOW Key

When publishing to a SOW topic that is configured to require an explicit SOW key, the publisher needs to set the
SowKey header on the message.

Table 10.29. Delta Publish with Explicit SOW Key

Header Comment

Topic Sets the topic to publish to. The topic specified must be
a literal topic name. Regular expression characters in the
topic name are not interpreted.

Some topics in AMPS, such as views and conflated top-
ics, cannot be published to directly. Instead, a publisher
must publish to the underlying topics.

Data The data to publish to the topic. The AMPS client does
not interpret, escape, or validate this data: the data is pro-
vided to the server verbatim.

SowKey The SOW Key to use for this message. This header is
only supported for publishes to a topic that requires an
explicit SOW Key.

Delta Subscribing
This section presents common recipes for subscribing to a topic in AMPS using the Command or Message inter-
faces. This section provides information on how to configure the request to AMPS. You can adapt this information
to your application and the specific interface you are using.

Basic Delta Subscription

In its simplest form, a delta subscription needs only the topic to subscribe to.

Table 10.30. Basic Delta Subscription

Header Comment

Topic Sets the topic to subscribe to. All messages from the topic
will be delivered on this subscription. The topic specified
can be the literal topic name, or a regular expression that
matches multiple topics.

AMPS Programming: Working With Commands

56

Basic Delta Subscription With Options

In its simplest form, a subscription needs only the topic to subscribe to. To add options to the subscription, set the
Options header on the Command.

Table 10.31. Basic Delta Subscription

Header Comment

Topic Sets the topic to subscribe to. All messages from the topic
will be delivered on this subscription. The topic specified
can be the literal topic name, or a regular expression that
matches multiple topics.

Options A comma-delimited set of options for this command. See
the AMPS Command Reference for a description of
supported options.

Content Filtered Delta Subscription

To provide a content filter on a subscription, set the Filter property on the command. The AMPS User Guide
provides details on the filter syntax.

Table 10.32. Content Filtered Subscription

Header Comment

Topic Sets the topic to subscribe to. The topic provided can be
either the exact name of the topic, or a regular expression
that matches the names of the topics for the subscription.

Filter Sets the content filter to be applied to the subscription.
Only messages that match the content filter will be pro-
vided to the subscription.

Bookmark Delta Subscription

To create a bookmark subscription, set the Bookmark property on the command. The property can be either a
specific bookmark, a timestamp, or one of the client-provided constants. The AMPS User Guide provides details on
creating timestamps. Notice that the MOST_RECENT constant tells the AMPS client to find the appropriate message
in the client bookmark store and begin the subscription at that point. In this case, the client sends that bookmark
value to AMPS.

Table 10.33. Bookmark Subscription

Header Comment

Topic Sets the topic to subscribe to. The topic provided can be
either the exact name of the topic, or a regular expression
that matches the names of the topics for the subscription.

Bookmark Sets the point in the transaction log at which the subscrip-
tion will begin. The bookmark provided can be a specific

AMPS Programming: Working With Commands

57

Header Comment
AMPS bookmark, a timestamp, or one of the client-pro-
vided constants.

AMPS also accepts a comma-delimited list of book-
marks. In this case, AMPS begins the subscription from
whichever of the bookmarks is earliest in the transaction
log.

Bookmark Delta Subscription With Content Filter

To create a bookmark subscription, set the Bookmark property on the command. The property can be either a
specific bookmark, a timestamp, or one of the client-provided constants. The AMPS User Guide provides details on
creating timestamps. Notice that the MOST_RECENT constant tells the AMPS client to find the appropriate message
in the client bookmark store and begin the subscription at that point. In this case, the client sends that bookmark
value to AMPS.

To add a filter to a bookmark subscription, set the Filter property on the command. The AMPS User Guide
provides details on the filter syntax.

Table 10.34. Bookmark Delta Subscription With Content Filter

Header Comment

Topic Sets the topic to subscribe to. The topic provided can be
either the exact name of the topic, or a regular expression
that matches the names of the topics for the subscription.

Bookmark Sets the point in the transaction log at which the subscrip-
tion will begin. The bookmark provided can be a specific
AMPS bookmark, a timestamp, or one of the client-pro-
vided constants.

AMPS also accepts a comma-delimited list of book-
marks. In this case, AMPS begins the subscription from
whichever of the bookmarks is earliest in the transaction
log.

Filter Sets the content filter to be applied to the subscription.
Only messages that match the content filter will be pro-
vided to the subscription.

SOW and Delta Subscribe
This section presents common recipes for atomic sow and delta subscribe in AMPS using the Command or Mes-
sage interfaces. This section provides information on how to configure the request to AMPS. You can adapt this
information to your application and the specific interface you are using.

Basic SOW and Delta Subscribe

In its simplest form, a SOW and Delta Subscribe needs only the topic to subscribe to.

AMPS Programming: Working With Commands

58

Table 10.35. Basic SOW Query

Header Comment

Topic Sets the topic to query and subscribe to. The topic speci-
fied can be the literal topic name, or a regular expression
that matches multiple topics.

SOW and Delta Subscribe With Options

In its simplest form, a SOW and subscribe command needs only the topic to subscribe to. To add options to the
subscription, set the Options header on the Command.

