Advanced Message Processing
System (AMPS) User Guide

TECHNOLOGIES

@ EOEast

Advanced Message Processing System (AMPS) User Guide

5.2

Publication date Jun 26, 2017
Copyright © 2017

All rights reserved. 60East, AMPS, and Advanced Message Processing System are trademarks of 60East Technologies, Inc. All other trademarks
are the property of their respective owners.

Table of Contents

L. INtroduction and OVETVIEWcc.uiiuueiiieiii ettt ettt et e et e e et e e et ettt e etu e e et e etn e eanaeeenaeeaannans 1
1. Introduction to 60East Technologies AMPSciiiiiiiiiiieeii e et e e e e e e e e e e e e eaes 2
1.1, ProduCt OVEIVIEWc.uniiiiiii ettt ettt e et e et e et e et e e ea e eeaa e eeanns 2

1.2, SOftware REQUITEIMIENLSvuuienerieeeereeetneetneerneeeeeneenaerneesneesneenneennesnesnassnessnsrenernnsenns 3

1.3. Organization of this Manualcccceiiiiiiiiiir e e e e e e e 3

1.4. Document CONVEITIONScuueueuinininitiniiitet ettt ettt ettt ettt tnenetnenetneenetnenetaenaennes 4

1.5, Obtaining SUPPOTTeeuniiiiiieiieii et e ee e e et e et et et e et et eanseaneeaneenneansanaeanaesneennesnnannnns 5

R O) = = <1 PR 8
2.1, InStalling AIMPSoniiiiiii e et e e et et e et et e e e e e e aan et et eaaraaanas 8

2.2, Starting AMPS ..ottt ettt e e e eaaas 8

2.3. Admin View Of the AMPS SEIVETcceuiiiuiiieiiieiiie et e e et e et e e e e eaneeaneeaneeaeennarenannnns 9

2.4. Interacting with AMPS USIiNgG SParkccceuiiiiiiiiiiiiiieiie e e e 10

R A (= (] (o L PP P PP PP 10

I1. Understanding AMPSoouiiiiiiiiee et et et e et et ete et e et e et e et eaaeeneaneanseanaeansaenernesnarsnaennarenns 11
3. Publish and SUDSCIIDEccouniiiiiii et et 12
S T 0] (ol PP PRSP PP PP 12

3.2. Filtering Subscriptions BY CONENTccvuviuniierineriieeieeeieeierteeenarenerenereneenaeenaesnaesnaees 14

3.3. Conflated SUDSCIIPHIONS ...ivuuireiiieiieirete e e et e etee et e e et e et e et e et eee e e saneaneeanerananenns 15

3.4. Replacing SUDSCIIPLIONSuivuuiiiiiiiiii it e e e ie et e et et e et e e e e e e e e eaneeaneeaneenneeneanaeannns 17

3.5. Messages i AMPS ... e 18

3.6. MESSAZE OTUETING ...uuvvnirneiineiieiieereete et et et eaneeaneeaneeenesaneeeeanasrnasrnsrnnernnsrnaeannesneenns 19

4, AMPS EXPIBSSIONS ...ueueenineninineten ettt ettt et et ea et en e et et e et e ea et eneatneesanenetnanetnenennenenns 22
4. 1. EXPIreSSIONS OVEIVIEWcuiuininitin ettt ettt ettt et eteeen et en et tneaatnetetenetenesaenenaenenaens 22

4.2, EXPIeSSION SYMEAX .eueuirnenentnenetnenet et et et et et en et enetaeneaatneneteneteneatneeatnereeenetaeneann 22

G T o) 3T 8 o = 23 T=) P 37

5. REGUIAT EXPIESSIONS ...uevuirneiineiirie et eei et eeteetestne et eetneetneenseneansesnsennsaenesnnssnaesnassnesnnsennsenns 42
ST I 25 Y14 1 - 42

6. State of the WOTIA (SOW) ..ceniiiiiiii et e e et e et e e e e e e e e e e s e eaneeaneeaneaenanenas 45
6.1. How Does the State of the World WOTK?cc.iiiiiiiiiiiii e 45

(ST 1 1<) 1= U 47

6.3, SOW KBYS ...ttt ettt ettt et et e et et e et e et e e et e et e et e ea e eaa e eees 47

6.4, SOW INAEXINE ..eevuirniineiieii et e teete et et et et etne et aeaaeetneetnesensenesneeanseanseensrnaeenaesnnees 49

6.5. Removing SOW RECOTAScvuuiiiiiiiiieei e it e et e e e te et e et e et e e eenasaneeaneeaneeaneennesnannnns 50

6.6. SOW Message EXPITAtIONc.uniniininiiieieiet ittt et et e et et et e et eneneeneneenenaanen 50

6.7. SOW MaINENAIICE ...eutinnintiniiiiiiei ittt et eae ettt e ta s eneta e eneta et ensenernseneenenes 53

LT T 00 P11 =L o) 1 N 53

7. SOW QUETIES ..uineirinietitiiii et tiet ittt ettt ettt eaeteasesenssesensasesensnsesensasesenansesesensesesensesenensesens 60
7. 1. SOW QUETIES .euvinintirinititiietetiieet ettt etereteatesentesesesasesesesesensesesensesesensesesensesesensesenensns 60

7.2. HiStorical SOW QUETIESouivninieininiinie ettt et e et e e e e e e e e ae e ea e e eneanenanns 61

7.3. SOW QUEry-and-SubSCITDEc.uiiiniiiiiiiie e e e e e e e e e e e eaeeens 62

7.4. SOW Query Response BatChiNgoveueiiniiiiiiiiiieii e e e et e et e e e e e e e e aaneeaneenns 65

7.5. Configuring SOW QUETY RESUIt SELS ...c.uiiniiiiiiieiieieeieeie et e et e eeeeneereea e e eeeeannes 65

8. Out-0f-FOcus Messages (OOF)uiuuuiiuiiieiii it eiie e eteeteeteete et e et eeeeanaeaneetneeaneenneenaesnaernnees 67
R B B LY 1oL T PP PP PP PPPOTPINt 67

ST T <: 1111) L=t 69

9. State of the World Message ENriChmentoeuuiiiniiiniiiiiii e e e e e e e eenes 73
9.1. PreproCesSing IMESSAZEScuueueutuntntetneie i etetet ettt et et eae e et ten e enetaeneataeneeeneeneneenens 73

9.2. ENTIChING MESSAZES ..evuirniieniineiieetieet et et et etneetneetneeeeanerneeaneetnseanereesnasaneesneenneenns 74

9.3. SOW Update and Enrichment ProCESSINGuevuneeunienreinneiieeieeieeierineeneerneerneeneenneees 74

O B T L T (T = Y 76
10.1. Delta SUDSCIIDE ...c.uuiiiiiiiieeii et ettt e e e e eaans 76

il

Advanced Message Processing System (AMPS) User Guide

10.2. Delta PUDLISR ..couniiiiiie e 79

11, CONTIAtEd TOPICS - vvueerneinneiietin ettt et e e e et e e e e et e et e et e et eea e e et eanseaneetneanneannns 82
11.1. SOW/CONTIAtEATOPIC «.vvueeneineiieeit ittt ettt et e et e e e et e et e et e et e e e e eaneeenaaenas 82

12. Aggregating and Analyzing Data in AMPS ...t 84
12.1. Understanding VIBWSieuuiiuniiieiieeieii et ettt e et et e e e e et e et e et e et et e e eaneeaneenns 84

12.2. Defining Views and Aggregationsccuuuteiuureiiureiriieiiie et et eetieeerieeeeieeeneeenaeees 84

12.3. Constructing Fieldsoouuiiiiiiiiiiiie et 89

D O 1111] (=1 PPN 89

12.5. Aggregated SUDSCIIPHIONSivuiiniiiiiiie ettt et et e e e et e e e e e e eaneeaneeans 94

13. Transactional Messaging and Bookmark Subscriptionsc..ceeeuiiiiiiiiiiniiiiiiiiiiiciie e 98
13.1. Recording and Replaying Messages With Transaction Logsc...cccuevieiiiiiiniiiiniennnnennnn. 98

14, MESSAZE QQUELIES ...eeneunineninen ettt ettt ettt et ta e ta et ta s eaeta s eneta s enetasentaenetnsentnseneenseneennes 107
14.1. Getting Started with AMPS QUEUESuviuniiiiiiiiiieie ettt et e eaeeaneeans 108

14.2. Understanding AMPS QUEUINE ...c.uvevueirneiieiieiiieiineeietie et eete et e e e e eaieeeneeaneeeneenneenns 109

14.3. Replacing Queue SUDSCIIPHONSviuuiiiniiieiieie ettt et e et e e e e e e e e e eannas 115

14.4. SOW/Queue and SOW/LOCAIQUEUEccuivininiiiniieii et 115

15, MESSAZE TYPES .euenintine ittt et ettt ettt et ettt et ettt e e e e 120
15.1. Default MeSSage TYPEScuuteuneiuetieeieeie ettt et et e et e et eeteenetneeanseansanneeneanaeannaes 120

15.2. BFIAt IMIBSSAZES ...uevnteineiieii ettt et et et e te et e et e et e et een et e etas et e et e et eanaaneeanaeanaenns 121

15.3. COMPOSILE MESSAZES ...euenentnentneentie ettt ettt ettt ettt ene et eneenetneeneenaereenaeneennenns 122

15.4. ProtObUf MeSSAZE TYPES ..eeuniiniintiitiie et ettt et et et e e et e et e et e et e e eaneeaneeaneennnas 125

15.5. Loading Additional MesSage TYPESccuueeuiinieiniiineiieeieeteeieeie et e et etieeneeeneenneenneanns 128

16. Command AcCKNOWIEAZEIMENTviiuiiiiiiiiii ettt et e e e et e et e e e e e e e aaeeaneeeneeenas 130
17, TTANSPOILS ..eenerntenetnean et eu ettt ettt ettt et et et et et et et ea et ea et ean et eanesaeanennennenennesennernennernees 132
17.1. Client CONMECLIOMSevvueiruneetinetti ettt et ettt ett e ett e e et eetaetenaeeetaeetnaeranaeeenneeanaeees 132

17.2. Replication CONMECHIOMNSuveuuiiuetnreineeteeie et et et et eein e et eeneeneeaneeaneenneaneeneanaeannns 133

II1. Deployment, Monitoring, and AdminiStrationc.eeiereiireiriin et e e et e e e e e e eeneeanes 134
18. Running AMPS as @ LINUX SEIVICE ..cuuiuniiniiiiiiiiii ettt et e e e e e e v eaneans 135
18.1. Installing the SETVICEeiuuiiiiiiiie et e e e e e e e e e eaneeans 135

18.2. Configuring the SEIVICEceuiiiiiiiiie et e e e e e eans 135

18.3. Managing the SEIVICEccuuiiiuiiiniiieir ettt et e e et et e e e e e e e eaneeanees 136

18.4. Uninstalling the SEIVICEc.uiiiuiiiiiiiit ettt e e et e e e e e e e e eannas 137

18.5. UpGrading the SEIVICEiiuniiuiiiiiiieii ettt e e et e et e et e e e e e e e eaneeans 137

19, LOBBIME . eueniniinii ettt et ettt ettt ettt ettt ettt ea e e anas 139
R TR B o) 1 F 40 14 T) 1 PR NN 139

19.2. LLOZ MESSAZES .vueeneinttnein ettt ettt ettt et et et et et et et et e e et et et et et e e e e e anae 139

19.3. 108 LOVELS eueiniiieiiee ettt ettt ettt e a e aaeeas 140

19.4. LoggINg t0 @ Fle ..euniiniiiiii et 141

19.5. Logging to a Compressed Filec.oviuiiiiiiiiiiiii e 144

19.6. Logging to the CONSOLEc.uiiuiiieiiieie et e e e e e e e e e eans 144

19.7. LOGGING 10 SYSIOZ «ovniiiniiiiiitiie ettt et e aans 145

19.8. EITOT CAEBOTIOS ..uevuennitniiniiiieteene ettt ettt ettt ene et enetneeneeneenetn et tnsenetnseneenseneeneanns 146

19.9. Looking Up Errors with ampsSerreiuiiiiiiiiiiiiieiie e e 148

20. EVENE TOPICS . eueniniiiiiiiiti ettt et et et et et et et et et et e e e e e eae e e e e e e ens 149
20.1. CENE STALUS ..ueeerneeineitieiii ettt e ettt et ettt e et e e et e et e et e eena e eetaeetaaeeenaeennaeeenanan 149

20.2. SOW SEALISTICS +.tevutirninntiitii ettt et ettt ettt et et e e eaa e eaneeaaeenneenennennnens 150

20.3. Persisting Event TOPIC Dataccuviuiiuiiniiniiiiie et en e 151

20 UHIEES eeneeni ettt ettt et e et ettt et e et et e e e e et e enaan 153
22, MONitoring INEETTACEceuitniiie ittt et e et e e e e e e et e e e e e eaaeeans 154
A B @) Vi T= 11 2 Vi (o) o TR 154
22.2. Time Range SEIECHIOMNvvuuiiniiieiieiie ettt et et e et e e e et e e e e e e e e e et eeaeaneeanenns 155

22.3. Output FOIMAIE ..uvunenininitii ittt ettt e e et e et e et et et s et e eneenseneeneenens 155

23. Automating AMPS With ACHONSeeuniiiiiiiiie e et et e e e e eaneees 159
23.1. Setting when an AcCtion RUNScouiiiiiiiriiiii et e e e e ees 160

iv

Advanced Message Processing System (AMPS) User Guide

23.2. Defining the ACtion t0 TaKeceuuiiiniiiiiieireie et e e e e e e e eanees 168

23.3. Conditionally RUN ACHONSevuiiiiiieiieiie ettt e et e et et et e e e e e e e eaneeans 181

23.4. Action Configuration EXamPIleseeeuviiiiiiiiiiieiineie et e e e e e 182

24, Replication and High Availabilityccooiiiiiiiiiiii e 187
24.1. Overview of AMPS High Availabilityccceeiiiiiiiiiiiiiiii e, 187

24.2. High Availability SCENATIOSuviuuiiuneiieiieiie ettt et et e e e e e e e e eeans 188

24.3. AMPS REPLICALION ...euuiiiniiiiiiieie et et et e et e e et e et e et e et e et e ea e e eaneeaneannnas 192

24.4. High AVailabilitycoouuiiiiiiiiiii e 203

24.5. Replicated QUELIESc.uiiuneiineiieei ettt et e tie et e ea e et e et e e e e e et e ean e et e et eeneaneanaeanaenns 208

25. Operation and DeplOYITIENLccuuiiuiiiniieiie et e e e et e et e et e et e et eeaeaneeenaaannees 211
AT B O o Taa Ly o - 1011 1 = PN 211

25.2. Linux Operating System Configurationcce.eeueeueiuneireieeieeieeieeeneeeeeenaeenns 215

25.3. Upgrading an AMPS InsStallationceeeuviiiiiiiieiiei et e e eeaaas 216

25.4. BESt PTACHCES ..ccuuiiniiiiiiiii it ettt 218

26. SeCUNING A PSS .. et ettt 222
26.1. AUheNtICAION ..eeuuiiiiiiii ittt ettt e e et e e et e eae e eaa e eenaee 222

26.2. EDNHHEIMEIIE «..uiiiniiii ittt et e et e e e e e e an e eee 224

26.3. Providing an Identity for Outbound Connections (Authenticator)ccccecevuveeenneennnneen. 226

26.4. Protecting Data in Transit Using SSLc.iiuiiiiiiiiiiiie e 226

27. TroubleshOOtiNg AMPSouniiiii ittt et e e et e et e e e e et e e e e eaneeanaen 227
27.1. Planning for TroubleShOOtingcc..oviiiuiiiiiiiiiiiiii e 227

27.2. Finding Information in the Locouuiiiiiiiiiiiiie e e 227

27.3. Reading Replication L.Og MeSSAZESceuuveuiiniiineiineiineiieeteeie et eeie et et eteeeneeeneenneenns 228

27.4. Troubleshooting Disconnected CHENLSc..veuuiiuneiineinriiiieireieie e e eieeieeiereeenns 228

IV. Building Applications With AIMPS ... et e e e e e 231
28. SAMPLE TUSE CASES ..evuerrnerunetntinetinetuetuetn et et etaeetettetnetnetneeenerunttnetnsesnsesnseneenaeenaennnes 232
28.1. VieW SeIVET USE CASE ...ccuuiiuiiiiiiiiiiiii ittt ettt et e e e e eeans 232

VAN 5] 072k 1 16 ol PP 237
A. AMPS DiStribDUtioN LaYOUL ...cvuuiiniiniiieiieitei et e et e et e et e e e eeie e e s et e et eeneeneanaannas 238
) o)1 6 11 T o) PPN 238

B. Configuration File SHOTTCULSc.uiiuiiiiiiiiie et et et e e e e e e e e e ae e e e eaneeanas 240
B.1. AMPS Configuration File Special Charactersceiuuveinviiiiineiineieeieeieeieeineeineenns 240

B.2. Using Units in the Configurationc.oeiuiiiiiiiiiniie e e 242

B.3. Environment Variables in AMPS Configurationccceeeveiiiiiiiiiiineineiineieeieennnes 243

LT o PPN 245
C.1. Getting help With SParkc..oouniiiiii e 245

C.2. Spark COMMANGS ...evuiiuneiieiieei ettt et e e et e et e et et e et eaae et e et e et e et eanneeneeansanneeanens 246

C.3. Spark AUthentiCationeeuiiuniieneiie ittt e e e e e e e e e e et e eaeeaaeannas 253

D. AUXIHATY MOGUIESueinniiiiiieii ettt et et et e et e et e et et e et e e e e e e e e eanseaneanneenneennes 254
D.1. Legacy Messaging Compatibility FUNCHONSovvuiiuiiiiiiieiineineiieeieeie e eeieeeieeannes 254

D.2. Key Generation for Chained MeSSAZESccuuveuneiuerneeiieeineiieiieetieeineeineeineeneeeneeneannnns 255

D.3. Authentication and Entitlement using a Web Servicecccoooveiiviiiiiiiiiiniiniiineieeen, 259

D.4. Entitlement with the Simple Access Modulecoviuviiiiiiiiiniie e, 268

E. The AMPS StatistiCs Databaseceuuuieiriiiiiiiiiiiiii ettt eenee 271
E.1. Configuring AMPS t0 Persist StatiStiCSc.veuriinriinriineiieiineieeieeie e et e e eeeeeneeaneenns 271

E.2. Introduction to SQLALE3ouiriinitiiit it aas 271

E.3. Statistics Table DESIGI ...c.uiiuniiiiiiiiiiii ittt et et e e et e e e e e e e et e et e enneannees 273

E.4. Using the amps-SQlite3 SCIIPLuuieuiiniiitiieie ettt e e e et e e e eaeeaneeanens 273

E.5. SQLite Tips and TroubleShOOtingccuviuiiiiiiiiiiii e 274
Glossary of AMPS TeITINOIOZYuovuueiuiiiiiieiie ittt et et e e et e et e et e et e e e e eaneeeneanns 276
11T (o T TP PRSP PSP PPPTOPPPOPPRRPPRt 278

Part |. Introduction and Overview

Chapter 1. Introduction to 60East
Technologies AMPS

Thank you for choosing the Advanced Message Processing System (AMPS™) from 60East Technologies®. AM-
PS is a feature-rich message processing system that delivers previously unattainable low-latency and high-through-
put performance to users. AMPS provides both publish-and-subscribe messaging and high-performance message
queueing.