Table 10.36. Basic SOW and Delta Subscribe with Options

Header Comment

Topic Sets the topic to query and subscribe to. The topic speci-
fied can be the literal topic name, or a regular expression
that matches multiple topics.

Options A comma-delimited set of options for this command. See
the AMPS Command Reference for a full description
of supported options.

The most common options for this command are:

oof Request out of order notifi-
cations

timestamp Include timestamps on mes-
sages

Content Filtered SOW and Delta Subscribe

To provide a content filter on a SOW and Delta Subscribe, set the Filter property on the command. The AMPS
User Guide provides details on the filter syntax.

Table 10.37. Content Filtered SOW and Delta Subscribe

Header Comment

Topic Sets the topic to query and subscribe to. The topic speci-
fied can be the literal topic name, or a regular expression
that matches multiple topics.

Filter Sets the content filter to be applied to the query. Only
messages that match the content filter will be returned in
response to the query.

Historical SOW and Subscribe

To create a historical SOW query with a subscription, set the Bookmark property on the command. The property
can be either a specific bookmark or a timestamp. The AMPS User Guide provides details on creating timestamps.

AMPS Programming: Working With Commands

59

This command is only supported on SOW topics that are recorded in an AMPS transaction log. If the Bookmark
provided is a value other than NOW (0|1|), the SOW topic must have History enabled.

Table 10.38. Historical SOW and Subscribe

Header Comment

Topic Sets the topic to query and subscribe to. The topic speci-
fied can be the literal topic name, or a regular expression
that matches multiple topics.

Bookmark Sets the historical point in the SOW at which to query.
The query returns the saved state of the records in the
SOW as of the point in time specified in this header.

Historical SOW and Delta Subscribe With Content Filter

To create a historical SOW query with a subscription, set the Bookmark property on the command. The property
can be either a specific bookmark or a timestamp. The AMPS User Guide provides details on creating timestamps.
This command is only supported on SOW topics that are recorded in an AMPS transaction log. If the Bookmark
provided is a value other than NOW (0|1|), the SOW topic must have History enabled.

Table 10.39. Historical SOW and Delta Subscribe With Content Filter

Header Comment

Topic Sets the topic to query. The topic specified can be the
literal topic name, or a regular expression that matches
multiple topics.

Bookmark Sets the historical point in the SOW at which to query.
The query returns the saved state of the records in the
SOW as of the point in time specified in this header.

Filter Sets the content filter to be applied to the query. Only
messages that match the content filter will be provided to
the query.

SOW Delete
This section presents common recipes for sending a sow_delete command using the Command or Message inter-
faces. This section provides information on how to configure the request to AMPS. You can adapt this information
to your application and the specific interface you are using.

Delete All Records in a SOW

To delete all records in a SOW, provide a filter that evaluates to TRUE for every record in the SOW. By convention,
60East recommends 1=1 for the filter.

Table 10.40. Delete All Records in a SOW

Header Comment

Topic Sets the topic from which to remove records.

AMPS Programming: Working With Commands

60

Header Comment

Filter A filter specifying the messages to remove. By conven-
tion, use 1=1 to remove all records in the SOW.

Delete SOW Records Matching a Filter

To delete the records that match a particular filter, provide the filter in the sow_delete command.

Table 10.41. Delete All Records in a SOW

Header Comment

Topic Sets the topic from which to remove records.

Filter A filter specifying the messages to remove.

Delete A Specific Message By Data

To delete a specific message, provide the data for the message to delete. With this form of SOW delete, AMPS
deletes the message that would have been updated if the data were provided as a publish message. Notice that this
form of sow_delete relies on the Key definition in the SOW configuration, and is not generally useful with
explicitly-keyed SOW topics.

Table 10.42. Delete All Records in a SOW

Header Comment

Topic Sets the topic from which to remove records.

Data The message to remove.

Deleting Specific Messages Using Keys

To delete specific messages using SOW keys, provide the SOW keys for the message to delete.

Table 10.43. Delete All Records in a SOW

Header Comment

Topic Sets the topic from which to remove records.

SOWKeys A comma-delimited list of SOWKeys that specify the
messages to remove.

Acknowledging Messages from a Queue

To acknowledge messages from an AMPS queue, provide the bookmarks for the messages to acknowledge. Notice
that this is the only form of the sow_delete command that can acknowledge messages from a queue, and that this
form of sow_delete is not accepted for topics that are not queue topics.

Table 10.44. Acknowledging a queue message

Header Comment

Topic Sets the topic that contains the messages to acknowledge.

AMPS Programming: Working With Commands

61

Header Comment

Bookmark A comma-delimited list of Bookmarks that specify the
messages to acknowledge.

62

Chapter 11. Advanced Topics

11.1. C# Client Compatibility
AMPS clients are available for many languages. Many AMPS customers write clients using a variety of languages,
often both Java and C#. While Java and C# are fundamentally different languages, they share enough syntax that it
can be straightforward to port code between the two, and especially from Java to C#.

To aid in conversion from Java to C# (and from C# to Java), the C# client has a number of features that make it a
little easier to bring code from Java to C#:

• getXXX()/setXXX() Java-style getters and setters are provided corresponding to properties on the Message
class. For example, given a variable message of type Message, the code:

string userName = message.UserName

and

string userName = message.getUserName()

are equivalent.

• C# Parameters that take lambda functions also take an interface type. The AMPS Java client defines interfaces
such as ClientMessageHandler that your application implements, with a single invoke() method that is
called when an event occurs. In C#, the AMPS client uses lambda functions and delegates to provide equivalent
functionality. However, the same *Handler interfaces exist in C#, and instead of passing a lambda function,
you may also implement these interfaces and pass in derived classes. While doing so would be inconvenient in
C#, providing this symmetry allows your Java and C# to be ported interchangeably.

• Java-style method name conventions are used throughout AMPS. In .NET, method names often begin with a
capitalized first letter (e.g. Connect() instead of connect()). However, the C# AMPS client retains the
capitalization style of the Java client where possible, making porting straightforward.

11.2. Strong Naming
Starting with the 5.0 release of the C# client, the included Release build of the C# client is strong-named.

The build files included with the client do not produce a strong-named assembly. To prevent misidentification of
assemblies, 60East does not ship the key used to strong-name the assembly, and has removed references to the key
from the build files included with the client. What this means is that, if you build your own version of the assembly,
you must provide your own strong name key and update the build process to reference that key.

For more information on strong naming assemblies, see the MSDN article at https://msdn.microsoft.com/en-us/
library/wd40t7ad(v=vs.110).aspx.

https://msdn.microsoft.com/en-us/library/wd40t7ad(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/wd40t7ad(v=vs.110).aspx

Advanced Topics

63

11.3. SSL Certificates and the C# Client
The AMPS C# client uses the standard .NET mechanisms for creating a SSL connection. This means that you manage
certificates stores and trust chains for the AMPS C# client as you would for any other .NET application.

For information on creating SSL certificates for testing, see the MSDN article at https://msdn.microsoft.com/en-us/
library/ms733813(v=vs.110).aspx.

11.4. Transport Filtering
The AMPS C# client offers the ability to filter incoming and outgoing messages in the format they are sent and
received on the network. This allows you to inspect or modify outgoing messages before they are sent to the network,
and incoming messages as they arrive from the network. To create a transport filter, you implement the interface
TransportFilter, construct an instance of the filter class, and install the filter with the setTransportFil-
ter method on the transport.

The AMPS C# client does not validate any changes made by the transport filter. This interface is most useful for
application debugging or transport development.

The client includes a sample filter, TransportTraceFilter, that simply writes incoming and outgoing buffers
to a TextWriter.

11.5. Working with Messages & Byte Buffers
The AMPS C# client allows you to publish messages that contain data from byte buffers. When working with byte
buffers in AMPS, it's best to follow these simple conventions.

AMPS provides overloaded publish() methods that allow you to publish messages from various formats. For
example, to publish a message with data from a byte buffer, you must first provide the data as a byte[], the position
of the data, and the length of the data. Also, the message topic, to which the message will be published, must also
be provided as a byte[] along with its position and length.

The example below shows how to serialize an object into a byte buffer, then publish the message to AMPS using
the publish() method.

...

// create the topic string, and decode it to a byte[]
var topic = "messages";
byte[] topicBytes = System.Text.Encoding.UTF8.GetBytes(topic.ToCharArray());

// create the payload and construct the composite
CompositeMessageBuilder builder = new CompositeMessageBuilder();
builder.append(data.getBytes(), 0, data.getBytes().Length);

// set the topic to messages, and create a field for the builder
// to extract the buffer
string topic = "messages";

https://msdn.microsoft.com/en-us/library/ms733813(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms733813(v=vs.110).aspx

Advanced Topics

64

// construct the payload object
Employee emp;

// create the BinaryFormatter used to serialize the object
BinaryFormatter bf = new BinaryFormatter();

using (var memStream = new MemoryStream())
{

 // serialize the object to a MemoryStream
 bf.Serialize(memStream, emp);

 // set the byte of the message to a field
 field.set(ms.GetBuffer(), 0, ms.GetBuffer().Length);
}

// publish to the "messages" topic using byte buffers
client.publish(topicBytes, 0, topicBytes.Length, myField.buffer,
 myField.position, myField.length);

...

AMPS also provides a way to access the raw bytes of a message when subscribing to those messages. The method
getDataRaw() returns a Field that is composed of a byte buffer, position of the data in the buffer, and length.
This data could then be deserialized and converted to an object for further use.

The example below shows how to access the raw bytes of a message, and then shows how to deserialize the bytes
of that message to a arbitrary C# Object.

...

// store the message raw data to a variable
var rawBytes = message.getDataRaw();

// create the container object for the data
Employee emp;

using (var memStream = new MemoryStream())
{
 // construct the BinaryFormatter that will parse
 // the MemoryStream data to an Object
 var formatter = new BinaryFormatter();

 // write, to the MemoryStream, the message raw data
 memStream.Write(rawBytes.buffer, rawBytes.position, rawBytes.length);
 memStream.Seek(0, SeekOrigin.Begin);

 // deserialize the MemoryStream back to the original object
 emp = bf.Deserialize(memStream);
}

...

65

Chapter 12. Utilities
The AMPS C# client includes a set of utilities and helper classes to make working with AMPS easier.

12.1. Composite Message Types
The client provides a pair of classes for creating and parsing composite message types.

• CompositeMessageBuilder allows you to assemble the parts of a composite message and then serialize
them in a format suitable for AMPS.

• CompositeMessageParser extracts the individual parts of a composite message type .