1.1. Product Overview

AMPS, the Advanced Message Processing System, is built around an incredibly fast messaging engine that sup-
ports both publish-subscribe messaging and queuing. AMPS combines the capabilities necessary for scalable high-
throughput, low-latency messaging in realtime deployments such as in financial services. AMPS goes beyond basic
messaging to include advanced features such as high availability, historical replay, aggregation and analytics, content
filtering and continuous query, last value caching, focus tracking, and more.

Furthermore, AMPS is designed and engineered specifically for next generation computing environments. The ar-
chitecture, design and implementation of AMPS allows the exploitation of parallelism inherent in emerging mul-
ti-socket, multi-core commodity systems and the low-latency, high-bandwidth of 10Gb Ethernet and faster networks.
AMPS is designed to detect and take advantage of the capabilities of the hardware of the system on which it runs.

AMPS does more than just route and deliver messages. AMPS was designed to lower the latency in real-world
messaging deployments by focusing on the entire lifetime of a message from the message's origin to the time at which
a subscriber takes action on the message. AMPS considers the full message lifetime, rather than just the "in flight"
time, and allows you to optimize your applications to conserve network bandwidth and subscriber CPU utilization
-- typically the first elements of a system to reach the saturation point in real messaging systems.

AMPS offers both topic and content based subscription semantics, which makes it different than most other messag-
ing platforms. Some of the highlights of AMPS include:

+ Topic and content based publish and subscribe
» Message queuing, including content-based filtering and configurable strategies for delivery fairness
* Client development kits for popular programming languages such as Java, C#, C++, C and Python

* Built in support for FIX, NVFIX, JSON, BSON, BFlat, Google Protocol Buffer and XML messages. AMPS also
supports uninterpreted binary messages, and allows you to create composite message types from existing message
types.

» State-of-the-World queries

* Historical State-of-the-World queries

+ Easy to use command interface

* Full Perl-compatible regular expression matching

« Content filters with SQL92 WHERE clause semantics

* Built-in latency statistics and client status monitoring

Introduction to 60East Technologies AMPS

1.

Advanced subscription management, including delta publish and subscriptions and out-of-focus notifications
Basic CEP capabilities for real-time computation and analysis

Aggregation within topics and joins between topics, including joins between different message types
Replication for high availability

Fully queryable transaction log

Message replay functionality

Fully-integrated authentication and entitlement system, including content-based entitlement for fine-grained con-
trol

Optional encryption (SSL) between client and server

Extensibility API for adding message types, user-defined functions, user-specified actions, authentication, and
entitlement functionality

2. Software Requirements

AMPS is supported on the following platforms:

1.

Linux 64-bit (2.6 kernel or later) on x86 compatible processors

While 2.6 is the minimum kernel version supported, AMPS will select the most efficient mechanisms
@ available to it and thus reaps greater benefit from more recent kernel and CPU versions.

3. Organization of this Manual

This manual is divided into the following parts:

Part I presents introductory material and a brief overview of AMPS

Part IT explains the features of AMPS, including information on the following features:
+ Publish and Subscribe

» AMPS Expressions, including how to create content filters

 Transactional Messaging and Bookmark Subscriptions

* Message Queues

* Message Types

« State of the World (SOW)

State of the World topics enable many of the other advanced features in AMPS, such as:

Introduction to 60East Technologies AMPS

+ Aggregating and Analyzing Data in AMPS
+ Conflated Topics

* Delta Messaging

* Out-of-Focus Messages (OOF)

This section also contains detailed chapters on specific topics, such as the AMPS filter language. Both applica-
tion developers and administrators should become familiar with this section.

 Part III discusses AMPS deployment and operations, including:
* Running AMPS as a Linux Service
* Logging
» Event Topics
* Monitoring Interface
* Automating AMPS With Actions
* Replication and High Availability
* Operation and Deployment
» Securing AMPS
* Troubleshooting AMPS

This section is most useful for those with a focus on AMPS operations, although the information presented here
is helpful for developers who want to design high-performance, high-availability applications that are easy to
deploy and maintain.

» Part IV presents information about using AMPS to build applications including:

+ Sample Use Cases

1.4. Document Conventions

This manual is an introduction to the 60East Technologies AMPS product. It assumes that you have a working
knowledge of Linux, and uses the following conventions.

Table 1.1. Documentation Conventions

Construct Usage

text standard document text

code inline code fragment

variable variables within commands or configuration
@ usage tip or extra information

Introduction to 60East Technologies AMPS

Construct Usage

2 usage warning

required required parameters in parameter tables

optional optional parameters in parameter tables

Additionally, here are the constructs used for displaying content filters, XML, code, command line, and script frag-
ments.

(exprl = 1) OR (expr2 = 2) OR (expr3 = 3) OR (expr4 = 4) OR (expr5 = 5) OR
(expr6 = 6) OR (expr7 = 7) OR (expr8 = 8)

Command lines will be formatted as in the following example:

find . -name *.java

1.5. Obtaining Support

For an outline of your specific support policies, please see your 60East Technologies License Agreement. Support
contracts can be purchased through your 60East Technologies account representative.

Support Steps

You can save time if you complete the following steps before you contact 60East Technologies Support:

1. Check the documentation. The problem may already be solved and documented in the User’s Guide or reference
guide for the product. 60East Technologies also provides answers to frequently asked support questions on the
support web site at http://support.crankuptheamps.com.

2. Isolate the problem.

If you require Support Services, please isolate the problem to the smallest test case possible. Capture erroneous
output into a text file along with the commands used to generate the errors.

3. Collect your information.
* Your product version number.
* Your operating system and its kernel version number.
+ The expected behavior, observed behavior and all input used to reproduce the problem.
* Submit your request.
* If you have a minidump file, be sure to include that in your email to crash@crankuptheamps.com.

The AMPS version number used when reporting your product version number follows a format listed below. The
version number is composed of the following:

http://support.crankuptheamps.com
mailto:crash@crankuptheamps.com

Introduction to 60East Technologies AMPS

MAJOR.MINOR.MAINTENANCE.HOTFIX.TIMESTAMP.TAG

AMPS Versioning and Certification

Each AMPS version number component has the following breakdown:

Table 1.2. Version Number Components

Component Description Minimum
Verification
MAJOR Increments when there are any backward-incompatible changes in func- Megacert

tionality, file formats, client network formats or configuration; or when
deprecated functionality is removed. May introduce major new function-
ality or include internal improvements that introduce major behavioral
changes.

MINOR Increments when functionality is added in a backwards-compatible way, Megacert
or when functionality is deprecated. May include internal improvements,
including internal improvements that introduce minor behavioral changes
or changes to network formats used only by the AMPS server (such as
replication).

MAINTENANCE Increments with standard bug fixing and maintenance. May introduce be- Kilocert
havioral changes to fix incorrect behavior, to enhance performance, or to
enable a feature to work as intended. May include internal enhancements
that do not introduce behavioral changes.

HOTFIX A release for a critical defect impacting a customer. A hotfix release is Cert
designed to be 100% compatible with the release it fixes (that is, a release
with same MAJOR.MINOR.MAINTENANCE version). May introduce
behavioral changes to fix incorrect behavior. May document previously
undocumented features or extend surface area to improve usability for
existing features.

TIMESTAMP Proprietary build timestamp. (does not af-
fect wverifica-
tion level)

TAG Identifier that corresponds to precise code used in the release. (does not af-
fect verifica-
tion level)

The certification levels are defined in the following table. Notice that, in all cases, 60East will certify at a higher
level if time permits or if a change involves a critical part of AMPS (such as replication or internal utility classes
that are widely used).

Table 1.3. Certification Level Definitions

Certification Level = Description Time to Certify

Megacert Performance and long-haul testing. less than 2 weeks

Full regression suite and stress-testing suite, including replication test-
ing and application scenario tests.

Introduction to 60East Technologies AMPS

Certification Level Description Time to Certify

Full unit testing suite, including new unit tests to verify correct behavior
of bugfixes in this release.

Kilocert Full regression suite and stress-testing suite, including replication test- less than 1 week
ing and application scenario tests.

Full unit testing suite, including new unit tests to verify correct behavior
of bugfixes in this release.

Cert Full unit testing suite, including new unit tests to verify correct behavior 4 hours
of bugfixes in this release. Replication testing suite if release affects
replication code.

Contacting 60East Technologies Support

Please contact 60East Technologies Support Services according to the terms of your 60East Technologies License
Agreement.

Support is offered through the United States:

Toll-free: (888) 206-1365

International: (702) 979-1323

FAX: (888) 216-8502

Web: http://www.crankuptheamps.com
E-Mail: sales@crankuptheamps.com
Support: support@crankuptheamps.com

http://www.crankuptheamps.com
mailto:sales@crankuptheamps.com
mailto:support@crankuptheamps.com

Chapter 2. Getting Started

Chapter 2 is for users who are new to AMPS and want to get up and running on a simple instance of AMPS. This
chapter will walk new users through the file structure of an AMPS installation, configuring a simple AMPS instance
and running the demonstration tools provided as part of the distribution to show how a simple publisher can send
messages to AMPS.

2.1. Installing AMPS

To install AMPS, unpack the distribution for your platform where you want the binaries and libraries to be stored.
For the remainder of this guide, the installation directory will be referred to as SAMPSDIR as if an environment
variable with that name was set to the correct path.

Within $AMPSDIR the following sub-directories listed in Table 2.1.

Table 2.1. AMPS Distribution Directories

Directory Description

bin AMPS engine binaries and utilities

docs Documentation

lib Library dependencies

sdk Include files for the AMPS extension API

AMPS client libraries are available as a separate download from the AMPS web site. See the AMPS
@ developer page at http://www.crankuptheamps.com/developer to download the latest libraries.

2.2. Starting AMPS

The AMPS Engine binary is named ampServer and is found in SAMPSDIR/bn. Start the AMPS engine with
a single command line argument that includes a valid path to an AMPS configuration file. You use the configura-
tion file to enable and configure the AMPS features that your application will use. This guide discusses the most
commonly-used configuration options for each feature, and the full set of options is described in the AMPS Config-
uration Guide.

The AMPS server can generate a sample configuration file with the ——sample-conf1 g option. For example, you
can save the sample configuration file to SAMPSDIR/amps_config.xml with the following command line:

SAMPSDIR/bin/ampServer --sample-config > S$AMPSDIR/amps_config.xml

Once you have a configuration file saved to SAMPSDIR/amps_config.xml you can start AMPS with that file
as follows:

SAMPSDIR/bin/ampServer SAMPSDIR/amps_config.xml

The sample configuration file generated by AMPS includes a very minimal configuration. The client evaluation kits
include a sample configuration file that sets up AMPS to work with the samples, and the AMPS Configuration Guide
contains a full description of the configuration items with sample configuration snippets.

http://www.crankuptheamps.com/developer

Getting Started

specified in the configuration. While this is important for real deployments, the demo configuration

@ AMPS uses the current working directory for storing files (logs and persistence) for any relative paths

used in this chapter does not persist anything, so you can safely start AMPS from any working directory

using this configuration.

pServer-compat binary avoids using hardware instructions that are not available on these systems.

@ On older processor architectures, ampServer will start the ampServer-compat binary. The am-

You can also set the AMPS_PLATFORM_COMPAT environment variable to force ampServer to start
the ampServer-compat binary. 60East recommends using this option only on systems that do not
support the hardware instructions used in the standard binary. The ampServer-compat binary will
not perform as well as ampServer, since it uses fewer hardware optimizations.

If your first start-up is successful, you should see AMPS display a simple message similar to the following to let

you know that your instance has started correctly.

AMPS 5.1.X.X.973814.ela57f7 - Copyright (c) 2006-2016 60East Technologies

Inc.
(Built: 2016-10-15T00:26:457)

For all support questions: support@crankuptheamps.com

If you see this, congratulations! You have successfully cranked up the AMPS!

Command Line Options

The AMPS server binary supports the following command line options:

Table 2.2. ampServer command line options

Option

Effect

--verify-config

Parse and verify the specified configuration file, then ex-
it.

--sample-config

Produce a minimal AMPS config.xml file to standard
output, then exit.

--version Print the AMPS version string, then exit.

-—help Print usage information for the commandline options ac-
cepted by the ampServer program, then exit.

--daemon Run AMPS as a daemon process.

-D<vari abl e>=<val ue>

Set the specified environment variable to the specified
value when running the AMPS process. AMPS accepts
any number of -D options.

2.3. Admin View of the AMPS Server

When the admin server is enabled in the configuration, you can get an indication as to whether AMPS is running
or not by connecting to its admin port with a browser at http: //<host>:<port>/amps where <host> is the
host the AMPS instance is running on and <port> is the administration port configured in the configuration file.

Getting Started

When successful, a hierarchy of information regarding the instance will be displayed. If you've started AMPS using
the sample configuration file, try connecting to http://localhost:8085/amps. For more information on the
monitoring capabilities, please see the AMPSMonitoring Reference Guide, available from the 60East documentation
siteat http://docs.crankuptheamps.com/.

2.4. Interacting with AMPS Using Spark

AMPS provides the spark utility as a command line interface to interacting with an AMPS server. spark pro-
vides many of the capabilities of the AMPS client libraries through this interface. The utility lets you execute com-
mands like 'subscribe', 'publish', "sow', 'sow_and_subscribe' and 'sow_delete', described
elsewhere in this Guide.

spark is a Java application, and requires a JRE version 1.7 or later to run.

Applications that use AMPS wuse one of the «client libraries, available from http://
www . crankuptheamps.com/develop. The spark utility supports a subset of AMPS functionality, and is
most often used for troubleshooting, ad hoc testing, or light scripting.

For example, to simply test connectivity to an AMPS server, spark provides a ping command. This command
simply makes a connection to the server using the specified parameters, and reports whether that connection suc-
ceeded or failed. You can run the command as follows, where the server parameter is the address and port of the
AMPS server, and the type parameter is the message type to use for this connection:

$./spark ping -server localhost:9007 -type json
Successfully connected to tcp://user@localhost:9007/amps/json

If spark encounters an error while connecting to AMPS, spark reports that error on the command line.

You can read more about spark in the spark section of the AMPS User Guide appendix. Other useful tools for
troubleshooting AMPS are described in the AMPS Utilities Guide.

2.5. Next Steps

The next step is to configure your own instance of AMPS to meet your messaging needs. The AMPS configuration
is covered in more detail in AMPS Configuration Reference Guide

After you have successfully configured your own instance, there are two paths where you can go next.

One path is to continue using this guide and learn how to configure, administer and customize AMPS in depth so that
it may meet the needs of your deployment. If you are a system administrator who is responsible for the deployment,
availability and management of data to other users, then you may want to focus on this User Guide first.

The other path introduces the AMPS Client APIs. This path is targeted at software developers looking to integrate
AMPS into their own solutions. 60East provides client libraries for C, C++, C#, Java and Python. These libraries
are available for download from the 60East website. The website also includes evaluation kits designed to help
programmers quickly get started with AMPS. For developers, the basic functionality of the AMPS server is explained
in this User Guide. The Developer Guides and API documentation explain how to use that particular client library
to create applications that use AMPS functionality.

10

Part Il. Understanding AMPS

Chapter 3. Publish and Subscribe

AMPS is arich message delivery system. At the core of the system, the AMPS engine is highly-optimized for publish
and subscribe delivery. In this style of messaging, publishers send messages to a message broker (such as AMPS)
which then routes and delivers messages to the subscribers. "Pub/Sub" systems, as they are often called, are a key
part of most enterprise message buses, where publishers broadcast messages without necessarily knowing all of the
subscribers that will receive them. This decoupling of the publishers from the subscribers allows maximum flexibility
when adding new data sources or consumers.

SUBSCRIBER

Topic: LN_ORDERS

e

PUBLISHER
AMPS | SUBSCRIBER 2

Topic: LN_ORDERS ; LT i "
Ticker: IBM[Price:125 Filter: Ticker == "IBM

\ 4

SUBSCRIBER

Filter: Ticker == "MSFT"

Figure 3.1. Publish and Subscribe

AMPS can route messages from publishers to subscribers using a topic identifier and/or content within the message’s
payload. For example, in Chapter 3, there is a Publisher sending AMPS a message pertaining to the LN_ORDERS
topic. The message being sent contains information on Ticker “IBM” with a Price of 125, both of these properties are
contained within the message payload itself (i.e., the message content). AMPS routes the message to Subscriber 1
because it is subscribing to all messages on the LN_ORDERS topic. Similarly, AMPS routes the message to Subscriber
2 because it is subscribed to any messages having the Ticker equal to “IBM”. Subscriber 3 is looking for a different
Ticker value and is not sent the message.

3.1. Topics

A topic is a string that is used to declare a subject of interest for purposes of routing messages between publishers
and subscribers. Topic-based Publish and-Subscribe (e.g., Pub/Sub) is the simplest form of Pub/Sub filtering. All
messages are published with a topic designation to the AMPS engine, and subscribers will receive messages for
topics to which they have subscribed.

12

Publish and Subscribe

SUBSCRIBER 1

Topic: LN_ORDERS

PUBLISHER 1

Topic: LN_ORDERS

v

AMPS SUBSCRIBER 2

Topic: .*_ORDERS

\

PUBLISHER 2

Topic: NY_ORDERS

SUBSCRIBER 3

Topic: NY_ORDERS

Figure 3.2. Topic Based Pub/Sub

For example, in Figure 3.2, there are two publishers: Publisher 1 and Publisher 2 which publish to the topics
LN_ORDERS and NY_ORDERS, respectively. Messages published to AMPS are filtered and routed to the subscribers
of a respective topic. For example, Subscriber 1, which is subscribed to all messages for the LN_ORDERS topic
will receive everything published by Publisher 1. Subscriber 2, which is subscribed to the regular expression topic
".*%_ORDERS" will receive all orders published by Publisher 1 and 2.

Regular expression matching makes it easy to create topic paths in AMPS. Some messaging systems require a spe-
cific delimiter for paths. AMPS allows you the flexibility to use any delimiter. However, 60East recommends using
characters that do not have significance in regular expressions, such as forward slashes. For example, rather than
using northamerica.orders as a path, use northamerica/orders.