For more information regarding composite message types, refer to Chapter 4.3.

Building Composite Messages
To build a composite message, create an instance of CompositeMessageBuilder, and populate the parts. The
CompositeMessageBuilder copies the parts provided, in order, to the underlying message. The builder simply
writes to an internal buffer with the appropriate formatting, and does not allow you to update or change the individual
parts of a message once they've been added to the builder.

The snippet below shows how to build a composite message that includes a JSON part, constructed as a string, and
a binary part consisting of the bytes from a List.

StringBuilder sb = new StringBuilder();
sb.append("{\"data\":\"sample\"}");

List<Double> theData = new List<Double>();
// populate theData
...

// Create a byte array from the data: this is
// what the program will send.
byte[] outBytes = null;
using (MemoryStream stream = new MemoryStream())
{
 BinaryFormatter format = new BinaryFormatter();
 format.Serialize(stream,theData);
 outBytes = stream.ToArray();
}

// Create the payload for the composite message.
CompositeMessageBuilder builder;

// Construct the composite

Utilities

66

CompositeMessageBuilder builder = new CompositeMessageBuilder();
builder.append(sb.ToString());
builder.append(outBytes, 0, outBytes.Length);

// send the message

Field outMessage = new Field();
builder.setField(outMessage);

topic = "messages";

byte[] topicBytes = System.Text.Encoding.UTF8.GetBytes(topic.ToCharArray());

client.publish(topicBytes, 0, topicBytes.Length,
 outMessage.buffer, 0, outMessage.length);

Parsing Composite Messages
To parse a composite message, create an instance of CompositeMessageParser, then use the parse()
method to parse the message provided by the AMPS client. The CompositeMessageParser gives you access
to each part of the message as a sequence of bytes.

For example, the following snippet parses and prints messages that contain a JSON part and a binary part that contains
an array of doubles.

foreach(Message message in client.subscribe("messages"))
{
 int parts = parser.parse(message);
 string json = parser.getString(0);
 Field binary = new Field();
 parser.getField(1, binary);

 List<double> theData = new List<double>();
 using (MemoryStream stream = new MemoryStream())
 {
 BinaryFormatter format = new BinaryFormatter();
 stream.Write(binary.buffer, binary.position, binary.length);
 stream.Seek(0, SeekOrigin.Begin);
 theData = (List<double>)format.Deserialize(stream);
 }

 System.Console.WriteLine("Received message with " + parts + " parts");
 System.Console.WriteLine(json);
 foreach (double d in theData)
 {
 System.Console.Write(d + " ");
 }
 System.Console.WriteLine();
}

Notice that the receiving application is written with explicit knowledge of the structure and content of the composite
message type.

Utilities

67

12.2. NVFIX Messages
The client provides a pair of classes for creating and parsing NVFIX messages.

• NVFIXBuilder allows you to assemble a NVFIX message and then serialize it in a format suitable for AMPS.

• NVFIXShredder extracts the individual fields of a NVFIX message type.

Building NVFIX Messages
To build a NVFIX message, create an instance of NVFIXBuilder, then add the fields of the message using ap-
pend(). NVFIXBuilder copies the fields provided, in order, to the underlying message. The builder simply
writes to an internal buffer with the appropriate formatting, and does not allow you to update or change the individual
fields of a message once they've been added to the builder.

The snippet below shows how to build a NVFIX message and publish it to the AMPS client.

// create a builder with 1024 bytes of initial capacity
// using the default 0x01 delimiter
NVFIXBuilder builder = new NVFIXBuilder(1024, (byte)1);

// add fields to the builder
builder.append("test", "data");
builder.append("more", "test data");

// create a string for the topic
string topic = "messages";

// publish the message to the "messages" topic
client.publish(topic, builder.ToString());

Parsing NVFIX Messages
To parse a NVFIX message, create an instance of NVFIXShredder, then use the toNVMap() method to parse
the message provided by the AMPS client. The NVFIXShredder gives you access to the message data in a map.

The snippet below shows how to parse and print a NVFIX message.

try
{
 // create a shredder -- since this just returns
 // the Map, we can reuse the same shredder.
 NVFIXShredder shredder = new NVFIXShredder((byte)1);

 // iterate through each message and write data to console
 foreach (Message msg in ms)
 {
 System.Console.Write("Got a message");

 // shred the message to a dictionary

Utilities

68

 Dictionary<string, string> fields = shredder.toMap(msg.getData());

 // iterate over the keys in the map and display the key and dataa
 foreach (KeyValuePair<string,string> key in fields)
 {
 System.Console.Write(" " + key + " " + key.Value);
 }
 }
}
finally // close the message stream to release the subscription
{ ms.close(); }

12.3. FIX Messages
The client provides a pair of classes for creating and parsing FIX messages.

• FIXBuilder allows you to assemble a FIX message and then serialize it in a format suitable for AMPS.

• FIXShredder extracts the individual fields of a FIX message.

Building FIX Messages
To build a FIX message, create an instance of FIXBuilder, then add the fields of the message using append().
FIXBuilder copies the fields provided, in order, to the underlying message. The builder simply writes to an
internal buffer with the appropriate formatting, and does not allow you to update or change the individual fields of
a message once they've been added to the builder.

The snippet below shows how to build a FIX message and publish it to the AMPS client.

// create a builder with 1024 bytes of initial capacity
// using the default 0x01 delimiter
FIXBuilder builder = new FIXBuilder(1024, (byte)1);

// add fields to the builder
builder.append(0, "data");
builder.append(1, "more data");

// create a string for the topic
string topic = "messages";

// publish the message to the "messages" topic
client.publish(topic, builder.ToString());

Parsing FIX Messages
To parse a FIX message, create an instance of FIXShredder, then use the toMap() method to parse the message
provided by the AMPS client. The FIXShredder gives you access to the message data in a map.

The snippet below shows how to parse and print a FIX message.

Utilities

69

try
{
 // create a shredder -- since this just returns
 // the Map, we can reuse the same shredder.
 FIXShredder shredder = new FIXShredder((byte)1);

 // iterate through each message and write data to console
 foreach (Message msg in ms)
 {
 System.Console.Write("Got a message");

 // shred the message to a map
 Dictionary<int, string> fields = shredder.toMap(msg.getData());

 // iterate over the keys in the map and display the key and dataa
 foreach (KeyValuePair<int, string> key in fields)
 {
 System.Console.Write(" " + key + " " + key.Value);
 }
 }
}
finally // close the message stream to release the subscription
{ ms.close(); }

70

Chapter 13. Performance Tips and Best
Practices

This chapter presents tips and techniques for writing high-performance applications with AMPS. This section
presents principles and approaches that describe how to use the features of AMPS and the AMPS client libraries to
achieve high performance and reliability.

Specific techniques (for example, the details on how to write a message handler) are described in other parts of
the AMPS documentation and referenced here. Other techniques require information specific to the application (for
example, determining the minimum set of information required in a message), and are best done as part of your
application design.

All of the recommendations in this section are general guidelines. There are few, if any, universal rules for perfor-
mance: at times, a design decision that is absolutely necessary to meet the requirements for an application might
reduce performance somewhat. For example, your application might involve sending large binary data that cannot
be incrementally updated. That application will use more bandwidth per message than an application that sends
100-byte messages with fields that can be incrementally updated. However, since the application depends on being
able to deliver the binary payloads, this difference in bandwidth consumption is a part of the requirements for the
application, not a design decision that can be optimized.

13.1. Measure Performance and Set Goals
The most important tools for creating high performance applications that use AMPS are clear goals and accurate
measurement. Without accurate measurement, it's impossible to know whether a particular change has improved
performance or not. Without clear goals, it's difficult to know whether a given result is sufficient, or whether you
need to continue improving performance.

60East recommends that your measurements include baseline metrics for the part of your message processing that
does not involve AMPS. As an example, imagine your task is to reduce the amount of time that elapses between
when an order is sent and when the processed response is received from 100ms in total to 85ms in total. To achieve
this reduction, you might first measure the processing that your application performs on the order. If that process-
ing consumes 65ms, the most effective optimization may be to improve the order processing. On the other hand,
if processing an order consumes 15ms, then optimizing message delivery or network utilization may be the most
effective way to meet your goals.

When measuring performance, simulate your production environment as closely as possible. For example, AMPS is
highly parallelized, so sending a pattern of subscriptions and publishes from a single test client that would normally
come from 20 clients will produce a very different performance profile. Likewise, AMPS can typically perform at
rates that fill the available bandwidth. Performance measured on a 1GbE connection may be very different than per-
formance measured over a 10GbE connection. Consider the characteristics of your data, and the number of messages
you expect to store and process. A 1GB data set consisting of 1 million records will perform differently than a 1GB
data set consisting of 10 million records, or a 1GB data set consisting of 100 records.

When collecting information about performance, 60East recommends enabling persistence for the Statistics Database
(stats.db), so you can easily collect historical data on both AMPS and the operating system. For example, a
dip in performance correlated with high CPU and memory usage at the same time each day may be correlated with
other activity on the system (such as cron jobs or close of business processing). In a situation like that, where the
performance reduction is based on factors external to the AMPS application, the overall system metrics captured in
stats.db can help you re-create the external state and understand the state of the system as a whole. AMPS collects

Performance Tips and Best Practices

71

the statistics in memory by default, and persisting that data into a database does not typically have a measurable
effect on performance itself, but makes measuring and tuning performance much easier.

For peformance testing, 60East recommends using dedicated hardware for AMPS to eliminate the effects of other
processes. If dedicated hardware is not available and other processes are consuming resources, 60East recommends
disabling AMPS NUMA tuning to ensure that AMPS threads do not unnecessarily compete with other processes
during performance tuning.

13.2. Simplify Message Format and Contents
AMPS supports a wide range of message types, and is capable of filtering and processing large and complex mes-
sages. For many applications, the simplicity of being able to use messages that contain the full information is the
most important consideration. For other applications, however, achieving the minimum possible latency and the
maximum possible network utilization is important enough to warrant choosing a simplified message format.

To simplify message contents, carefully consider the information that downstream processors require. If a down-
stream process will not use information in the message, there is no need to send the information. For example, con-
sider an application that provides orders from a UI. In such an application, the object that represents the order often
contains information relevant to the local state of the application that is not relevant to a downstream system. Rather
than simply serializing the full object, your application may perform better if you serialize only the fields that a
downstream system will take action on.