AMPS does not restrict the characters that can be present in a topic name. However, notice that topic names that
contain regular expression characters (such as . or *) will be interpreted as regular expressions by default, which
may cause unexpected behavior.

Topics that begin with /AMPS are reserved. The AMPS server publishes messages to topics that begin with /AMPS
as described in Chapter 20. Some versions of the AMPS client libraries may internally publish to /AMPS /devnull.
Your applications should not publish to topics that begin with /AMPS, and publishes to those topics may fail.

Regular Expressions

With AMPS, a subscriber can use a regular expression to simultaneously subscribe to multiple topics that match
the given pattern. This feature can be used to effectively subscribe to topics without knowing the topic names in
advance. Note that the messages themselves have no notion of a topic pattern. The topic for a given message is
unambiguously specified using a literal string. From the publisher’s point of view, it is publishing a message to a
topic; it is never publishing to a topic pattern.

13

Publish and Subscribe

Subscription topics are interpreted as regular expressions if they include special regular expression characters. Oth-
erwise, they must be an exact match. Some examples of regular expressions within topics are included in Table 3.1.

Table 3.1. Topic Regular Expression Examples

Topic Behavior

Mrades matches only “trade”.

Aclient.x matches “client”, “clients”, “client001”, etc.
.xtrade.x matches “NYSEtrades”, “ICEtrade”, etc.

For more information regarding the regular expression syntax supported within AMPS, please see the Regular Ex-
pression chapter in the AMPS User Guide.

AMPS can be configured to disallow regular expression topic matching for subscriptions. See the AMPS Configu-
ration Guide for details.

3.2. Filtering Subscriptions By Content

One thing that differentiates AMPS from classic messaging systems is its ability to route messages based on message
content. Instead of a publisher declaring metadata describing the message for downstream consumers, the publisher
can simply publish the message content to AMPS and let AMPS examine the native message content to determine
how best to deliver the message.

The ability to use content filters greatly reduces the problem of oversubscription that occurs when topics are the only
facility for subscribing to message content. The topic space can be kept simple and content filters used to deliver
only the desired messages. The topic space can reflect broad categories of messages and does not have to be polluted
with metadata that is usually found in the content of the message. In addition, many of the advanced features of
AMPS such as out-of-focus messaging, aggregation, views, and SOW topics rely on the ability to filter content.

Content-based messaging is somewhat analogous to database queries that include a WHERE clause. Topics can be
considered tables into which rows are inserted (or updated). A subscription is similar to issuing a SELECT from
the topic table with a WHERE clause to limit the rows which are returned. Topic-based messaging is analogous to a
SELECT on a table with no limiting WHERE clause.

AMPS uses a combination of XPath-based identifiers and SQL-92 operators for content filtering. Some examples
are shown below:

Example Filter for a JSON message

(/Order/Instrument/Symbol == 'IBM') AND
(/Order/Px >= 90.00 AND /Order/Px < 91.00)

Example Filter for an XML Message:

(/FIXML/Order/Instrmt/@Sym == 'IBM') AND (/FIXML/Order/@Px
>= 90.00 AND /FIXML/Order/@Px < 91.0)

14

Publish and Subscribe

Example Filter for a FIX Message:

/35 < 1@ AND /34 == /9

For more information about how content is handled within AMPS, check out the Content Filtering chapter in the
AMPS User Guide.

Unlike some other messaging systems, AMPS lets you use a relatively small set of topics to categorize
@ messages at a high level and use content filters to retrieve specific data published to those topics. Ex-

amples of good, broad topic choices:

trades, positions, MarketData, Europe, alerts

This approach makes it easier to administer AMPS, easier for publishers to decide which topics to
publish to, and easier for subscribers to be sure that they've subscribed to all relevant topics.

3.3. Conflated Subscriptions

AMPS provides the ability to for the server to conflate messages to a subscription. When a subscription requests con-
flation, the server will retain messages for that subscription for a certain period of time, the conflation interval, and
provide the latest update to that message once a message has been retained for that interval. Conflated subscriptions
provide a way to reduce the bandwidth and processing for a subscriber in cases where a subscriber needs periodic
updates with the current state of a message, rather than the complete message stream. AMPS provides per-subscrip-
tion conflation for cases where only a small number of subscribers require conflation, or if conflation is required
only in unusual cases. If multiple subscribers will have the same conflation needs, consider using Conflated Topics.

For example, imagine an application that monitors selected stocks and displays the current prices on a large screen,
which refreshes every few seconds. This application may use the same topics as a trading desk, but has very different
needs for data freshness and completeness. Since updates to each symbol will only be displayed every few seconds,
the application only needs point in time updates of the prices, rather than the full stream of price changes. To meet
this need, the application could specify that the subscription conflates price updates by ticker Id with a conflation
interval of two seconds. For each distinct value of the tickerId field, AMPS will retain messages for two seconds.
If another message with the same tickerId is processed for the subscription during the conflation interval, that
message completely replaces the previous message. At the end of the two second conflation interval, the message is
delivered to the application. This lets the application receive an up-to-date price at most every two seconds, without
having to process a large number of updates that will never be displayed. This approach also ensures that the price
is never more than two seconds out of date, which means that each time the screen is refreshed, the price is current.

For example, if subscription uses tickerId for conflation and the following sequence of messages arrive during
a conflation interval:

{ "tickerId" : "IBM", "price" : 150.34 }
{ "tickerId" : "IBM", "price" : 149.76 }
{ "tickerId" : "IBM", "price" : 149.32 }
{ "tickerId" : "IBM", "price" : 151.10 }

AMPS delivers only the last message for that tickerId:

15

Publish and Subscribe

{ "tickerId" : "IBM", "price" : 151.10 }

Notice that when a subscription is conflated, AMPS does not guarantee that messages are delivered precisely in order
in which they arrived at AMPS, since the latest update is delivered based on the conflation interval.

When the timestamp option is used with conflated subscriptions, AMPS provides the timestamp for the first
message conflated.

When to Use Conflated Subscriptions

Conflated subscriptions reduce the bandwidth for a subscription, and may reduce the processing resources required
for a subscription. However, rather than immediately delivering messages, AMPS retains messages in memory for
the conflation interval. This can increase the memory required for the subscription.

AMPS contains other features for conflating messages and reducing bandwidth. Conflated subscriptions are most
appropriate when:

* Network bandwidth is at a premium, and you would like AMPS to spend slightly more processing time and
potentially more memory to reduce the bandwidth needs of the application.

+ Each subscription has different conflation needs. For example, if each subscription has a dramatically different
conflation interval, or needs to conflate by different fields. If most subscribers will use a similar conflation interval
and use the same fields for conflation, using a Conflated Topic can provide equivalent results with lower overhead.

* The conflation needs are relatively predictable and consistent for the subscription. If you need the application
to conflate messages only when processing is slow or there are bursts of message traffic, client-side conflation
provides that ability and may be a better choice than a conflated subscription. See the developer guide for your
programming language of choice for details.

The considerations above are general guidance to help you consider options and choose a conflation strategy.

You can also combine approaches as necessary. For example, if most of your subscriptions require a 3 second con-
flation interval by tickerId, while a few subscriptions require a 15 second interval, you could create a Conflated
Topic with a 3 second interval. Those subscriptions that require a 15 second interval could subscribe with that inter-
val. This provides both sets of subscriptions with the intervals that they need.

Requesting Conflation on a Subscription

To request conflation on a subscription, set the following options on the subscription:

Table 3.2. Conflated Subscription options

Option Description

conflation=n Specifies whether to conflate this subscription.The value provid-
ed can be a time interval, auto, or none

When present and set to a value other than none, enables confla-
tion for the subscription.

Can also be set to auto, which requests that AMPS attempt to
determine an appropriate conflation interval based on client con-
sumption.

16

Publish and Subscribe

Option Description

Recognizes the same time specifiers used in the AMPS configu-
ration file (for example, 100ms or 1s or 1m).

Defaults to none.

conflation_key=[keys] When conflation is enabled, specifies the fields to use to deter-
mine message uniqueness. The format of this option is a com-
ma-delimited list of XPath identifiers within brackets. For exam-
ple, to conflate based on the value of the /tickerId and /
customerId within a message the value of this option would
be [/tickerId, /customerId].

Defaults to the SOW key fields for SOW topics. No default for
non-SOW topics. This option is required for non-SOW topics.

For example, to request a 10 second conflation interval with messages conflated on the [/orderId] field, you
would use the following options string:

conflation=10s,conflation_key=[/orderId]

3.4. Replacing Subscriptions

AMPS provides the ability to perform atomic subscription replacement. This allows you to replace the filter, change
the topic, or update the options for a subscription.

The most common use for this capability is for an application to change the filter for a subscription. For example,
a GUI that is providing a view of a set of orders may need to add or remove an order from the set of orders being
displayed. By replacing the content filter with a filter that tracks the updated set of orders, the application can do this
without missing messages, getting duplicate messages, or having to manage more than one subscription.

Replacing a filter is an atomic operation. That is, the application is guaranteed not to miss messages that are in both
the original and replacement subscription, and is guaranteed to receive all messages for the new subscription as of
the point at which the replacement happens.

When replacing a sow_and_subscribe command (described later in the guide), AMPS runs the SOW command
again and provides any messages that were not previously in the result set to the application. See the section called
“Replacing Subscriptions with SOW and Subscribe” for details.

Replacing the Content Filter on a Subscription

AMPS allows you to replace the content filter on an existing subscription. When this happens, AMPS begins sending
messages on the subscription that match the new filter. When an application needs to bring more messages into
scope, this can be more efficient than creating another subscription.

For example, an application might start off with a filter such as the following
/region = 'WesternUS'
The application might then need to bring other regions into scope, for example:

/region IN ('WesternUS', 'Alaska', 'Hawaii')

17

Publish and Subscribe

Replacing the Topic on a Subscription

AMPS allows a subscription to replace the topic on a subscription. When the topic is replaced, AMPS re-evaluates the
subscription as it does when a filter is replaced. If the subscription is updated to include a topic that the user does not
have permission to subscribe to, the rep lace operation succeeds, but no messages will be delivered on that topic.

Replacing the Options on a Subscription

AMPS allows a subscription to replace some of the options on the subscription. In this case, the subscription is eval-
uated as though the topic or filter has been replaced. Any new messages generated after the point of the subscription
being replaced use the new options. However, AMPS does not replay or requery previous messages to apply the
options. For example, if a sow_and_subscribe command did not previously specify Out-of-Focus tracking and
adds this option, AMPS generates the appropriate Out-of-Focus messages from the replace point forward. AMPS
does not recreate Out-of-Focus messages that would have previously been generated by the subscription.

3.5. Messages in AMPS

Communication between applications and the AMPS server uses AMPS messages. AMPS Messages are received
or sent for every operation in AMPS. Each AMPS message has a specific type, and consists of a set of headers and
a payload. The headers are defined by AMPS and formatted according to the protocol specified for the connection.
Typically, applications use the standard amps protocol which uses a JSON document for headers. The payload, if
one is present, is the content of the message, and is in the format specified by the message type.

Messages received from AMPS have the same format as messages to AMPS. These messages also have a specific
type, with a header formatted according to the protocol and a payload of the specified message type. For example,
AMPS uses ack messages, short for acknowledgement, to report the status of commands. AMPS uses publish
messages to deliver messages on a subscription, and so on for other commands and other messages.

For example, when a client subscribes to a topic in AMPS, the client sends a subscribe message to AMPS that
contains the information about the requested subscription and, by default, a request for an acknowledgement that the
subscription has been processed. AMPS returns an ack message when the subscription is processed that indicates
whether the subscription succeeded or failed, and then begins providing pub11sh messages for new messages on
the subscription.

Messages to and from AMPS are described in more detail in the AMPS Command Reference, available on the 60East
website and included in the AMPS client SDKs.

Introduction to AMPS Headers

The AMPS Command Reference contains a full list of headers for each command. The table below lists some com-
monly-used headers.

Table 3.3. Basic AMPS Headers

Header Description

Topic The topic that the message applies to. For commands to
AMPS, this is the topic that AMPS will apply the com-

18

Publish and Subscribe

Header

Description

mand to. For messages from AMPS, this is the topic from
which the message originated.

Command

The command type of message. Each message has a spe-
cific command type. For example, messages that contain
data from a query over a SOW topic have a command
of sow, while messages that contain data from a publish
command have a command of publ1sh, and messages
that acknowledge a command to AMPS have a command
type of ack.

CommandId

An identifier used to correlate responses from AMPS
with an initial command. For example, ack messages re-
turned by AMPS contain the CommandId provided with
the command they acknowledge, and subscriptions can
be updated or removed using the CommandId provided
with the subscribe command.

SowKey

For messages received from a State of the World (or
SOW) topic, an identifier that AMPS assigns to the record
for this message. SOW topics are described in Chapter 6.
This header is included on messages from a SOW top-
ic by default. AMPS will omit this header when the sub-
scription or SOW query includes the no_sowkeys op-
tion.

CorrelationId

A user-specified identifier for the message. Publishers
can set this identifier on messages. AMPS does not parse,
change, or interpret this identifier in any way. This head-
er is limited to characters used in Base64 encoding.

Status

Set on ack messages to indicate the results of the com-
mand, such as Success or Failure.

Reason

Set on ack messages to indicate the reason for the Status
acknowledgement.

Timestamp

Optionally set on pub 11 sh messages and sow messages
to indicate the time at which AMPS processed the mes-
sage. To receive a timestamp, the SOW query or subscrip-
tion must include the timestamp option on the com-
mand that creates the subscription or runs the query. The
timestamp is returned in ISO-8601 format.

This section presents a few of the commonly-used headers. See the AMPS Command Reference for a full description

of AMPS messages.

AMPS does not provide the ability to add custom header fields. However, AMPS composite message types provide
an easy way to add an additional section to a message type that contains metadata for the message. Because composite
message type parts fully support AMPS content filtering, this approach provides more flexibility and allows for more
sophisticated metadata than simply adding a header field. See Section 15.3 for details.

3.6. Message Ordering

19

Publish and Subscribe

AMPS guarantees that, for each AMPS instance, all subscribers to a topic receive messages in the order in which
AMPS received the messages (with the exception of messages that have been returned to a message queue for rede-
livery). Before a given message is delivered to a subscriber, all previous messages for that topic are delivered to the
subscriber. AMPS does this by enforcing a total order across the instance for all messages received from publishers,
including messages received via replication. When AMPS is using a transaction log, that order is preserved in the
transaction log for the instance, and persists across instance restarts.

This guarantee also applies across topics for subscriptions that involve multiple topics, for all topics except views,
queues, and conflated topics. Views and queues guarantee that every message on the view or the queue appears in
the order in which the message was published. However, the computation involved in producing messages for views
and queues may introduce some amount of processing latency, and AMPS does not delay messages on other topics
while performing these computations. For a queue that provides at-least-once delivery, if a processor fails and
returns a message to the queue, that message will be redelivered (which means that the new processor may receive
the message out of order). Likewise, when AMPS is providing conflation (either through a conflated topic or the
conflation options on a subscription), AMPS does not provide ordering guarantees for conflated messages.

Applications often use this guarantee to publish checkpoint messages, indicating some external state of the system, to
a checkpoint topic. For example, you might publish messages marking the beginning of a business day to a checkpoint
topic, MARKERS, while the ORDERS topic records the orders during that day. Subscribers to the regular expression
A (ORDERS |MARKERS) $ are guaranteed to receive the message that marks the business day before any of the
messages published to the ORDERS topic for that day, since AMPS preserves the original order of the messages.

For messages constructed by AMPS, such as the output of a view, AMPS processes messages for each topic in
the order in which they arrive (unless conflation is requested), and delivers each calculated message to subscribers
as soon as the calculation is finished and a message is produced. This keeps the latency low for each individual
topic. However, this means that while AMPS guarantees the order in which messages are produced within each
view, messages produced for views that do simple operations will generally take less time to be produced than
messages for views that perform complex calculations or require more complicated serialization. This means that
AMPS guarantees ordering within view topics, but does not guarantee that messages for separate view topics arrive
in a particular order.

The figure below shows a possible ordering for messages received on an underlying topic and two views that use
the topic:

Underlying Simple Complex
Topic View View

M 1 - :
D
M .
cv

20

Publish and Subscribe

Notice that within each topic, AMPS enforces an absolute order. However, the Simple View produces the results of
Message 3 before the Complex View produces the results of Message 2.

Replicated Message Ordering

When providing messages received via replication (see Section 24.1), the principles on message ordering provided
above still apply. AMPS records messages into the local transaction log in the order in which messages are received
by the instance, and provides messages to subscribers in that order. AMPS uses the sequence of publishes assigned
by the original publisher and the order assigned by the upstream instance to ensure that all replicated messages are
received and recorded in order with no gaps or duplicates. AMPS does not enforce a global total ordering across
a replication topology. This peer-to-peer approach means that an AMPS instance can continue accepting messages
from publishers and providing messages to subscribers even when the remote side of a replication link is offline or
if replication is delayed due to network congestion. However, if two messages are published to different instances
at the same time by different publishers, the two instances may record a different overall message order for those
messages, even though message order from each publisher is preserved.

21

Chapter 4. AMPS Expressions

AMPS includes an expression language that combines elements of XPath and SQL-92's WHERE clause. This expres-
sion language is used whenever the AMPS server refers to the contents of a message, including:

+ Content filtering
* Constructing fields for message enrichment
+ Creating projected fields for views

AMPS uses a common syntax for each of these purposes, and provides a common set of operators and functions.
AMPS also provides special directives for message enrichment, and aggregation functions for projecting views.

For example, when an expression is used as a content filter, any message for which the expression returns true
matches the content filter. When an expression is used to construct a field for message enrichment or view projection,
the expression is evaluated and the result that the expression returns is used as the content of the field.

4.1. Expressions Overview

The quickest way to learn AMPS expressions is to think of each as a combination of an identifiers that tell AMPS
where to find data in a message, and operators that tell AMPS what to do with that data. Each AMPS expression
produces a value. The way AMPS uses that value depends on where the expression is used. For example, in a content
filter, AMPS uses the value of the expression to determine whether a message matches the filter. When constructing
a field, AMPS uses the value of the expression as the contents of the field.

Consider a simple example of an expression used as a filter. Imagine AMPS receives the following JSON message:
{"name":"Gyro", "job":"kitten"}

Using an AMPS expression, you can easily construct a content filter that matches the message:

/name = 'Gyro'

There are three parts to this expression. The first part, /name, is an identifier that tells AMPS to look for the contents
of the name field at the top level of the JSON document. The second part of the filter, =, is the equality operator,
which tells AMPS to compare the values on either side of the operator and return true if the values match. The final
part of the filter, ' Gyro', is a string literal for the equality operator to use in the comparison. When an expression
is used in a content filter, a message matches the filter when the expression returns true. The expression returns
true for the sample message, so the sample messages matches the filter.