To simplify message format, choose the simplest format that can convey the information that your application needs.
The general principle is that the simpler the message format is, the more quickly AMPS and client libraries can parse
messages of that type. Likewise, the more complicated the structure of each message is, the more work is required to
parse the message. For the highest levels of performance, 60East recommends keeping the message structure simple
and preferring message formats such as NVFIX, BFlat, or JSON as compared with more complicated formats such
as XML or BSON.

13.3. Use Content Filtering Where Possible
AMPS content filtering helps your application perform better by ensuring that your application only receives the
messages that it needs. Wherever possible, we recommend using content filtering to precisely specify which messages
your application needs. In particular, if at any point your application is receiving a message, parsing the message,
and then determining whether to act on the message or not, 60East recommends using content filters to ensure that
your application only receives messages that it needs to act on.

13.4. Use Asychronous Message Processing
The synchronous message processing interface is straightforward, and presents a convenient interface for getting
started with AMPS.

However, the MessageStream used by the synchronous interface makes a full copy of each message and provides
it from the background reader thread to the thread that consumes the message. This memory overhead and synchro-
nization between the reader thread and consumer thread happens regardless of whether the application needs all
of the header fields in the message or even processes the message. The MessageStream also does not take into
account the speed at which your program is consuming messages, and will read messages into memory as fast as the
network and processor allow. If your application cannot consume messages at wire speed, this can lead to increasing
memory consumption as the application falls further behind the MessageStream.

Performance Tips and Best Practices

72

Most applications see improved performance by using a MessageHandler. With this approach, the Message-
Handler does minimal work. If more extensive processing is needed, the MessageHandler dispatches the work
to another thread: but it does this only when the work is necessary, and it only saves the part of the message needed
to accomplish the work.

13.5. Use Hash Indexes Where Possible
When querying a SOW, hash indexes on SOW topics are supported for exact matching on string data as described
in the AMPS User Guide. A hash index can perform many times faster than a parallel query. If the query pattern
for your application can take advantage of hash indexes, 60East recommends creating those hash indexes on your
SOW topics.

13.6. Use a Failed Write Handler and Exception
Listener

In many cases, particularly during the early stages of development, performance problems can point to defects in
the application. Even after the application is tuned, monitoring for failure is important to keep applications running
smoothly.

60East recommends always installing a failed write handler if your application is publishing messages. This will
help you to quickly identify cases where AMPS is rejecting publishes due to entitlement failures, message type
mismatches, or other similar problems.

60East recommends always installing an exception listener if your application is using asynchronous message pro-
cessing. This will help you to identify and correct any problems with your message handler.

13.7. Reduce Bandwidth Requirements
In many applications that use AMPS, network bandwidth is the single most important factor in overall performance.
Your application can use bandwidth most efficiently by reducing message size. For example, rather than serializing
an entire object, you might serialize only the fields that the remote process needs to act on, as mentioned above.
Likewise, rather than sending one message that contains a collected set of information that processors will need
to extract, consider sending a message in the units that processors will work with. This can reduce bandwidth to
processors substantially. For example, rather than sending a single message with all of the activity for a single
customer over a given period of time (such as a trading day), consider breaking out the record into the individual
transactions for the customer.

Tune Batch Size for SOW Queries
As described in Section 6.3, tuning the batch size for SOW queries can improve overall performance by improving
network utilization. In addition, because the AMPS header is only parsed once per batch, a larger batch size can
dramatically improve processing performance for smaller messages.

The AMPS clients default to a batch size of 10. This provides generally good performance for most transactional
messages (such as order records or inventory records). For large messages, particularly messages greater than a
megabyte in size, a batch size of 1 may reduce memory pressure in the client and improve performance.

Performance Tips and Best Practices

73

With smaller messages (for example, message sizes of a few hundred bytes), 60East recommends measuring perfor-
mance with larger batch sizes such as 50 or 100 . For large messages, reducing the batch size may improve overall
performance by requiring less memory consumption on the AMPS server.

Conflate Fast-Changing Information
If your data source publishes information faster than your clients need to consume it, consider using a conflated
topic. For example, in a system that presents a user interface and displays fast-moving data, it is common for the
data to change at a rate faster than the user interface can format and render the data. In this case, a conflated topic
can both reduce bandwidth and simplify processing in the user interface.

Minimize Bandwidth for Updates
If your application uses a SOW and processes frequent updates, consider using delta publish and delta subscribe to
reduce the size of the messages transmitted. These features are designed to minimize bandwidth while still providing
full-fidelity data streams.

Conflate Queue Acknowledgements
The AMPS clients include the ability to conflate acknowledgements back to AMPS as queue messages are processed.
Using these features, with an appropriate max_backlog, can reduce the amount of network traffic required for
acknowledgements.

Use a Transaction Log When Monitoring Publish Failures
When a topic is not covered by a transaction log, AMPS returns acknowledgment messages for every publish that re-
quests one. This ensures that each message is acknowledged, even when AMPS has no persistent record of the mes-
sages in the topic. However, acknowledging each message requires more network traffic for each publish message.

When a topic is covered by a transaction log, AMPS conflates persisted acknowledgments. Conflation is possible
in this case because AMPS has a full record of the messages and does not have to store additional state to conflate
the acknowledgements. With conflated acknowledgements, AMPS will send a success acknowledgement periodi-
cally that covers all messages up to that point. If a message fails, AMPS immediately sends the conflated success
acknowledgement for all previous messages and the failure acknowledgement for the failed message.