The identifier syntax is a subset of XPath, as described in the section called “Identifiers”. The comparison syntax
is similar to SQL-92.

4.2. Expression Syntax

AMPS expressions are designed to work exactly as expected if you are familiar with XPath path specifiers and
SQL-92 predicates. This section describes in detail how AMPS evaluates the syntax, operators, and functions avail-
able in the AMPS expression language.

22

AMPS Expressions

AMPS expressions combine the following elements:

+ ldentifiers specify a field in a message. When evaluating an expression, AMPS replaces indentifiers with values
from the message or set of messages being evaluated.

* Literal values are explicit values in an AMPS expression, such as ' IBM' or 42
* Operatorsand functionssuch as =, <, >, x, and UNIX_TIMESTAMP ()

Every AMPS expression produces a value. The way that AMPS uses the value depends on the context in which
AMPS evaluates the expression. For example, if the expression is used for a filter, the message is considered to
match the filter when the expression returns true. When an expression is used to project a field, the result of the
expression is used as the value of the projected field.

Identifiers

AMPS identifiers use a subset of XPath to specify values in a message. AMPS identifiers specify the value of an
attribute or element in an XML message, and the value of a field in a JSON, FIX or NVFIX message. Because the
identifier syntax is only used to specify values, the subset of XPath used by AMPS does not include relative paths,
array manipulation, predicates, or functions.

For example, when messages are in this XML format:

<Order update="full">
<ClientID>12345</ClientID>
<Symbo1>IBM</Symbol>
<OrderQty>1000</0OrderQty>
</Order>

The following identifier specifies the Symbo 1 element of an Order message:
/Order/Symbo'l

The following identifier specifies the update attribute of an Order message:
/Order/@update

For FIX and NVIX, you specify fields using / and the tag name. AMPS interprets FIX and NVFIX messages as
though they were an XML fragment with no root element. For example, to specify the value of FIX tag 55 (symbol),
use the following identifier:

/55

Likewise, for JSON or other types that represent an object, you navigate through the object structure using the /
to indicate each level of nesting.

AMPS only supports field identifiers that are valid step names in XPath. For example, AMPS does not guarantee
that it can process or filter on a field named Fits&Starts.

AMPS checks the syntax of identifiers when parsing an expression. AMPS does not try to predict whether an iden-
tifier will match messages within a particular topic. It is not an error to submit an identifier that can never match due
to the limitations of the message type. For example, AMPS allows you to use an identifier like /OrderQty with
a FIX topic, even though FIX messages only use numeric tags, or an identifier like /DataPackage/RunDate
with a BFlat topic, even though BFlat does not support nested elements.

23

AMPS Expressions

The message type is responsible for constructing a set of identifiers from a message. In most cases, the mapping is
simple. However, see the documentation for the message type for details, or if the mapping is unclear. For example,
a composite-local message type adds the number of the part to the beginning of each XPath within the part
(so, a top-level field of /name in the first part of the message has an identifier of /0 /name).

AMPS Data Types

Each value in AMPS is assigned a data type when the message type module parses the value. AMPS operators
and functions attempt to convert values into compatible types, based on the type of operation. For example, the *
operator (multiplication) will attempt to convert all values to numeric values, while the CONCAT function (string
concatenation) will attempt to convert all values to strings.

Internally, AMPS uses the following data types. As mentioned above, the message type module is responsible for
assigning the type of a value from an incoming message as part of the parsing process. For some types, such as
JSON, XML, FIX and NVFIX, the parser infers the type of the value from the field. For other types, such as BFLAT,
Google Protocol Buffers, or BSON, the message itself contains information about the type of the field.

Table 4.1. AMPS data types

Type Description Untyped Message Examples
NULL Unknown, untyped value (SQL-92 seman- [no field provided]
tics)

NFVIX: a=<SOH>

JSON: {"a":null}

XML: <a/>
Boolean True or false JSON: {"e":true}
Integer 64-bit integer NVFIX: b=24

JSON: {"b":24}

XML: 24

Floating point 64-bit floating point number NVFIX: c=24.0

number
JSON: {"c":24.0}

XML: <c>24.0</c>

String Arbitrary sequence of bytes of a specific NVFIX: d=Grilled cheese sandwich<SOH>
length
JSON: {"d":"Grilled cheese sandwich"}

XML: <d>Grilled cheese sandwich</d>

Numeric Types and Literals in AMPS Expressions

Numeric values in AMPS are always typed as either integers or floating point values. All numeric types in AMPS
are signed. AMPS message types convert the original numeric types (or original representation for message types
that do not have typed values) into the internal AMPS type system for the purposes of expression evaluation.

24

AMPS Expressions

Within expressions, integer values are all numerals, with no decimal point, and can have a value in the same range
as a 64-bit integer. For example:

42
149
-273

Within expressions, all numerals with a decimal point are floating-point numbers. AMPS interprets these numerals
as double-precision floating point values. For example:

3.1415926535
98.6
-273.0

or, in scientific notation:

31.4e-1
6.022E23
2.998e8

AMPS automatically converts strings that contain numeric values to numbers when strings are used in a numeric
comparison.

Type Promotion for Numeric Types

AMPS uses the following rules for type promotion when evaluating numeric expressions:

1. If any of the values in the expression is NaN, the result is NaN.

2. Otherwise, if any of the values in the expression is floating point, the result is floating point.
3. Otherwise, all of the values in the expression are integers, and the result is an integer.

Notice that, for division in particular, the results returned are affected by the type of the values. For example, the
expression 1 / 5 evaluates to O since the result is interpreted as an integer. In comparison, the expression 1.0 /
5 evaluates to 0. 2 since the result is interpreted as a floating point value.

When a function or operator that expects a numeric type is provided with a string, AMPS will attempt to convert
string values to numeric types as necessary. When converting string values, AMPS recognizes same numeric formats
in message data as are supported in the AMPS expression language (see the section called “String Literals in AMPS
Expressions”, String Literals in AMPS Expressions. If the string is in an unrecognized format, AMPS converts the
string as NaN.

String Literals in AMPS Expressions

When creating expressions for AMPS, string literals are indicated with single or double quotes. For example:
/FIXML/Order/Instrmt/@Sym = 'IBM'

AMPS supports the following escape sequences within string literals:

Table 4.2. Escape Sequences

Escape Sequence Definition

\a Alert

25

AMPS Expressions

Escape Sequence Definition

\b Backspace

\t Horizontal tab

\n Newline

\f Form feed

\r Carriage return

\xHH Hexadecimal digit where H is (0..9,a..f,A..F)
\OOO Octal Digit (0..7)

Additionally, any character which follows a backslash will be treated as a literal character.

AMPS string operations have no restrictions on character set, and correctly handle embedded NULL characters
(\x00) and characters outside of the 7-bit ASCII range. AMPS string operations are not unicode-aware.

NULL, NaN and IS NULL

XPath expressions are considered to be NULL when they evaluate to an empty or nonexistent field reference. In
numeric expressions where the operands or results are not a valid number, the XPath expression evaluates to NaN
(not a number). The rules for applying the AND and OR operators against NUL L and NaN values are outlined in Table
6.2 and Table 6.3.

Table 4.3. Logical AND with NULL/NaN Values

Operand1 Operand2 Result
TRUE NULL NULL
FALSE NULL FALSE
NULL NULL NULL

Table 4.4. Logical OR with NULL/NaN Values

Operand1 Operand2 Result
TRUE NULL TRUE
FALSE NULL NULL
NULL NULL NULL

The NOT operator applied to a NULL value is also NULL, or “Unknown.” The only way to check for the existence
of a NULL value reliably is to use the IS NULL predicate. There also exists an IS NAN predicate for checking
that a value is NaN (not a number.)

To reliably check for existence of a NUL L value, you must use the IS NULL predicate such as the filter:

A /Order/Comment IS NULL

AMPS also provides a COALESCE () function that accepts a set of values and returns the first value that is not
NULL. For example, given the following filter expression:

COALESCE (/userCategory,
/employeeCategory,
/vendorCategory,

26

AMPS Expressions

'restricted') != 'restricted'

AMPS will return the first value that is not NULL, and compare that value to the constant string ' restricted’'.
Notice that, to make the intent of the filter clear, this example provides a constant value for AMPS to return from
the COALESCE if all of the field values are NULL.

Grouping and Order of Evaluation

AMPS expressions allow you to group parts of the expression using parentheses. Parts of an expression inside paren-
theses are evaluated together. 60East recommends using parentheses to group independent parts of an expression to
ensure that expression is evaluated in the expected order. For example, in this expression:

(/counter % 3) == 0
The clause /counter % 3 is evaluated first, and the result of that evaluation is compared to 0.
Within a group, elements are evaluated left to right in precedence order. For example, given the filter below:

(expressionl OR expression2 AND expression3) OR (expression4 AND
NOT expression5)

AMPS evalutes expression2, then expression3 (since AND has higher precedence than OR), and if they
evaluate to false, then expressionl will be evaluated.

AMPS does not guarantee that all parts of an expression will be evaluated if the result of an expression can be
determined after only evaluating part of the expression. For example, given the expression:

A_FUNCTION(/a) OR B_FUNCTION(/b)

AMPS only guarantees that B_FUNCTION (/b) will be evaluated if A_FUNCTION (/a) returns false.

Logical Operators

The logical operators are NOT, AND, and OR, in order of precedence. These operators have the usual Boolean logic
semantics.

/FIXML/Order/Instrmt/@Sym = 'IBM' OR /FIXML/Order/Instrmt/@Sym = 'MSFT'
As with other operators, you can use parentheses to group operators and affect the order of evaluation

(/orderType = 'rush' AND /customerType IN ('silver', 'gold'))
OR /customerType = 'platinum'

Arithmetic Operators

AMPS supports the arithmetic operators +, —, *, /, %, and MOD in expressions. The result of arithmetic operators
where one of the operands is NUL L is undefined and evaluates to NULL.

AMPS distinguishes between floating point and integral types. When an arithmetic operator uses two different types,
AMPS will convert the integral type to a floating point value as described in the section called “Numeric Types and
Literals in AMPS Expressions”, Numeric Types and Literals in AMPS Expressions.

27

AMPS Expressions

Examples of filter expressions using arithmetic operators:

/6 x /14 < 1000

/Order/@Qty * /Order/@Prc >= 1000000

AMPS numeric types are signed, and the AMPS arithmetic operators correctly handle negative numbers. The MOD
and % operators preserve the sign of the first argument to the operator. That is, -5 % 3 produces a result of -2,
while 5 9% -3 produces a result of 2.

operator. Some operators are used in the XPath expression as well as for mathematical operation (for
example, the ' /' operator in division). Therefore, it is important to separate mathematical operators
with white space, to prevent interpretation as an XPath expression.

2 When using mathematical operators in conjunction with filters, be careful about the placement of the

Comparison Operators

The comparison operators can be loosely grouped into equality comparisons and range comparisons. The basic
equality comparison operators, in precedence order, are ==, =, >, >=, <, <=, | = and <>.

If these binary operators are applied to two operands of different types, AMPS attempts to convert strings to numbers.
If conversion succeeds, AMPS uses the numeric values. If conversion fails because the string cannot be meaningfully
converted to a number, strings are always considered to be greater than numbers. The operators consider an empty
string to be NULL.

The following table shows some examples of how AMPS compares different types.

Table 4.5. Comparison Operator Examples

Expression Result

1 <2 TRUE

10 < '2! FALSE, '2' can be converted to a number

'2.000" <> '2.0' TRUE, no conversion to numbers since both are strings
2 = 2.0 TRUE, numeric comparison

10 < 'Crank It Up' TRUE, strings are greater than numbers

10 < ' FALSE, an empty string is considered to be NULL

0 > ' FALSE, an empty string is considered to be NULL
o= 1! FALSE, an empty string is considered to be NULL

"' IS NULL TRUE, an empty string is considered to be NULL

There are also set and range comparison operators. The BETWEEN operator can be used to check the range values.

The range used in the BETWEEN operator is inclusive of both operands, meaning the expression /A
@ BETWEEN O AND 100 isequivalentto /A >= 0 AND /A <= 100

For example:

/FIXML/Order/OrdQty/@Qty BETWEEN @ AND 10000

28

AMPS Expressions

/FIXML/Order/@Px NOT BETWEEN 90.0 AND 90.5

(/price * /qty) BETWEEN © AND 100000

The IN operator can be used to perform membership operations on sets of values. The IN operator returns true when
the value on the left of the IN appears in the set of values in the IN clause. For example:

/Trade/OwnerID NOT IN ('JIMB', 'BLH', 'CJB')
/21964 IN (/14x5, /6%/14, 1000, 2000)

/customer IN ('Bob', 'Phil', 'Brent')

The IN operator returns true for the set of records that would be returned by an equivalent set of = comparisons
joined by OR. The following two statements return the same set of records:

/pet IN ('puppy', 'kitten', 'goldfish')
(/pet = 'puppy') OR (/pet = 'kitten') OR (/pet = 'goldfish)

This equivalence means that NULL values in either the field being evaluated, or the set of values provided to the
IN clause, always return false.

This also means that, for string values, the IN operator performs exact, case-sensitive matching.

using a set of OR operators. That is, a filter written as / firstName IN ('Joe', 'Kathleen',
'"Frank', 'Cindy', '"Mortimer') will typically perform better than an equivalent filter written
as /firstName = 'Joe' OR /firstName = 'Kathleen' OR /firstName = 'Frank'
OR /firstName = 'Cindy' OR /firstName = 'Mortimer'.

@ When evaluating against a set of values, the IN operator typically provides better performance than

String Comparison Functions

AMPS includes several types of string comparison operators.

* Case-sensitive exact matches. The IN, =, BEGINS WITH, ENDS WITH, and INSTR operators do literal match-
ing on the contents of a string. These operators are case-sensitive.

* Case-insensitive exact matches. AMPS also provides two case-insensitive operators: INSTR_T, a case-insensi-
tive version of INSTR, and a case-insensitive equality operator, STREQUAL _T.

* Regular expression matches. AMPS also provides full regular expression matching using the LIKE operator,
described in the section called “Regular Expression Matching” and Chapter 5.

The = operator tests whether a field exactly matches the literal string provided.

/status = 'available'

JorderId = 'F327AC'

BEGINS WITH and ENDS WITH test whether a field begins or ends with the literal string provided. The operators
return TRUE or FALSE:

/Department BEGINS WITH ('Engineering')

29

AMPS Expressions

/path NOT BEGINS WITH ('/public/dropbox"')
/filename ENDS WITH ('txt")
/price NOT ENDS WITH ('99")

AMPS allows you to use set comparisons with BEGINS WITH and ENDS WITH. In this case, the filter matches if
the string in the field BEGINS WITH or ENDS WITH any of the strings in the set:

/Department BEGINS WITH ('Engineering', 'Research', 'Technical')
/filename ENDS WITH ('gif', 'png', 'jpg')

The INSTR operator allows you to check to see if one string occurs within another string. For this operator, you
provide two string values. If the second string occurs within the first string, INSTR returns the position at which
the second string starts, or 0 if the second string does not occur within the first string. Notice that the first character
of the string is 1 (not 0). For example, the expression below tests whether the string critical occurs within the
/eventlLevels field.

INSTR(/eventlLevels, "critical") != 0
AMPS also provides INSTR_T and STREQ_T functions for performing case-insensitive comparisons:
STREQ_TI (/couponCode, 'QED')

INSTR_I(/symbollList, 'MSFT') =0

Table 4.6. AMPS string comparison

Function or Operator Parameters Description
= The string to be compared Case-sensitive
The string to compare Returns true if the string to be com-
pared is identical to the string to com-
pare.

/state = 'Ohio'

BEGINS WITH The string to be compared Case-sensitive
A list of strings to compare Returns true if the string to be com-
pared begins with any of the strings in
the list.
/state

BEGINS WITH
('"North', 'South')

ENDS WITH The string to be compared Case-sensitive

A list of strings to compare Returns true if the string to be com-
pared ends with any of the strings in
the list.

/state
ENDS WITH

30

AMPS Expressions

The string to compare

Function or Operator Parameters Description
('Dakota’,
'"Carolina')
INSTR The string to be compared Case-sensitive

Returns the position at which the sec-
ond string starts, or 0 if the second
string does not occur within the first
string.

INSTR(/state, 'i') =0

INSTR_I The string to be compared

The string to compare

Case-insensitive

Returns the position at which the sec-
ond string starts, or O if the sec-
ond string does not occur within the
first string. This function is not uni-
code-aware.

INSTR_I(/state, 'i') !=
0]

STREQ_I The string to be compared

The string to compare

Case-insensitive

Returns true if, when both strings
are transformed to the same case, the
string to be compared is identical to
the string to compare. This function is
not unicode-aware.

STREQ_I(/state, 'oHIO")

Regular Expression Matching

AMPS also provides a regular expression comparison operator, L ITKE, to provide regular expression matching on
string values. A patternis used for the right side of the L TKE operator. A pattern must be provided as a literal, quoted
value. For more on regular expressions and the L TKE comparison operator, please see Chapter 5.

The string comparison operators described in the section called “String Comparison Functions” are usually more
efficient than equivalent L TKE expressions, particularly when used to compare multiple literal patterns, or when the
only purpose of the regular expression is to perform case-insensitive matching. Use L ITKE operations when it is not
practical to represent the filter condition with the string comparison operators.

Table 4.7. AMPS regular expression comparison

Function or Operator Parameters

Description

LIKE The string to be compared

against

Case-sensitive

The pattern to evaluate the string Returns true if the string to be com-

pared matches the pattern.

For example, the following filter uses
a PCRE backreference to return true

31

AMPS Expressions

Function or Operator Parameters Description

for any message where the /state
field contains two identical characters
in a row.

/state LIKE "(.)\1'

This operator is not unicode-aware.

Conditional Operators

AMPS contains support for a ternary conditional IF operator which allows for a Boolean condition to be evaluated
to true or false, and will return one of the two parameters. The general format of the TF statement is

IF (BOOLEAN CONDI TI ONAL, VALUE TRUE, VALUE FALSE)

In this example, the BOOLEAN_CONDITIONAL will be evaluated, and if the result is true, the VALUE _TRUE value
will be returned otherwise the VALUE _FALSE will be returned.

For example:

SUM(IF(((/FIXML/Order/OrdQty/@Qty > 500) AND
(/FIXML/Order/Instrmt/@Sym ='MSFT')), 1, 0))

The above example returns a count of the total number of orders that have been placed where the symbol is MSFT
and the order contains a quantity more than 500.

The IF can also be used to evaluate results to determine if results are NULL or NaN. This is useful for calculating
aggregates where some values may be NULL or NaN. The NULL and NaN values are discussed in more detail in
the section called “NULL, NaN and IS NULL”.