Combine Conflation and Deltas
In many cases, using an approach that combines delta publishes to a SOW with delta subscriptions to a conflated
topic can dramatically reduce bandwidth to the application with no loss of information.

13.8. Limit Unnecessary Copies
One of the most effective ways to increase performance is to limit the amount of data copied within your application.

Performance Tips and Best Practices

74

For example, if your message handler submits work to a set of processors that only use the Data and Bookmark
from a Message, create a data structure that holds only those fields and copy that information into instances of that
data structure rather than copying the entire Message. While this approach requires a few extra lines of code, the
performance benefits can be substantial.

When publishing messages to AMPS, avoid unnecessary copies of the data. For example, if you have the data in a
byte array, use the publish methods that use a byte array rather than converting the data to a string unnecessarily.
Likewise, if you have the data in the form of a string, avoid converting it to a byte array where possible.

13.9. Manage Publish Stores
When using a publish store, the Client holds messages until they are acknowledged as persisted by AMPS, as deter-
mined by the replication configuration for the AMPS instance.

In the event that an instance with sync replication goes offline, the publish store for the Client will grow, since the
messages are not being fully persisted. To avoid this problem, 60East recommends that an instance that uses sync
replication always configure Actions to automatically downgrade the replication link if the remote instance goes
offline for a period of time, and upgrade the link when the remote instance comes back online.

See the "High Availability and Replication" chapter in the User Guide for more information on replication, sync and
async acknowledgement modes, and the Actions used to manage replication.

13.10. Work with 60East as Necessary
60East offers performance advice adapted for your specific usage through your support agreement. Once you've set
your performance goals, worked through the general best practices and applied the practices that make sense for
your application, 60East can help with detailed performance tuning, including recommendations that are specific to
your use case and performance needs.

75

Appendix A. Exceptions
The following table details each of the exception types thrown by AMPS.

Table A.1. Exceptions supported in Client and HAClient

Exception When Notes

AlreadyConnectedException Connecting Thrown when connect() is called on a
Client that is already connected.

AMPSException Anytime Base class for all AMPS exceptions.

AuthenticationException Anytime Indicates an authentication failure occurred
on the server.

BadFilterException Subscribing This typically indicates a syntax error in a fil-
ter expression.

BadRegexTopicException Subscribing Indicates a malformed regular expression was
found in the topic name.

CommandException Anytime Base class for all exceptions relating to com-
mands sent to AMPS.

ConnectionException Anytime Base class for all exceptions relating to the
state of the AMPS connection.

ConnectionRefusedException Connecting The connection was actively refused by the
server. Validate that the server is running, that
network connectivity is available, and the set-
tings on the client match those on the server.

DisconnectedException Anytime No connection is available when AMPS need-
ed to send data to the server or the user's dis-
connect handler threw an exception.

InvalidTopicException SOW query A SOW query was attempted on a topic not
configured for SOW on the server.

InvalidTransportOptionsExcep-
tion

Connecting An invalid option or option value was speci-
fied in the URI.

InvalidURIException Connecting The URI string provided to connect() was
formatted improperly.

MessageTypeException Connecting The class for a given transport's message type
was not found in AMPS.

MessageTypeNotFoundException Connecting The message type specified in the URI was
not found in AMPS.

NameInUseException Connecting The client name (specified when instantiating
Client) is already in use on the server.

RetryOperationException Anytime An error occurred that caused processing of
the last command to be aborted. Try issuing
the command again.

StreamException Anytime Indicates that data corruption has occurred on
the connection between the client and server.
This usually indicates an internal error inside
of AMPS -- contact AMPS support.

Exceptions

76

Exception When Notes

SubscriptionAlreadyExistsEx-
ception

Subscribing A subscription has been requested using the
same CommandId as another subscription.
Create a unique CommandId for every sub-
scription.

TimedOutException Anytime A timeout occurred waiting for a response to
a command.

TransportTypeException Connecting Thrown when a transport type is selected in
the URI that is unknown to AMPS.

UnknownException Anytime Thrown when an internal error occurs. Con-
tact AMPS support immediately.

77

Index
A
AMPSException, 15
assemblies, 7

B
BadRegexTopicException, 16
base class for exceptions, 5

C
commands

sow_and_subscribe, 24
connection parameters, 6

tcp_keepalive, 7
tcp_linger, 7
tcp_nodelay, 7
tcp_rcvbuf, 7
tcp_sndbuf, 7

createFileBacked(), 33
create_memory_backed(), 33

D
DisconnectedException, 18
downloading client, 2

F
failover, 18

G
Global Assembly Cache, 7

I
IDisposable, 5
import statements, 4

M
Method

createMemoryBacked(), 33
create_file_backed(), 33

methods
logon(), 5

P
publish failures, 21

S
setDisconnectHandler() method, 17
SO_KEEPALIVE, 7
SO_LINGER, 7

T
tcp_keepalive, 7
tcp_linger, 7
tcp_nodelay, 6, 7
tcp_rcvbuf, 7
tcp_sndbuf, 7, 7

U
using statement, 5

	AMPS C# Development Guide
	Table of Contents
	Chapter 1. Introduction
	1.1. Prerequisites

	Chapter 2. Installing the AMPS Client
	2.1. Obtaining the Client
	2.2. Test Connectivity to AMPS

	Chapter 3. Your First AMPS Program
	3.1. About the Client Library
	3.2. Connecting to AMPS
	Build and Run
	Examining the Code

	3.3. Connection Strings
	Providing Credentials in a Connection String

	3.4. Connection Parameters
	Transport options

	3.5. Next Steps

	Chapter 4. Subscriptions
	4.1. Subscribing
	4.2. Asynchronous Message Processing Interface
	4.3. Unsubscribing
	4.4. Understanding Messages
	Header properties
	Data Property.

	4.5. Understanding Threading and Message Handlers
	4.6. Advanced Subscriptions
	Regex topics
	Content Filtering
	Updating the Filter on a Subscription

	4.7. Next Steps

	Chapter 5. Error Handling
	5.1. Exceptions
	Exception Types
	Exception Handling and Asynchronous Message Processing

	5.2. Disconnect Handling
	Using a Heartbeat to Detect Disconnection

	5.3. Unexpected Messages
	5.4. Unhandled Exceptions
	5.5. Detecting Write Failures

	Chapter 6. State of the World
	6.1. Performing SOW Queries
	6.2. SOW and Subscribe
	6.3. Setting Batch Size
	6.4. Client-Side Conflation
	6.5. Managing SOW Contents

	Chapter 7. Using Queues
	7.1. Backlog and Smart Pipelining
	Subscription Backlog
	Acknowledging Messages
	Acknowledgement Batching

	Chapter 8. Delta Publish and Subscribe
	8.1. Introduction
	8.2. Delta Subscribe
	8.3. Delta Publish

	Chapter 9. High Availability
	9.1. Choosing an HAClient Protection Method
	9.2. Connections and the ServerChooser
	9.3. Heartbeats and Failure Detection
	9.4. Considerations for Publishers
	9.5. Considerations for Subscribers
	9.6. Conclusion

	Chapter 10. AMPS Programming: Working With Commands
	10.1. Understanding AMPS Messages
	10.2. Creating and Populating the Command
	10.3. Using execute
	10.4. Command Cookbook
	Publishing
	Basic Publish
	Publish With CorrelationId
	Publish With Explicit SOW Key

	Command Cookbook: Subscribing
	Basic Subscription
	Basic Subscription With Options
	Content Filtered Subscription
	Bookmark Subscription
	Rate Controlled Bookmark Subscription
	Bookmark Subscription With Content Filter
	Pausing a Bookmark Subscription
	Resuming a Bookmark Subscription
	Replacing the Filter on a Subscription
	Subscribing to a Queue and Requesting a max_backlog

	SOW Query
	Basic SOW Query
	Basic SOW With Options
	SOW Query With Ordered Results
	SOW Query With TopN Results
	Content Filtered SOW Query
	Historical SOW Query
	Historical SOW Query With Content Filter
	SOW Query for Specific Records

	SOW and Subscribe
	Basic SOW and Subscribe
	SOW and Subscribe With Options
	Content Filtered SOW and Subscribe
	Historical SOW and Subscribe
	Historical SOW and Subscribe With Content Filter

	Delta Publishing
	Basic Delta Publish
	Delta Publish With CorrelationId
	Delta Publish With Explicit SOW Key

	Delta Subscribing
	Basic Delta Subscription
	Basic Delta Subscription With Options
	Content Filtered Delta Subscription
	Bookmark Delta Subscription
	Bookmark Delta Subscription With Content Filter

	SOW and Delta Subscribe
	Basic SOW and Delta Subscribe
	SOW and Delta Subscribe With Options
	Content Filtered SOW and Delta Subscribe
	Historical SOW and Subscribe
	Historical SOW and Delta Subscribe With Content Filter

	SOW Delete
	Delete All Records in a SOW
	Delete SOW Records Matching a Filter
	Delete A Specific Message By Data
	Deleting Specific Messages Using Keys
	Acknowledging Messages from a Queue

	Chapter 11. Advanced Topics
	11.1. C# Client Compatibility
	11.2. Strong Naming
	11.3. SSL Certificates and the C# Client
	11.4. Transport Filtering
	11.5. Working with Messages & Byte Buffers

	Chapter 12. Utilities
	12.1. Composite Message Types
	Building Composite Messages
	Parsing Composite Messages

	12.2. NVFIX Messages
	Building NVFIX Messages
	Parsing NVFIX Messages

	12.3. FIX Messages
	Building FIX Messages
	Parsing FIX Messages

	Chapter 13. Performance Tips and Best Practices
	13.1. Measure Performance and Set Goals
	13.2. Simplify Message Format and Contents
	13.3. Use Content Filtering Where Possible
	13.4. Use Asychronous Message Processing
	13.5. Use Hash Indexes Where Possible
	13.6. Use a Failed Write Handler and Exception Listener
	13.7. Reduce Bandwidth Requirements
	Tune Batch Size for SOW Queries
	Conflate Fast-Changing Information
	Minimize Bandwidth for Updates
	Conflate Queue Acknowledgements
	Use a Transaction Log When Monitoring Publish Failures
	Combine Conflation and Deltas

	13.8. Limit Unnecessary Copies
	13.9. Manage Publish Stores
	13.10. Work with 60East as Necessary

	Appendix A. Exceptions
	Index