For example:

SUM(/FIXML/Order/Instrmt/@Qty * IF(
/FIXML/Order/Instmt/@Price IS NOT NULL, 1, 0))

Working With Arrays

AMPS supports filters that operate on arrays in messages. There are two simple principles behind how AMPS treats
arrays.

Binary operatorsthat yield true or false (for example, =, <, L TKE) are array aware, as is the TN operator. These
operators work on arrays as a whole, and evaluate every element in the array. Arithmetic operators, and other scalar
operators, are not array aware, and use the first element in the array. With these simple principles, you can predict
how AMPS will evaluate an expression that uses an array. For any operator, an empty array evaluates to NULL.

32

AMPS Expressions

Let's look at some examples. For the purposes of this section, we will consider the following JSON document:

{ "data" : [1, 2, 3, "zebra", 5],
"other" : [14, 34, 23, 5] }

While these arrays are presented using JSON format for simplicity, the sample principles apply to arrays in other

message formats.

Here are some examples of ways to use an array in an AMPS filter:

1. Determining if any element in an array meets a criteria. To determine this, you provide the identifier for the array,

and use a comparison operator.

Table 4.8. Array contains element

Filter Evaluates as
/data = 1 TRUE, /data contains 1
/data = 'zebra' TRUE, /data contains ' zebra'
/data != 'zebra' TRUE, /data contains an element that is not 'ze-
bra'

ata = s ata does not contain
/d 42 FALSE, /d d in 42
/data LIKE 'z' TRUE, a member of /data matches 'z
other > , amember of /other is >
/oth 30 TRUE ber of /otheris > 30
other > , o member of /other is >
/oth 50 FALSE ber of /other i 50

2. Determine whether a specific value is at a specific position. To determine this, use the subscript operator [] on
the XPath identifier to specify the position, and use the equality operator to check the value at that position.

Table 4.9. Element at specific position

Filter Evaluates as

/datal[0] = 1 TRUE, first element of /datais 1

/data[3] = "zebra" TRUE, fourth element of /datais 'zebra'
/datal[l] !'= 1 TRUE, second element of /data is not 1
/other[1] LIKE '4' TRUE, second element of /other matches '4'

3. Determine whether any value in one array is present in another array.

Table 4.10. Identical elements

Filter

Evaluates as

/data = /other

TRUE, a value in /data equals a value in /other

/data != /other

TRUE, a value in /data does not equal a value in /
other

4. Determine whether an array contains one of a set of values.

Table 4.11. Set of values in an array

Filter

Evaluates as

3 IN (/data)

TRUE, 3 is a member of /data

AMPS Expressions

Filter Evaluates as
/data IN (1, 2, 3) TRUE, a member of /dataisin (1, 2, 3)

/data IN ("zebra", "antelope", "1li- TRUE, amemberof /dataisin ("zebra", "an-
on" telope", "lion")

Concatenating Strings

AMPS provides a function, CONCAT that can be used for constructing strings. The CONCAT function takes any
number of parameters and returns a string constructed from those parameters. The function can accept both XPath
identifiers and literal values.

The CONCAT function can be used in any AMPS expression that uses a string. For example, you could CONCAT
in a filter as follows:

CONCAT (/firstName, " ", /lastName) = 'George Orwell'

CONCAT can be combined with other expressions, including conditional expressions. A mailingAddressName
field in a view could be constructed as follows:

<Field>CONCAT (/firstName, " ", /lastName,
IF(/suffix NOT NULL, CONCAT(", ", /suffix), ""))
AS /mailingAddressName</Field>

Managing String Case

AMPS provides the UPPER and LOWER functions to produce a string in a specific case. This can be useful when
constructing fields, or when an expression needs case-insensitive comparisons against a group of values using the
IN clause.

As described above in the section called “String Comparison Functions”, String Comparison Functions, AMPS pro-
vides INSTR_T and STREQ_T functions for performing case-insensitive comparisons. In some cases, particularly
when using strings with the IN clause, it is more efficient to simply convert the string to a known case.

The UPPER and LOWER functions are not unicode-aware; these functions will not produce the correct data when
used with multibyte characters. For example, you might compare an incoming field of unknown case to a set of
known values as follows:

UPPER(/ticker) IN ('MSFT', 'IBM', 'RHAT', 'DIS')

Table 4.12. AMPS string manipulation functions

Function Parameters Description

UPPER The string to transform Returns the input string, transformed
to upper case. This function is not uni-
code aware.

LOWER The string to transform Returns the input string, transformed
to lower case. This function is not uni-
code aware.

34

AMPS Expressions

Replacing Text in Strings

AMPS provides a pair of functions, REPLACE and REGEXP_REPLACE, that replace text within strings.

Table 4.13. AMPS string replacement functions

Function Parameters Description
REPLACE string to transform, string to match, Returns the input string, with all oc-
replacement text currences of the string to match re-
placed with the replacement text
REGEXP_REPLACE string to transform, pattern to match, Returns the input string, with all oc-
replacement text currences of the pattern to match re-

placed with the replacement text

Working With Substrings

AMPS provides a function, SUBSTR, that can be used for returning a subset of a string. There are two forms of
this function.

The first form takes the source string and the position at which to begin the substring. You can use a negative number
to count backward from the end of the string. AMPS starts at the position specified, and returns a string that starts at
the specified position and goes to the end of the string. If the provided position is before the beginning of the string,
AMPS starts at the beginning of the string. If the provided position is past the end of the string, AMPS returns a
zero-length string, which evaluates to NULL. If the provided position is before the beginning of the string, AMPS
returns the full string.

For example, the following expressions are all TRUE:

SUBSTR("fandango", 4) == "dango"
SUBSTR("fandango", 1) == "fandango"
SUBSTR (" fandango", -2) == "go"
SUBSTR (" fandango", -99) == "fandango"

SUBSTR (" fandango", 99) IS NULL

The second form of SUBSTR takes the source string, the position at which to begin the substring, and the length of
the substring. Notice that SUBSTR considers the first character in the string to be position 1 (rather than position 0),
as demonstrated below. AMPS will not return a string larger than the source string. As with the two-argument form,
if the starting position is before the beginning of the string, AMPS starts at the beginning of the string. If the starting
position is after the end of the source string, AMPS returns an empty string which evaluates to NULL.

For example, the following expressions are all TRUE:

SUBSTR("fandango", 1, 3) == "fan"
SUBSTR("fandango", -4, 2) == "an"
SUBSTR("fandango", -8, 8) == "fandango"

35

AMPS Expressions

SUBSTR("fandango", -23, 3) == "fan"

SUBSTR (" fandango", 99, 8) IS NULL

Timestamp Function

AMPS includes a function that returns the current Unix timestamp. Notice that AMPS also includes functions for
working with date and time in the Legacy Messaging Compatibility layer.

Table 4.14. AMPS Timestamp functions

Function Parameters Description
UNIX_TIMESTAMP none Returns the current timestamp as a
double.

Geospatial Functions

AMPS includes a function for calculating the distance from a signed latitude and longitude.

Table 4.15. AMPS Geospatial Functions

Function Parameters Description
GEO_DISTANCE first_latitude, Returns a double that contains the
first_longitude,second _latitude, distance between the point identified
second_longitude by first_latitude, first_longitude and
second_|atitude, second_longitude in
meters.

For example, given a home point and
a message containing /lat and /
long fields, you could use the fol-
lowing expression to calculate the
distance from home.

GEO_DISTANCE(
/lat,
/long,
40.786337,
-119.206508)

AMPS uses the haversine formula
when computing distances.

Numeric Functions

AMPS includes the following functions for working with numbers.

36

AMPS Expressions

Table 4.16. AMPS Numeric Functions

Function Parameters Description
ABS number Returns the absolute value of a num-
ber.

For example, the following filter will
be TRUE when the difference be-
tween /a and /b is greater than 5, re-
gardless of whether /a or /b is larg-
er.

ABS(/a - /b) > 5

ROUND number, [number of decimal places] Returns a number rounded to the
specified number of decimal places.

The number of decimal places is op-
tional. When not provided, the num-
ber defaults to 0.

The number of decimal places can be
positive or negative. When the num-
ber is positive, the number specifies
the number of digits to the right of the
decimal place to round at. When the
number is negative, the number spec-
ifies the number of digits to the left of
the decimal place to round at.

For example, you could use the fol-
lowing expression in a view to limit
the precision of the /price field of
the source topic to 2 decimal places.

ROUND(/price, 2) AS /
price

4.3. Constructing Fields

For views, aggregated subscriptions, and SOW topic enrichment, AMPS allows you to construct new fields based
on existing data.

When you construct a field, there are two components required:

A source expression that produces a value. This expression can include XPath identifiers that extract values from
a message, literal values, operators, and functions.

A destination identifier that specifies the identifier where the message type will serialize the value produced by
the source expression.

The source expressions and the destination identifier are separated by the AS keyword. The format for a field con-
struction expression is as follows:

37

AMPS Expressions

<source expressi on> AS <destination identifier>

For example, to create a field in a view that calculates the total value of an order by multiplying the /priice field
times the /quantity field, construct the field as shown below:

<Field>/price * /qty AS /total</Field>

This constructs a field using /price * /gty to as the source expression. Both /price and /gty are taken
from the incoming message. When the result of this expression is computed, the value will be produced with the
XPath identifier /total as the destination. That value will then be serialized to a message (with the exact format
and syntax determined by the message type).

Notice that the grammar for constructing fields does not specify precisely how the field is represented in the mes-
sage. AMPS constructs the value and provides the XPath identifier to the message type. The message type itself is
responsible for serializing the value into the correct representation and structure for that message type.

All of the AMPS operators and functions that are available for filters are available to use in source expressions,
including any user-defined functions loaded into the instance.

Depending on the context for field construction, there are additional capabilities available when constructing fields,
as described in the following sections.

Constructing Preprocessing Fields

Preprocessing field constructors operate on a single message and construct fields based on that message. The results
of the preprocessing field constructor are merged into the incoming message. Any field in the source message that
is not changed or removed during preprocessing is left unchanged, so it is not necessary to include all fields in the
message in the Preprocessing block.

Because preprocessing fields apply to a specific message, preprocessing fields cannot specify the topic or message
type in an XPath identifier. All identifiers in the source expression are evaluated as indentifiers in the message being
preprocessed. Preprocessing fields are evaluated during the preprocessing phase, so these fields cannot refer to the
previous state of a message.

Using HINT to Control Field Construction

Preprocessing can be used to remove fields from a message. By default, AMPS serializes any field that has an
empty string or NULL value after preprocessing. Preprocessing fields can include a directive that specifies that a
field that contains a NUL L value should be removed from the set of fields rather than serialized with a NULL value.
The directive HINT OPTIONAL applied to the XPath identifier specifies that if the result of the source expression
is NULL, AMPS does not provide the value for the message type to serialize. For example, the following field
constructor removes the /source field from the message if the value provided is not in a specific list of values:

<Field>IF(/source IN ('a','e','f"'"), /source, NULL)
AS /source HINT OPTIONAL</Field>

By default, AMPS considers the results of field construction (the processed message) to be distinct from the current
message. AMPS rewrites the current message after preprocessing is completed. This means that, by default, the
results of fields constructed during preprocessing are not available to other fields within preprocessing. The HINT
SET_CURRENT option immediately inserts or updates values in the current message, which makes the new value
available to all subsequent Field declarations.

38

AMPS Expressions

In the sample below, AMPS enriches the message by performing an expensive operation (implemented as a user-
defined function) on two input fields, and immediately updates the current message with the output of that operation.
AMPS then sets other fields in the processed message using the updated value in the current message.

<Field>EXPENSIVE_UDF_CALL(/dataSetl, /dataSet2)
AS /processedData HINT SET_CURRENT</Field>
<Field>IF(/processedData > 1000000,
YAY,
'B') AS /resultClass</Field>

Notice thatusing HINT SET_CURRENT requires AMPS to process F i e Ld declarations in order, which may prevent
future optimizations.

Hints can be combined as follows:

<Field>EXPENSIVE_UDF_CALL(/dataSetl, /dataSet2)
AS /processedData HINT SET_CURRENT,OPTIONAL
</Field>

In this case, if the projected field would be NULL, the field is removed from the current message.

Constructing Enrichment Fields

Enrichment field constructors operate on a single message and construct fields based on that message. Enrichment
expressions operate on the current message and change the current message. The results of the enrichment directives
are merged into the incoming message. Any field in the source message that is not changed or removed during pre-
processing is left unchanged, so it is not necessary to include all fields in the message in the Enrichment directive.
Enrichment fields are constructed during the enrichment phase, so enrichment fields can refer to the previous state
of a message.

Because enrichment fields apply to a specific message, enrichment fields cannot specify the topic or message type
in an XPath identifier. All identifiers in the source expression are evaluated as indentifiers in the message being
enriched.

Within an enrichment expression, AMPS provides two special modifiers for XPath identifiers that specify whether an
XPath identifier refers to the current incoming message or the previous state of the message. These modifiers apply
only to the source expression, and cannot be used in the destination identifier. These special modifiers are as follows:

Table 4.17. XPath Identifier Modifiers for Enrichment

Modifier Description
OF CURRENT Specify that the XPath identifier refers to the incoming message.
OF PREVIOUS Specify that the XPath identifier refers to the previous state of the message in the

SOW. If there is no record in the SOW for this message, all identifiers that specify
OF PREVIOUS return NULL.

Using HINT to Control Field Construction

Enrichment can be used to remove fields from a message. By default, AMPS serializes any field that has an empty
string or NULL value after enrichment. Enrichment Field elements can include a directive that specifies that a
field that contains a NULL value should be removed from the message rather than serialized with a NULL value.
The directive HINT OPTIONAL applied to the XPath identifier specifies that if the result of the source expression

39

AMPS Expressions

is NULL, AMPS does not provide the value for the message type to serialize. For example, the following field
constructor removes the /source field from the message if the value provided is not in a specific list of values:

<Field>IF(/source IN ('a','e','f"'"), /source, NULL)
AS /source HINT OPTIONAL</Field>

By default, AMPS considers the results of field construction (the enriched message) to be distinct from the cur-
rent message. AMPS rewrites the current message after enrichment is completed. This means that, by default,
the results of fields constructed during enrichment are not available to other fields within enrichment. The HINT
SET_CURRENT option immediately inserts or updates values in the current message, which makes the new value
available to all subsequent Field declarations.

In the sample below, AMPS enriches the message by performing an expensive operation (implemented as a user-
defined function) on two input fields, and immediately updates the current message with the output of that operation.
AMPS then sets other fields in the processed message using the updated value in the current message.

<Field>EXPENSIVE_UDF_CALL(/dataSetl, /dataSet2)
AS /processedData HINT SET_CURRENT</Field>
<Field>IF(/processedData > 1000000,
YAY’
'B') AS /resultClass</Field>

Notice thatusing HINT SET_CURRENT requires AMPS to process F i e Ld declarations in order, which may prevent
future optimizations.

Hints can be combined as follows:

<Field>EXPENSIVE_UDF_CALL(/dataSetl, /dataSet2)
AS /processedData HINT SET_CURRENT,OPTIONAL
</Field>

In this case, if the projected field would be NULL, the field is removed from the current message.

Constructing View Fields

View field constructors operate over groups of messages, and construct a single output message for each distinct
group, as specified by the Grouping element in the View configuration.

When constructing a field in a view, all identifiers used in the source expression must be in one of the underlying
topics for the view. When the view uses a Jo1n, the identifiers must include the topic identifier. If the topics in the
Join are of different message types, the identifiers must include both the message type and the topic identifier.

For example, the following Field definition multiplies the /quantity from the NVFIX topic orders by the /
price from the JSON topic items, and projects the result into the /tota'l field of the view.

<Field>[nvfix].[orders]./quantity * [json].[items]./price AS /total</Field>

Aggregate Functions

AMPS provides a set of aggregation functions that can be used in a Field constructor. These functions return a
single value for each distinct group of messages, as identified by distinct combinations of values in the Grouping
clause.

40

AMPS Expressions

Table 4.18. AMPS Aggregation Functions

Function Description

AVG Average over an expression. Returns the mean value of the values specified by the ex-
pression.

COUNT Count of values in an expression. Returns the number of values specified by the ex-
pression.

COUNT_DISTINCT Count of number of distinct values in an expression, ignoring NUL L. Returns the num-

ber of distinct values in the expression. AMPS type conversion rules apply when deter-
mining distinct values.

MIN Minimum value. Returns the minimum out of the values specified by the expression.

MAX Maximum value. Returns the maximum out of the values specified by the expression.

STDDEV_POP Population standard deviation of an expression. Returns the calculated standard devia-
tion.

STDDEV_SAMP Sample standard deviation of an expression. Returns the calculated standard deviation.

SUM Summation over an expression. Returns the total value of the values specified by the
expression.

Null values are not included in aggregate expressions with AMPS, nor in ANSI SQL. COUNT will count only
non-null values; SUM will add only non-null values; AVG will average only non-null values; and MIN and MAX
ignore NULL values, and so on.

MIN and MAX can operate on either numbers or strings, or a combination of the two. AMPS compares values using
the principles described for comparison operators. For MIN and MAX, determines order based on these rules:

* Numbers sort in numeric order.
+ String values sort in ASCII order.

» When comparing a number to a string, convert the string to a number, and use a numeric comparison. If that is
not successful, the value of the string is higher than the value of the number.

For example, given a field that has the following values across a set of messages:
24, 020, 'cat', 75, 1.3, 200, '7T5', '42'

MIN will return 1.3, MAX will return 'cat'. Notice that different message types may have different support
for converting strings to numeric values: AMPS relies on the parsing done by the message type to determine the
numeric value of a string.

41

Chapter 5. Regular Expressions

Regular expression matching provides precision, power, and flexibility for matching patterns. AMPS supports regular
expression matching on topics and within content filters. Regular expressions are implemented in AMPS using the
Perl-Compatible Regular Expressions (PCRE) library. For a complete definition of the supported regular expression
syntax, please refer to:

http://perldoc.perl.org/perlre.html

To use regular expressions for topic matching, provide a regular expression pattern where you would normally
provide a topic name.

To use regular expressions in content filtering, compare strings to regular expressions using the L TKE operator. The
syntax of the L TKE operator is:

string LIKE pattern
where a string is any expression that provides a string, and pattern is a literal regular expression pattern.

This chapter presents a brief overview of regular expressions in AMPS. However, this chapter is not exhaustive. For
more information on regular expression matching, see the PCRE site mentioned above.

5.1. Examples

Here is an example of a content filter for messages that will match any message meeting the following criteria:
* Regular expression match of symbols of 2 or 3 characters starting with “IB”

* Regular expression match of prices starting with “90”

» Numeric comparison of prices less than 91

and, the corresponding content filter:

(/FIXML/Order/Instrmt/@Sym LIKE "AIB.?2$") AND (/FIXML/
Order/@Px LIKE "A90\..*" AND /FIXML/Order/@Px < 91.0)

Example 5.1. Filter Regular Expression Example

The tables below (Table 5.1, Table 5.2, and Table 5.3) contain a brief summary of special characters and constructs
available within regular expressions.

Here are more examples of using regular expressions within AMPS.

Use (?71) toenable case-insensitive searching. For example, the following filter will be true regardless if /client/
country contains “US” or “us”.

(/client/country LIKE "(?1) us$")

Example 5.2. Case Insensitive Regular Expression

42

http://perldoc.perl.org/perlre.html

Regular Expressions

To match messages where tag 55 has a TRADE suffix, use the following filter:

(/55 LIKE "TRADES$™)

Example 5.3. Suffix Matching Regular Expression

To match messages where tag 109 has a US prefix and a TRADE suffix, with case insensitive matching, use the
following filter:

(/109 LIKE "(?1)"US.*TRADES")

Example 5.4. Case Insensitive Prefix and Suffix Regular Expression

Table 5.1. Regular Expression Meta-characters

Characters Meaning
A Beginning of string
$ End of string

Any character except a newline
* Match previous 0 or more times
+ Match previous 1 or more times
? Match previous 0 or 1 times

| The previous is an alternative to the following

0 Grouping of expression

{ Set of characters

{} Repetition modifier

\ Escape for special characters

Table 5.2. Regular Expression Repetition Constructs

Construct Meaning

ax Zero or more a's

a+ One or more a's

a? Zero or one a's

a{m} Exactly ma's

a{m,} At least ma's

a{mn} At least m, but no more than n a's

Table 5.3. Regular Expression Behavior Modifiers

Modifier Meaning

i Case insensitive search

m Multi-line search

] Any character (including newlines) can be matched by a . character
X Unescaped white space is ignored in the pattern.

43

Regular Expressions

Modifier Meaning
A Constrain the pattern to only match the beginning of a string.
8] Make the quantifiers non-greedy by default (the quantifiers are greedy and try to match as

much as possible by default.)

Raw Strings

AMPS additionally provides support for raw strings which are strings prefixed by an 'r' or 'R’ character. Raw strings
use different rules for how a backslash escape sequence is interpreted by the parser. When a string literal is provided
as araw string, the characters in the raw string are matched exactly, even when those characters are special characters
for a regular expression.

In the example below, the raw string - noted by the r prefix of the string literal in the second operand of the L TKE
predicate (Example 5.5) - causes AMPS to search for the literal characters ++ in the results, without requiring those
characters to be escaped (Example 5.6). In this example we are querying for string that contains the programming
language named C++. In the regular string, we are required to escape the '+ ' character since it is also used in a
regular expression as the “match previous 1 or more times” regular expression character. In the raw string we can
use r ' C++"' to search for the string and not have to escape the special '+' character.

/FIXML/Language LIKE r'C++'
Example 5.5. Raw String Example
/FIXML/Language LIKE 'C\+\+'

Example 5.6. Regular String Example

Topic Regular Expressions

As mentioned previously, AMPS supports regular expression filtering for topics, in addition to content filters. Regular
expressions use the same grammar described in content filtering. Regular expression matching for topics is enabled
in an AMPS instance by default.

Subscriptions or queries that use a regular expression for the topic name provide all matching records from AMPS
topics where the name of the topic matches the regular expression used for the subscription or query. For example, if
your AMPS configuration has three SOW topics, Topic_A, Topic_B and Topic_C and you wish to search for
all messages in all of your SOW topics for records where the Name field is equal to “Bob”, then you could use a sow
command with a topic of Topic_ . x and a filter of /FIXML/@Name="'Bob" to return all matching messages that
match the filter in all of the topics that match the topic regular expression.

meaning that the topics will be searched in the order that they appear in your AMPS configuration file.
Using the above query example with Topic_A, Topic_B and Topic_C, if the configuration file has
these topics in that exact order, the results will be returned first from Topic_A, then from Topic_B
and finally the results from Topic_C. As with other queries, AMPS does not make any guarantees
about the ordering of results within any given topic query.

@ Results returned when performing a topic regular expression query will follow “configuration order” —

44

Chapter 6. State of the World (SOW)

One of the core features of AMPS is the ability to persist the most recent update for each distinct message published
to a given topic. The State of the World (SOW) can be thought of as a database where messages published to AMPS
are filtered into topics, and where the topics store the latest update to each distinct message. The State of the World
gives subscribers the ability to quickly resolve any differences between their data and updated data in the SOW
by querying the current state of a topic, or any set of messages inside a topic. Topics recorded in the State of the
World are also used for caching data, providing "point in time" snapshots of active data flows, providing key/value
stores over data flows, and so on. Topics recorded in the State of the World are the underlying sources for AMPS
aggregation and analytics capabilities, and the ability to store the previous state of a message is the foundation of
advanced messaging features such as delta messaging and out of focus notifications.

AMPS also provides the ability to keep historical snapshots of the contents of the State of the World, which allows
subscribers to query the contents of the SOW at a particular point in time and replay changes from that point in time.

AMPS can maintain the SOW for a topic in a persistent file, which will be available across restarts of the AMPS
server. The SOW can also be transient, in which case the state of the SOW does not persist across server restarts.

Topics do not keep the current values in the SOW by default. To provide this capability for a topic, you must configure
AMPS to maintain the topic in the State of the World by adding a definition for the Top-c to the SOW section of
the AMPS configuration file.

6.1. How Does the State of the World Work?

Much like tables in a relational database, topics in the AMPS State of the World persist the most recent update for
each message. AMPS identifies a message by using a unique key for the message. The SOW key for a given message
is similar to the primary key in a relational database: each value of the key is a unique message. The first time a
message is received with a particular SOW key, AMPS adds the message to the SOW. Subsequent messages with
the same SOW key value update the message.

There are several ways to create a SOW key for a message:

* Most applications specify that AMPS assigns a SOW key based on the content of the message. The fields to use
for the key are specified in the SOW topic definition, and consist of one or more XPath expressions. AMPS finds
the specified fields in the message and computes a SOW key based on the name of the topic and the values in
these fields. 60East recommends this approach unless an application has a specific need for a different approach.

* A topic can also be configured to require that a publisher provide a SOW key for each message when publishing
the message to AMPS.

» AMPS also supports the ability for custom SOW key generation logic to be defined in an AMPS module, which
will be invoked to generate the SOW key for each message. While these SOW keys are generated automatically
by AMPS, rather than being provided by the publisher, the logic to generate these keys is provided by the module,
and the configuration required (if any) is determined by the module.

The following diagrams demonstrate how the SOW works, using a SOW topic that is configured to have AMPS
determine the SOW key based on the /orderId field within the message. As each message comes in, AMPS uses
the contents of the /orderId field to generate a SOW key for the message. The SOW key is used to identify unique
records in the SOW, so AMPS will store a distinct record for each distinct /order Id value published to this topic.
The calculated SOW key will be returned in the SowKey header of messages received from the topic in the SOW.

45

State of the World (SOW)

1 - AMPS h
orderld=1;symbol=MSFT:price=30 ORDERS
Icul i
K_/ Sonkey SowKey | orderld | symbol price
LSHoleied ~14505308... 1 MSFT 30
%rderld=2;symbolzlBM;price=120 Calculate r86605615... 2 IBM 120
SowKey
L/ using /orderld
N /

Figure 6.1. A topic named ORDERS recorded in the State of the World with a key definition of /orderId

In Figure 6.1, two messages are published where neither of the messages have matching keys existing in the ORDERS
topic, the messages are both inserted as new messages. Some time after these messages are processed, an update
comes in for the order with an orderId of 2. This message changes the price from 120 to 95. Since the incoming
message has an orderId of 2, this matches an existing record and overwrites the existing message for the same
SOW key, as seen in Figure 6.2. AMPS replaces the entire record with the contents of the update.

: 4 AMPS A
orderld=2;symbol=IBM;price=95 ORDERS
SowKey orderld symbol price
Calculate 14505308... 1 MSFT 30
SowKi
wsingforderia) W 86605615...] 22 1BMIBM | 220095
o %

Figure 6.2. Updating the IBM record by matching incoming message keys

Although the SOW key is derived from the content of the message in many cases, the SOW key is distinct from the
content of the message. Each record in a SOW topic has a distinct SOW key, which is stored with the record.

By default, a topic recorded in the State of the World is persistent. For these topics, AMPS stores the contents of
the state of the world for that topic in a dedicated, memory-mapped file. This means that the total state of the world
does not need to fit into memory, and that the contents of the state of the world database are maintained across server
restarts. You can also define a transient state of the world topic, which does not store the contents of the SOW to
a persisted file.

The state of the world file is separate from the transaction log, and you do not need to configure a transaction log
to use a SOW. When a transaction log is present that covers the SOW topic, on restart AMPS uses the transaction
log to keep the SOW up to date. When the latest transaction in the SOW is more recent than the last transaction in
the transaction log (for example, if the transaction log has been deleted), AMPS takes no action. If the transaction
log has newer transactions than the SOW, AMPS replays those transactions into the SOW to bring the SOW file up
to date. If the SOW file is missing or damaged, AMPS rebuilds the state of the world by replaying the transaction
log from the beginning of the log.

When the State of the World for a topic is transient, AMPS does not store the state of the world for this topic across
restarts. In this case, AMPS does not synchronize the state of the world with the transaction log when the server starts.
Instead, AMPS tracks the state of the world for messages that occur while the server is running, without replaying
previous messages into the SOW.

46

State of the World (SOW)

6.2. Queries

At any point in time, applications can issue SOW queries to retrieve all of the messages that match a given topic
and content filter. When a query is executed, AMPS will test each message in the SOW against the content filter
specified and all messages matching the filter will be returned to the client. The topic can be a literal topic name
or a regular expression pattern. For more information on issuing queries, please see the SOW Queries chapter in
the AMPS User Guide.

6.3. SOW Keys

This section describes AMPS SOW keys in detail, including information on how AMPS generates SOW keys and
considerations for applications that generate SOW keys. An individual SOW topic may use either AMPS-generated
SOW keys or user-generated SOW keys. Every message in the SOW must use the same type of key generation.

Regardless of how the SOW key is generated, AMPS creates an opaque value from the SOW key and uses this value
for efficient lookup internally. For SOW keys that AMPS generates, this opaque value is returned in the message
header for SOW messages and is used in commands that reference SOW keys. When the SOW key is provided with
a message, AMPS returns the original value in the SOW key header, and the original value is used in commands
that reference SOW keys.

For topics that have a SOW key (including views and conflated topics), commands that directly use the SOW for
a topic (for example, sow, sow_and_subscribe, sow_delete) can provide a SOW key, or a set of SOW
keys with the command. When a set of SOW keys is provided with one of these commands, the command will only
operate on messages that have a SOW key in the provided set.

AMPS-Generated SOW Keys

AMPS-generated SOW keys are often the easiest and most reliable way to define the SOW key for a message. The
advantages of this approach are that AMPS handles all of the mechanics of generating the key, the key will always
match the data in the message, and there is no need for a publisher to be concerned with how AMPS assigns the key.
The publisher simply publishes messages, and AMPS handles all of the details.

AMPS generates SOW keys based on the message content when you define one or more Key fields in the SOW
configuration. For example, if your SOW tracks unique orders that are identified by an orderId field in the mes-
sage, you could provide the following Key element in your SOW configuration:

<Key>/orderId</Key>

This configuration item tells AMPS to use that field of the message to generate SOW keys. AMPS supports composite
SOW keys when multiple Key elements are provided. For example, the following configuration specifies that every
unique combination of /orderIdand /customerId is a unique record in the SOW:

<Key>/orderId</Key>
<Key>/customerId</Key>

When AMPS generates a key, it creates the key based on the key domain (which is the name of the topic by default)
and the values of the fields specified as SOW keys. AMPS concatenates these values together with a unique separator

47

State of the World (SOW)

and then calculates a checksum over the value. This ensures that different values create different keys, and ensures
that records in different topics have different keys.

In some cases, you may need AMPS to calculate consistent SOW key values for identical messages even when the
messages are published to different topics. The SOW topic definition allows to you to set an explicit key domain
in the configuation, which AMPS will use instead of the topic name when generating SOW keys. For example, if
your application uses the orderId field of a message as a SOW key in both a ShippingStatus topic and a
OpenOrders topic, having AMPS generate a consistent key for the same orderId value may make it easier
to correlate messages from those topics in your application. By setting the same KeyDomain value in the Topic
configuration for those SOW topics, you can ensure that AMPS generates consistent SOW keys for the same order
ID across topics.

An application should treat SOW keys generated with the AMPS default SOW key generator as opaque tokens. The
value of a generated SOW key is guaranteed to be consistent for the same fields, values, and key domain. However,
an application should not make assumptions as to the specific value that the AMPS default key generator will produce
from a given set of values. If an application requires a specific value for the SOW key, the application should generate
a SOW key, as described in the following section.

Using Enrichment with SOW Keys

The preprocessor phase of AMPS enrichment occurs before AMPS generates SOW keys for a message. You can use
this phase of enrichment to construct fields that are then used to generate the SOW key a message.

Customizing AMPS-Generated SOW Keys

AMPS allows you to customize how the server generates SOW keys for a topic. To customize SOW key generation,
you implement a SOW key generator module and specify that the module should be used to generate keys for that
SOW topic.

To use a custom SOW key generator, you first load the module in the Modu les section of the configuration file,
then specify the module as the KeyGenerator for the SOW topic.

<AMPSConfig>

<!-- load the module -->
<Modules>
<Module>
<Name>key-generator</Name>
<Library>1libmy_key_generator.so</Library>
</Module>
</Modules>

<I-- use the module to generate keys -->
<SOwW>
<Topic>
<Name>custom-keyed-sow</Name>
<FileName>./sow/%n.sow</FileName>
<KeyGenerator>
<Module>key-generator</Module>
<Options>

48

State of the World (SOW)

<OptionOne>module-specific-option</OptionOne>
<OptionTwo>another-specific-option</OptionTwo>
</Options>
</KeyGenerator>
</Topic>
</SOwW>

</AMPSConfig>

For information on implementing a custom SOW key generator, contact 60East support for the AMPS Server SDK.

User-Generated SOW Keys

AMPS allows applications to explicity generate and assign SOW keys. In this case, the publisher calculates the SOW
key for the message and includes that key on the message when it is published. AMPS does not interpret the data in
the message to decide whether the message is unique: AMPS uses only the value of the SOW key.

When using a user-generated SOW key, applications should consider the following:

+ All publishers should use a consistent method for generating SOW Keys

* SOW Keys must contain only characters that are valid in Base64 encoding

+ The application must ensure that messages intended to be logically different do not receive the same SOW key

User-generated SOW keys are particularly useful for the binary message type. For this message type, AMPS does
not parse the message, so providing an explicit SOW key allows you to create a SOW that contains only binary
messages.

6.4. SOW Indexing

AMPS maintains indexes over SOW topics to improve query efficiency. There are two types of indexes available:

* Memo indexes are created automatically when AMPS needs to use a particular field for a query. These indexes
maintain the value of a key, and can be used for any type of query, including regular expression queries, range
queries, and comparisons such as less than or greater than. You can also request that AMPS pre-create an index
of this type with the Index directive of the SOW topic configuration.

» Hash indexes are defined by the SOW configuration. These indexes maintain a hash derived from the values
provided for the fields in the key. When the topic is configured so that AMPS generates the SOW key, AMPS
automatically creates a hash index that contains all of the fields in the SOW Key. You can create any number of
hash indexes for a SOW topic, with any combination of fields. Hash index queries are significantly faster than
queries using memo indexes.

The values of hash indexes are always evaluated as strings. Hash indexes are only used for exact matches on
the value of the fields and for queries that use the exact set of fields in the hash index. For example, if your
configuration specifies a hash index that uses the fields /address/postalCode and /customerType,
a filter such as /address/postalCode = '99705"' AND /customerType = 'retail' will
use the hash index. A filter such as /address/postalCode = '99705' AND /customerType IN
('retail', 'remainder') will not use the hash index, since this filter uses the IN operator rather than
exact matching.

49

State of the World (SOW)

AMPS uses a hash index for filters wherever possible. If there is no hash index that includes exactly the keys specified
in the filter, or if the filter uses operations other than equality comparison, AMPS uses a memo index if one is
available. If no memo index is available, AMPS creates one during the query.

If your application frequently uses queries for an exact match on a specific set of fields (for example, retrieving a set
of customers by the /address/postalCode field), creating a hash index can significantly improve the speed
of those queries.

6.5. Removing SOW Records

AMPS allows applications to explicitly remove records from a SOW topic using the sow_de lete command.

When removing records from a SOW, there are three different ways to indicate which message, or messages, will
be deleted:

» Using a content filter. AMPS will delete all messages in the SOW that match the content filter. To delete every
message in the SOW, use the special filter 1=1 to indicate that the filter is true for every message, regardless of
the contents of the message.

» Using the SOW key assigned to the message. AMPS accepts a list of SOW keys, and will remove the messages
indicated by those SOW keys.

* Using message data. The application provides message data with the sow_delete command. AMPS finds the
record that would be updated if the command were a pub11sh, and deletes that record.

When a record is removed from the SOW, AMPS sends an out-of-focus (OOF) message to any subscriptions that
have requested OOF notifications. AMPS also updates any views that use the SOW topic, and the record will be
removed from conflated topics at the next conflation interval.

When the SOW is configured with the History option to enable historical queries, the sow_delete command
removes the message from the current set of messages in the SOW. The command does not remove previously-saved
versions of the message: the historical state of the SOW is unaffected by the sow_delete.

6.6. SOW Message Expiration

By default, SOW topics stores all distinct records until the record is explicitly deleted. For scenarios where message
persistence needs to be limited in duration, AMPS provides the ability to set a time limit on the lifespan of SOW
topic messages. This limit on duration is known as message expiration and can be thought of as a “Time to Live”
feature for messages stored in a SOW topic.

Usage

Expiration on SOW topics is disabled by default. For AMPS to expire messages in a SOW topic, you must explicitly
enable expiration on the SOW topic.

There are two ways message expiration time can be set. First, a topic recorded in the SOW can specify a default
lifespan for all messages stored for that topic. Second, each message can provide an expiration as part of the message
header.

50

State of the World (SOW)

AMPS stores the expiration time for each message individually, as a property of the message in the SOW. The
expiration for a given message is first determined based on the message expiration specified in the message header. If
a message has no expiration specified in the header, then the message will inherit the expiration setting for the topic
expiration. If there is no message expiration and no topic expiration, then it is implicit that a SOW topic message
will not expire. When an expiration of 0 is provided in the message header, this indicates that AMPS should not
provide expiration for this message.

Enabling Expiration for a Topic

AMPS configuration supports the ability to specify a default message expiration for all messages in a single SOW
topic. Below is an example of a configuration section for a SOW topic definition with an expiration. Chapter 6 has
more detail on how to configure the SOW topic.

<SOW>
<Topic>
<Name>ORDERS</Name>
<FileName>sow/%n.sow</FileName>
<Expiration>30s</Expiration>
<Key>/55</Key>
<Key>/109</Key>
<MessageType>fix</MessageType>
</Topic>
</SOwW>

Example 6.1. Topic Expiration

In this case, messages with no lifetime specified on the message have a 30 second lifetime in the SOW. When a
message arrives and that message has an expiration set, the message expiration overrides the default expiration for
the topic.

AMPS also allows you to enable expiration on a SOW topic, but to only expire messages that have message-level
expiration set:

<SOw>
<Topic>
<Name>ORDERS</Name>
<FileName>sow/%n.sow</FileName>
<Expiration>enabled</Expiration>
<Key>/55</Key>
<Key>/109</Key>
<MessageType>fix</MessageType>
</Topic>
</SOw>

Example 6.2. Topic Expiration

With this configuration file, expiration is enabled for the topic. The message lifetime is specified on each individual
message. When expiration is disabled for a SOW topic, AMPS preserves any message expiration set on an individual
message but does not expire messages.

51

State of the World (SOW)

AMPS processes expirations during startup when SOW expiration is enabled. This means that any record in the
SOW which needs to be expired will be expired as AMPS starts. Notice that if the expiration period has changed
in the configuration file (or expiration has been enabled or disabled), AMPS processes the SOW using the current
expiration configuration. For messages that were not published with an explicit expiration, the lifetime defaults to
the current expiration period for the topic.

Setting Expiration for a Message

When expiration is enabled for a topic in the SOW, each message published to that topic expires at the configured
time by default.

Individual messages have the ability to specify the expiration for that individual message. When an expiration time
is provided on a message, that value overrides the default expiration set for the topic. For example, the SOW con-
figuration for a topic might specify an expiration of 5 minutes for a pending order. For large orders, however, a
publisher might explicitly prevent messages from expiring by providing a O for the expiration time when publishing
the message.

AMPS does not process expiration for any messages in a topic recorded in the SOW unless expiration is enabled for
the topic. When expiration is not configured for a topic, messages published to that topic do not expire, regardless
of the expiration setting on an individual message.

Example Message Lifecycle

When a message arrives, AMPS calculates the expiration time for the message and stores a timestamp at which the
message expires in the SOW with the message. When the message contains an expiration time, AMPS uses that time
to create the timestamp. When the message does not include an expiration time, if the topic contains an expiration
time, AMPS uses the topic expiration for the message. Otherwise, there is no expiration set on the message, and
AMPS records a timestamp value that indicates no expiration.

Messages in the SOW topic can receive updates before expiration. When a message is updated, the message’s expi-
ration lifespan is reset. For example, a message is first published to a SOW topic with an expiration of 45 seconds.
The message is updated 15 seconds after publication of the initial message, and the update resets the expiration to a
new 45 second lifespan. This process can continue for the entire lifespan of the message, causing a new 45 second
lifespan renewal for the message with every update.

If a message expires, then the message is deleted from the SOW topic. This event will trigger delete processing to
be executed for the message, similar to the process of executing a sow_delete command on a message stored in a
SOW topic.

Recovery and Expiration

When using message expiration, one common scenario is that the message has an expiration set, but the AMPS
instance is shut down during the lifetime of the message.

To handle such a scenario, AMPS calculates and stores a timestamp for the expiration, as described above. Therefore,
if the AMPS instance is shutdown, then upon recovery the engine will check to see which messages have expired
since the occurrence of the shutdown. Any expired messages will be deleted as soon as possible.

Notice that, because the timestamp is stored with each message, changing the default expiration of a SOW topic
does not affect the lifetime of messages already in the SOW. Those timestamps have already been calculated, and

52

State of the World (SOW)

AMPS does not recalculate them when the instance is restarted or when the defaults on the SOW topic change. If
expiration is not enabled for the topic after the configuration change, AMPS does not process expirations for that
topic and messages will not expire.

6.7. SOW Maintenance

Applications that store topics in the SOW must consider the ongoing storage needs and file management for the SOW.
There are two aspects to SOW maintenance:

+ Ensuring that the host system has enough capacity to efficiently store and manage the topics in the SOW. Capacity
planning guidelines are discussed in Section 25.1 Capacity Planning in the operations section of this Guide.

* Setting and implementing a data retention policy for the contents of each topic in the SOW.

The data retention policy for a topic in the SOW is determined by the needs of your application. Consider the
following questions:

1. Does the topic have a data set that tends to stay at a consistent size? If so, there may be no need to explicitly
manage data retention. Many AMPS applications have topics that fall into this category.

For example, an application that uses a SOW topic to track the current price of a specific set of ticker symbols has
little need to set a data retention policy. The SOW will always contain the same number of records (one for each
ticker symbol), and those records will always contain data of a consistent size. The application may choose to
remove a record when a symbol is removed from the set, but otherwise rely on publishers to keep the data current.

2. Is the data only valid for a specific period of time after the data is published? If so, SOW expiration may be a
good way to manage the SOW.

For example, an application that needs to ensure that quotes are removed from the system after 10 minutes from
the time the quote is published could use SOW expiration to remove records after 10 minutes.

3. Is the data valid until a certain condition becomes true? If so, having the application remove records from the
SOW or using AMPS actions may be a good way to manage the SOW.

For example, an application that needs to clear the state of the SOW every 24 hours during a maintenance window
could use an action to remove those records. An application that can determine when a record is no longer needed
can remove the record immediately, which means that the topic only contains data that the application needs at
any given time.

Regardless of the approach an application takes, 60East recommends that every application that uses a SOW consider
capacity and explicitly consider the data retention needs of each topic and each the application.

6.8. Configuration

Topics where SOW persistence is desired can be individually configured within the SOW section of the configuration
file. Each topic will be defined with a Topic section enclosed within SOW. The AMPS Configuration Reference
contains a description of the attributes that can be configured per topic. TopicMetaData is a synonym for SOW
provided for compatibility with previous versions of AMPS. Likewise, TopicDefinition is a synonym for the
Topic element of the SOW section, provided for compatibility with versions of AMPS prior to 5.0.

53

State of the World (SOW)

Table 6.1. SOW/Topic General Options

Element

Description

FileName

The file where the State of the World (SOW) data will be stored.

This element is required for SOW topics with a Durability of persistent (the
default) because those topics are persisted to the filesystem. This is not required for
SOW topics with a durability of transient.

MessageType

Type of messages to be stored. To use AMPS generated SOW keys, the message type
specified must support content filtering so that AMPS can determine the SOW key for
the message. All of the default message types, except binary, support content filtering.
Since the binary message type does not support content filtering, that type can only
be used for a SOW when publishers use explict keys.

See the "Message Types" chapter in the AMPS User Guide for a discussion of the mes-
sage types that AMPS loads by default. Some message types (such as Google Protocol
Buffers) require additional configuration, and must be configured before using the mes-
sage type in a SOW topic.

Name

The name of the SOW topic - all unique messages on this topic will be stored in a
topic-specific SOW database.

Every SOW requires a method of determining which messages are unique. Several meth-
ods are provided within AMPS. See the AMPS User Guide for a discussion on SOW
keys, and Table 6.2 for relevant configuration items.

If no Name is provided, AMPS accepts Topic as a synonym for Name to provide
compatibility with versions of AMPS previous to 5.0.

HashIndex

AMPS provides the ability to do fast lookup for SOW records based on specific fields.

When one or more HashIndex elements are provided, AMPS creates a hash index for
the fields specified in the element. These indexes are created on startup, and are kept up
to date as records are added, removed, and updated.

The HashIndex element contains a Key element for each field in the hash index.

AMPS uses a hash index when a query uses a exact matching for all of the fields in the
index. AMPS does not use hash indexes for range queries or regular expressions.

AMPS automatically creates a hash index for the set of fields specified in the set of Key
fields for the SOW, if those fields are specified.

Index

AMPS supports the ability to precreate memo indexes for specific fields using the Tn-
dex configuration option.

When one or more Tndex elements are provided, AMPS creates memo indexes for any
field specified in an Index element on startup, before a query that uses that field runs.
Otherwise, AMPS indexes each field the first time a query uses the field. Adding one or
more Index configurations to a SOW/Top1c can improve retrieval performance the
first time a query that contains the indexed fields runs for large SOW topics.

RecoveryPoint

For SOW topics that are covered by the transaction log, the point from which to recover
the SOW if the SOW file is removed, or if the SOW topic has transient duration.

This configuration item allows two values:

54

State of the World (SOW)

Element

Description

* epoch recovers the SOW from the beginning of the transaction log
* now recovers the SOW from the current point in the transaction log

Defaults to epoch.

Expiration

Time for how long a record should live in the SOW database for this topic. The expiration
time is stored on each message, so changing the expiration time in the configuration file
will not affect the expiration of messages currently in the SOW.

AMPS accepts interval values for the Expiration, using the interval format described in
the AMPS Configuration Guide section on units, or one of the following special values:

* A value of disabled specifies that AMPS will not process SOW expiration for
this topic, regardless of any expiration value set on the message. In this case, AMPS
saves the expiration for the message, but does not process it. The value must be set to
disabled (the default) if History is enabled for this topic.

* Avalue of enabled specifies that AMPS will process SOW expiration for this topic,
with no expiration set by default. Instead, AMPS uses the value set on the individual
messages (with no expiration set for messages that do not contain an expiration value).

Default: disabled (never expire)

Durability

Defines the data durability of a SOW topic. SOW databases listed as persistent
are stored to the file system, and retain their data across instance restarts. Those listed
as transient are not persisted to the file system, and are reset each time the AMPS
instance restarts.

Default: persistent
Valid values: persistentor transient

Synonyms: Duration is also accepted for this parameter for backward compatibility
with configuration prior to 4.0.0.1

History

Enable historical query for this SOW. This element contains a Window and Granu-
larity element. When the History element is present, historical query is enabled
for this sow. Otherwise, AMPS does not enable historical query and does not store the
historical state of the SOW.

Expiration mustbe disabled when History is enabled.

Window

For a historical SOW, the length of time to store history. For example, when the value
is 1w, AMPS will store one week of history for this SOW.

Used within the History element.

Default: By default, AMPS does not expire historical SOW data.

Granularity

For a historical SOW, the granularity of the history to store. For many applications, it is
not necessary for AMPS to store all of the updates to the SOW. This parameter sets the
resolution at which AMPS will save the state of a message.

55

State of the World (SOW)

Element

Description

For example, when you set a granularity of 1m, AMPS will save the state of the message
no more frequently than once per minute, even when the state of the message is updated
several times a minute.

Used within the History element.

Preprocessing

When present, specifies the message enrichment to be performed before AMPS deter-
mines the SOW key for the message.

The Preprocessing element must contain one or more Field elements that specify
the enrichment to perform.

Enrichment

When present, specifies the message enrichment to be performed after AMPS deter-
mines the SOW key for the message.

The Enrichment element must contain one or more Field elements that specify the
enrichment to perform.

Each SOW topic must define how AMPS will determine which messages are unique. An application can either have
AMPS determine the key by specifying one or more Key fields, provide a SOW key with the pub1ish command
each time a message is published to AMPS. AMPS also provides the ability to provide a custom SowKey generator

with a plugin module.

The following table lists the available configuration items for specifying how AMPS determines the SowKey for

a message:

Table 6.2. SOW/Topic Key Specification Options

Element

Description

Key

Specifies an XPath within each message that AMPS will use to generate a SOW key,
which determines whether a message is unique. This element can be specified multiple
times to create a composite key from the combined value of the specified Key elements.

When one or more Key elements is specified for the SOW, AMPS generates the SOW
key for each message. When no Key fields are specified and no KeyGenerator is
specified, publishers must explicitly provide the SOW key for each message when the
message is published.

60East recommends configuring a Key and having AMPS generate the SOW key for a
message unless your application has specific needs that make this impractical.

AMPS automatically creates a hash index for the set of fields specified in the Key el-
ements.

There is no default for this element.

KeyDomain

The seed value for SowKey s used within the topic when AMPS generates the SOW key.
The default is the topic name, but it can be changed to a string value to unify SowKey
values between different topics.

For example, if your application hasa ShippingAddress SOWandaCreditRat-
ing SOW that both use /customerID as the SOW key, you can use a KeyDomain
to ensure that the generated SowKey for a given /customerId is identical for both
SOW topics. This does not affect how AMPS processes the SOW topics, but can make
correlating information from different SOW topics easier in your application.

56

State of the World (SOW)

Element

Description

This option can only be specified when one or more Key fields are specified. When a
SOW key generator module is used, or the publisher must send a SOW key, this option
is not valid.

Default: the name of the SOW topic.

KeyGenerator

Specifies the SOW key generator module to use for this topic. When this configuration
element is present, AMPS calls the specified module to generate a SOW key for each
incoming message.

Default: no SOW key generator module. When there is no SOW key generator module
specified, AMPS uses the specified Key fields if the Key fields are provided. If no
generator is specified and no Key fields are specified, AMPS requires publishers to set
a SOW key on each message published.

A KeyGenerator element contains the following elements:

Table 6.3. SOW/Topic/KeyGenerator Options

Option Description

Module The name of the module. This module must
be loaded elsewhere in the configuration
file.

Options One or more XML elements. These ele-

ments are provided to the key generator
module as options.

The options provided depend on the key
generator. The creator of the key generator
module must document the options for that
module.

The SOW topic configuration also specifies how the SOW file is allowed to grow. The relevant options are in the

following table:

Table 6.4. SOW/Topic Growth Specification Options

Element

Description

SlabSize

The size of each allocation for the SOW file, as a number of bytes. When AMPS needs
more space for the SOW, it requests this amount of space from the operating system.
This effectively sets the maximum message size that AMPS guarantees can be stored in
the SOW. This size includes headers set by AMPS on the message.

60East recommends setting this value only if you will be storing messages larger than
the default S1abSize or if performance or capacity testing indicates a need to tune
SOW performance. If you plan to store messages larger than the default setting, 60East
recommends a starting value of several times the maximum message size. For example,
if your maximum message size is 2MB, a good starting point for S1abSize would
be 8MB.

If it becomes necessary to tune the SlabSize, see the Best Practices and Capacity
Planning sections of the AMPS User Guide for a full discussion tuning the S1abS1ize.

Default: 1MB

57

State of the World (SOW)

Element Description
InitialSlabCount The number of SOW slabs that AMPS will allocate on startup.
Default: 1
Maximum: 1024
DEPRECATED: This parameter is deprecated beginning in AMPS 5.0. Use the S1abSize parameter

RecordSize

instead. Size (in bytes) of a SOW record for this topic.

Default: 512

DEPRECATED:

InitialSize

This parameter is deprecated beginning in AMPS5.0. Usethe InitialSlabCount
parameter instead.Initial size (in records) of the SOW database file for this topic.

Default: 2048

DEPRECATED:

IncrementSize

This parameter is deprecated beginning in AMPS5.0. Use the S1abS-ize parameter
instead. Number of records to expand the SOW database (for this topic) by when more
space is required.

Default: 1000

The listing in Example 6.3 is an example of using Topic to add a SOW topic to the AMPS configuration. One
topic named ORDERS is defined as having key /invoice, /customerId and MessageType of json. The
persistence file for this topic be saved in the sow/ORDERS. json. sow file. For every message published to the
ORDERS topic, a unique key will be assigned to each record with a unique combination of the fields /invoice
and /customerId. A second topic named ALERTS is also defined with a MessageType of xml keyed off of /
client/id. The SOW persistence file for ALERTS is saved in the sow/ALERTS.xm1. sow file.

<SOW>
<Topic>

<Name>ORDERS</Name>
<FileName>sow/%n.sow</FileName>
<Key>/invoice</Key>
<Key>/customerId</Key>
<MessageType>json</MessageType>
<SlabSize>1MB</SlabSize>
<HashIndex>

<Key>/region</Key>
</HashIndex>

</Topic>

<Topic>

<Name>ALERTS</Name>
<FileName>sow/%n.sow</FileName>
<Key>/alert/id</Key>
<MessageType>xml</MessageType>
<I-- Pregenerate an index for

the /alert/type element.

This is seldom necessary,

since AMPS will generate the

index when it is needed,

but the directive is included here

58

State of the World (SOW)

for example purposes. -->
<Index>/alert/type</Index>

</Topic>

</SOwW>

Example 6.3. Sample SOW configuration

°

Topics are scoped by their message type.

For example, two topics named Orders can be created one which supports MessageType of json
and another which supports MessageType of xmL.

Each of the MessageType entries that are defined for the Order s topic will require that Transport
in the configuration file can accept messages of that type. Otherwise, there is no way for a publisher
to publish messages of that type to this instance or for a subscriber to receive messages of that type
from this instance.

This means that messages published to the Orders topic must know the type of message they are
sending (j son or xm1) and the port defined by the transport.

59

Chapter 7. SOW Queries

When SOW topics are configured inside an AMPS instance, clients can issue SOW queries to AMPS to retrieve all
of the messages matching a given topic and content filter. When a query is executed, AMPS will test each message
in the SOW against the content filter specified and all messages matching the filter will be returned to the client. The
topic can be a straight topic or a regular expression pattern.

7.1. SOW Queries

A client can issue a query by sending AMPS a sow command and specifying an AMPS topic. Optionally a filter can
be used to further refine the query results. AMPS also allows you to restrict the query to a specific set of messages
identified by a set of SowKeys. When AMPS receives the sow command request, it will validate the filter and start
executing the query. When returning a query result back to the client, AMPS will package the sow results into a
sow record group by first sending a group_begin message followed by the matching SOW records, if any, and
finally indicating that all records have been sent by terminating with a group_end message. The message flow is
provided as a sequence diagram in Figure 7.1.

For purposes of correlating a query request to its result, each query command can specify a QueryId. The QueryId
specified will be returned as part of the response that is delivered back to the client. The group_begin and
group_end messages will have the QueryId attribute set to the value provided by the client. The client specified
QueryId is what the client can use to correlate query commands and responses coming from the AMPS engine.

AMPS does not allow a sow command on topics that do not have a SOW enabled. If a client queries a topic that
does not have a SOW enabled, AMPS returns an error.

The ordering of records returned by a SOW query is undefined by default. You can also include an
A OrderBy parameter on the query to specify a particular ordering based on the contents of the messages.

60

SOW Queries

Client AMPS

sow command

group_begin response
matching sow records

roup end
4_______g_p___

Figure 7.1. SOW Query Sequence Diagram

7.2. Historical SOW Queries

SOW topics can also be configured to include historical snapshots of messages, which allows subscribers to retrieve
the contents of the SOW that reflect a particular point in time.

As with simple queries, a client can issues a query by sending AMPS a sow command and specifying an AMPS

topic. For a historical query, the client also adds a timestamp that includes the point in time for the query. A filter
can be used to further refine the query results based on the message content.

Window and Granularity

AMPS allows you to control the amount of storage to devote to historical SOW queries through the Window and
Granularity configuration options.

The Window option sets the amount of time that AMPS will retain historical copies of messages. After the amount
of time set by the Window, AMPS may discard copies of the messages.

61

SOW Queries

The Granularity option sets the interval at which AMPS retains a historical copy of a message in the SOW. For
example, if the Granularity is setto 10m, AMPS stores a historical copy of the message no more frequently than
every 10 minutes, regardless of how many times the message is updated in that 10 minute interval. AMPS stores the
copies when a new message arrives to update the SOW. This means that AMPS always returns a valid SOW state
that reflects a published message, but -- as with a conflated topic -- the SOW may not reflect all of the states that a
message passes through. This also means that AMPS uses SOW space efficiently. If no updates have arrived for a
message, since the last time a historical message was saved, AMPS has no need to save another copy of the message.

When a historical SOW and Subscribe query is entered, and the topic is covered by a transaction log, AMPS returns
the state of the SOW adjusted to the next oldest granularity, then replays messages from that point. In other words,
AMPS returns the same results as a historical SOW query, then replays the full sequence of messages from that
point forward.

Message Sequence Flow

The message sequence flow is the same as for a simple SOW query. Once AMPS has transmitted the messages that
were in the SOW as of the timestamp of the query, the query ends. Notice that this replay includes messages that
have been subsequently deleted from the SOW.

7.3. SOW Query-and-Subscribe

AMPS has a special command that will execute a query and place a subscription at the same time to prevent a
gap between the query and subscription where messages can be lost. Without a command like this, it is difficult to
reproduce the SOW state locally on a client without creating complex code to reconcile incoming messages and state.

For an example, this command is useful for recreating part of the SOW in a local cache and keeping it up to date.
Without a special command to place the query and subscription at the same moment, a client is left with two options:

1. Issue the query request, process the query results, and then place the subscription, which misses any records
published between the time when the query and subscription were placed; or

2. Place the subscription and then issue the query request, which could send messages placed between the subscrip-
tion and query twice.

Instead of requiring every program to work around these options, the AMPS sow_and_subscribe command
allows clients to place a query and get the streaming updates to matching messages in a single command.

Ina sow_and_subscribe command, AMPS behaves as if the SOW command and subscription are placed at the
exact same moment.The SOW query will be sent before any messages from the subscription are sent to the client.
Additionally, any new publishes that come into AMPS that match the sow_and_subscribe filtering criteria and
come in after the query started will be sent after the query finishes (and the query will not include those messages.)

AMPS allows a sow_and_subscribe command on topics that do not have a SOW enabled. In this case, AMPS
simply returns no messages between group_begin and group_end.

The message flow as a sequence diagram for sow_and_subscribe commands is contained in Figure 7.2.

62

SOW Queries

Client AMPS

sow_and_subscribe command

group_begin response

matching sow records

4- - - - - = - - - - = = -

group_end

d4d- - - - = =

messages matching subscription

4 - =- = - - - - - = = -

Figure 7.2. SOW-And-Subscribe Query Sequence Diagram

Historical SOW Query and Subscribe

AMPS SOW Query and Subscribe also allows you to begin the subscription with a historical SOW query. For
historical SOW queries, the subscription begins at the point of the query with the results of the SOW query. The
subscription then replays messages from the transaction log. Once messages from the transaction log have been
replayed, the subcription then provides messages as AMPS publishes them.

In effect, a SOW Query and Subscribe with a historical query allows you to recreate the client state and processing
as though the client had issued a SOW Query and Subscribe at the point in time of the historical query.

A historical SOW and subscribe requires that the SOW topic is recorded in the transaction log and that history is
enabled on the SOW. If history is not enabled for the topic, a SOW and subscribe command returns the current state
of the SOW and the subscription begins atomically at the point in time when AMPS processes the command.

Conflated Subscriptions with SOW and Subscribe

A sow_and_subscribe command can include options for server side conflation (as described in Conflated Sub-
scriptions), just as a regular subscription can. When the command requests conflation, the results of the SOW query
are not conflated, and the conflation interval and key apply to the subscription.

63

SOW Queries

Replacing Subscriptions with SOW and Subscribe

As described in Section 3.4, AMPS allows you to replace an existing subscription. When the subscription was entered
with the sow_and_subscribe command, AMPS will re-run the SOW query delivering the messages that are in
scope with the new filter but which were not previously delivered. If the subscription requests out-of-focus (OOF)
messages, AMPS will deliver out of focus messages for messages that matched the previous filter but do not match
the new filter. As with the initial query and subscribe, AMPS guarantees to deliver any changes to the SOW that
match the filter and occur after the point of the query.

Client AMPS

sow_and_subscribe command

group_begin response

matching sow records

4= = = = =

group_end

4= = = = = =

publish messages matching subscription

1_-— - e mm mm wm mm omm wm

sow_and_subscribe command with replace

group_begin response

< newly matching sow records and oof messages

group_end

4= = = = = =

publish messages matching updated subscriptio

4 - - = ~ e m e e = = = a2

-

Figure 7.3. SOW And Subscribe Replace Sequence Diagram

64

SOW Queries

7.4. SOW Query Response Batching

When processing a SOW query, AMPS has the ability to combine messages into batches for more efficient network
usage. The maximum number of messages in a batch is determined by the BatchS7ize parameter on the SOW
query command. AMPS defaults to a BatchSize value of 1, meaning AMPS sends one message per batch in
the response. The BatchSize is the maximum number of records that will be returned within a single response
payload. Each AMPS response for the query contains a BatchSize value in its header to indicate the number of
messages in the batch. This number will be anywhere from 1 to BatchSize.

Current versions of the AMPS client libraries set a batch size of 10 when using the named convenience methods (for
example, sowAndSubscribe) if no other batch size is specified.

Notice that the format of messages returned from AMPS may be different depending on the message type requested.
However, the information contained in the messages is the same for all message types.

group_end segment of messages before beginning the live subscription sequence of the query. This
is also true when a sow_and_subscribe command is issued against a non-SOW topic. In this later
case, the group_begin and group_end will contain no messages.

@ When issuing a sow_and_subscribe command AMPS will return a group_begin and

Using a BatchSize greater than 1 can yield greater performance, particularly when querying a large number of
small records. In general, 60East recommends using a BatchS ze that provides good network utilization without
consuming excessive server memory. Most applications use a batch size designed to create batches that fit well
into the maximum transmission unit (MTU) for the network. AMPS reports an error if an application requests a
batch size larger than 10,000 records (this value is orders of magnitude larger than the typical BatchSize used
by applications).

For applications where the average message size is close to, or larger than, the MTU for the network, 60East
recommends using a smaller BatchSize. For messages that are many times the MTU, 60East recommends a
BatchSizeof 1.

with a large number of messages when many messages will fit into the MTU for your network. For
larger messages, reducing the batchsize below the default that the AMPS clients specify may produce
better performance.

@ Using an appropriate BatchSize parameter is critical to achieve the maximum query performance

Care should be taken when issuing queries that return large results. When contemplating the usage of
A large queries and how that impacts system reliability and performance, please see the section called
“Slow Clients ” for more information.

For more information on executing queries, please see the Developer Guide for the AMPS client of your choice.

7.5. Configuring SOW Query Result Sets

AMPS allows you to control the results returned by a SOW query by including the following optional headers on
the query:

65

SOW Queries

Table 7.1. SOW Query Options

Option Result

top_n Limits the results returned to the number of messages
specified.

skip_n Skips the number of messages specified before returning

results. A command that provides this option must also
provide a TopN option and an OrderBy option.

OrderBy Orders the results returned as specified. Requires a com-
ma-separated list of identifiers of the form:

/field [ASC | DESC]

For example, to sort in descending order by orderDate
so that the most recent orders are first, and ascending or-
der by customerName for orders with the same date,
you might use a specifier such as:

/orderDate DESC, /customerName ASC

If no sort order is specified for an identifer, AMPS de-
faults to ascending order.

For details on how to submit these options with a SOW query, see the documentation for the AMPS client library
your application uses.

66

Chapter 8. Out-of-Focus Messages (OOF)

One of the more difficult problems in messaging is knowing when a record that previously matched a subscription
has been updated so that the record no longer matches the subscription. AMPS solves this problem by providing
an out-of-focus, or OOF, message to let subscribers know that a record they have previously received no longer
matches the subscription. The OOF messages help subscribers easily maintain state and remove records that are no
longer relevant.

OOF notification is optional. A subscriber must explicitly request that AMPS provide out-of-focus messages for a
subscription.

When OOF notification has been requested, AMPS produces an oof message for any record that has previously
been received by the subscription at the point at which:

* The record is deleted,

 The record expires,

* The record no longer matches the filter criteria, or

* The subscriber is no longer entitled to view the new state of the record

AMPS produces an oo f message for each record that no longer matches the subscription. The oo f message is sent as
part of processing the update that caused the record to no longer match. Each oo f message contains information the
subscriber can use to identify the record that has gone out of focus and the reason that the record is now out of focus.

Because AMPS must maintain the current state of a record to know when to produce an 0o f message, these messages
are only supported for SOW topics, conflated topics, and views. The oof option is not supported for bookmark
replays.

8.1. Usage

Consider the following scenario where AMPS is configured with the following SOW key for the buyer topic:

<SOW>
<Topic>
<Name>buyer</Name>
<MessageType>xml</MessageType>
<Key>/buyer/id</Key>
</Topic>
</ SOW>

Example 8.1. Topic Configuration

When the following message is published, it is persisted in the SOW topic:
<buyer><id>100</id><loc>NY</loc></buyer>

Example 8.2. First Publish Message

67

Out-of-Focus Messages (OOF)

A client issues a sow_and_subscribe request for the topic buyer with the filter /buyer/Toc="NY" and the
oof option set on the request. The client will be sent the messages as part of the SOW query result.

Subsequently, the following message is published to update the loc tag to LN:

<buyer><id>100</id><loc>LN</loc></buyer>

Example 8.3. Second Publish Message

The original message in the SOW cache is updated. The client does not receive the second publish message, because
that message does not match the filter (/buyer/Tloc="NY"). This is problematic. The client has a message that is
no longer in the SOW cache and that no longer matches the current state of the record. Because the oo f option was
set on the subscription, however, the AMPS engine sends an oo f message to let these clients know that the message
that they hold is no longer in the SOW cache. The following is an example of what’s returned:

<?xml version="1.0" encoding="1is0-8859-1"7>
<SOAP-ENV:Envelope>
<SOAP-ENV:Header>
<Reason>match</Reason>
<Tpc>buyer</Tpc>
<Cmd>oof</Cmd>
<MsgTyp>xml</MsgTyp>
<SowKey>6387219447538349146</SowKey>
<SubIds>SAMPS-1214725701_1</SubIds>
</SOAP-ENV:Header>
<SOAP-ENV: Body>
<client>
<id>100</1id>
<loc>LN</loc>
</client>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Example 8.4. oof xml example message

An easy way to think about the situations where AMPS sends an OOF notification is to consider what would happen
if the client re-issued the original sow request after the above message was published. The /client/loc="NY"
expression no longer matches the message in the SOW cache and as a result, this message would not be returned.

When AMPS returns an OOF message, the data contained in the body of the message represents the updated state
of the OOF message (except as described below). This will allow the client to make a determination as to how to
handle the data, be it to remove the data from the client view or to change their query to broaden the filter thresholds.
This enables a client to take a different action depending on why the message no longer matches. For example, an
application may present a different icon for an order that moves to a status of completed than it would present
for an order that moves to a status of cancelled.

When a delta_publish message causes the SOW record to go out of focus, AMPS returns the merged record.
When there is no updated message to send, AMPS sends the state of the record before the change that produced the

OOF. This can occur when the message had been deleted, when the message has expired, or when an update causes
the client to no longer have permission to receive the record.

68

Out-of-Focus Messages (OOF)

8.2. Example

To help reinforce the concept of OOF messages, and how OOF messaging can be used in AMPS, consider a scenario
where there is a GUI application whose requirement is to display all open orders of a client. There are several
possible solutions to ensure that the GUI client data is constantly updated as information changes, some of which are
examined below; however, the goal of this section is to build up a sow_and_subscribe message to demonstrate
the power that OOF notifications add to AMPS.

Client-Side Filtering in a sow_and_subscribe Command

First, consider an approach that sends a sow_and_subscribe message on the topic orders using the filter /
Client="Adam":

AMPS completes the sow portion of this call by sending all matching messages from the orders SOW topic. AMPS
then places a subscription whereby all future messages that match the filter get sent to the subscribing GUI client.

sow_and_subscri be

Topi c: orders
Filter: /Client = Adam @

Client State Tick

A M P S Adam Open MSFT

Adam Open ORCL
- Adam | Fulfilled IBM

Adam Pending AAPL

@ A:/ dient=Adam / St at e=Open, / Ti ck=MSFT
B:/ i ent =Adam / St at e=Qpen, / Ti ck=0ORCL
C./dient=Adam/State=Ful filled,/Ti ck=I BM
D: / d i ent =Adam / St at e=Pendi ng, [/ Ti ck=AAPL

Figure 8.1. sow_and_subscribe example

As the messages come in, the GUI client will be responsible for determining the state of the order. It does this by
examining the State field and determining if the state is equal to “Open” or not, and then updating the GUI based
on the information returned.

This approach puts the burden of work on the GUI and, in a high volume environment, has the potential to make
the client GUI unresponsive due to the potential load that this filtering can place on a CPU. If a client GUI becomes
unresponsive, AMPS will queue the messages to ensure that the client is given the opportunity to catch up. The
specifics of how AMPS handles slow clients is covered in the section called “Slow Clients ”.

69

Out-of-Focus Messages (OOF)

AMPS Filtering in a sow_and_subscribe command

The next step is to add an additional ’AND’ clause to the filter. In this scenario we can let AMPS do the filtering work
that was previously handled on the client. This is accomplished by modifying our original sow_and_subscribe
to use the following filter:

/Client = "Adam" AND /State = "Open"

Similar to the above case, this sow_and_subscribe will first send all messages from the orders SOW topic
that have a Client field matching “Adam” and a State field matching “Open.” Once all of the SOW topic
messages have been sent to the client, the subscription will ensure that all future messages matching the filter will
be sent to the client.

sow_and_subscri be

Topi c: orders
Filter: /Cient = Adamand /State = Open @

Client State Tick

A M P S Adam Open MSFT

- Adam Open ORCL

®

A:/ C i ent =Adam / St at e=Open, | Ti ck=MSFT
B:/ i ent =Adam / St at e=Qpen, / Ti ck=0ORCL

Figure 8.2. State Filter in a sow_and_subscribe

There is a less obvious issue with this approach to maintaining the client state. The problem with this solution is
that, while it initially will yield all open orders for client “Adam”, this scenario is unable to stay in sync with the
server. For example, when the order for Adam is filled, the State changes to State=Fi1led. This means that,
inside AMPS, the order on the client will no longer match the initial filter criteria. The client will continue to display
and maintain these out-of-sync records. Since the client is not subscribed to messages with a State of “Filled,” the
GUI client would never be updated to reflect this change.

OOF Processing in a sow_and_subscribe command

The final solution is to implement the same sow_and_subscribe query which was used in the first scenario.
This time, we use the filter requests only the State that we're interested in, but we add the oo f option to the command
so the subscriber receives OOF messages.

70

Out-of-Focus Messages (OOF)

/Client = "Adam" AND /State = "Open"

AMPS will respond immediately with the query results, in a similar manner to a sow_and_subscribe (Fig-
ure 8.3) command.

sow_and_subscri be
Topic: orders

Filter: /Cient = Adamand /State = Qpen
SndOOF = true @

Client State Tick

A M P S Adam Open MSFT

- Adam Open ORCL

®

A:/ dient=Adam / St at e=Open, | Ti ck=MSFT
B:/ d i ent =Adam / St at e=Open, / Ti ck=0ORCL

Figure 8.3. sow_and_subscribe with oof enabled

This approach provides the following advantage. For all future messages in which the same Open order is updated,
such that its status is no longer Open, AMPS will send the client an OOF message specifying that the record which
previously matched the filter criteria has fallen out of focus. AMPS will not send any further information about the
message unless another incoming AMPS message causes that message to come back into focus.

In Figure 8.4 the Publisher publishes a message stating that Adam’s order for MSFT has been fulfilled. When AMPS
processes this message, it will notify the GUI client with an OOF message that the original record no longer matches
the filter criteria. The OOF message will include a Reason field with it in the message header, defining the reason for
the message to lose focus. In this case the Reason field will state mat ch since the record no longer matches the filter

71

Out-of-Focus Messages (OOF)

Topi c: orders @
/dient = Adam

———— .
/State = Fulfilled; PUb“Sher

/ Ti ck=NBFT
Client State Tick

- Adam Open ORCL

& _

A:/dient=Adam /State=Ful filled, /Tick=MSFT

Figure 8.4. OOF message
AMPS will also send OOF messages when a message is deleted or has expired from the SOW topic.

We see the power of the OOF message when a client application wants to have a local cache that is a subset of the
SOW. This is best managed by first issuing a query filter sow_and_subscribe which populates the GUI, and
enabling the oof option. AMPS informs our application when those records which originally matched no longer
do, at which time the program can remove them.

72

Chapter 9. State of the World Message
Enrichment

Topics recorded to the State of the World can provide inline message enrichment for messages published to the topic.
This capability is especially useful for applications that do consistent, simple transformations on incoming data. For
example, you can use this capability to automatically add a calculated price to an incoming order, to map abbreviated
data such as status codes to easier-to-understand values, or even to compute the value of a field used for a SOW key.

AMPS provides two distinct stages of message enrichment. The preprocessing stage occurs before AMPS calculates
the SOW key for the message. Fields that are added or updated in the preprocessing stage can be used as the SOW
key for the message. Because this stage occurs before the SOW key is generated, this stage does not have access to
the previous state of the message in the SOW. The enrichment stage occurs after AMPS calculates the SOW key.
Enrichment performed at this stage has access to the previous state of the SOW.

If entitlement for the instance uses content filters for publish entitlements, these filters are applied to the incoming
message before either enrichment stage runs. For more details on the steps involved in enrichment, see Section 9.3,
SOW Update and Enrichment Processing.

Message enrichment only affects the message data, not the metadata on the message. In other words, while enrich-
ment can change any field in the data, you cannot change metadata properties such as the topic the message was pub-
lished to, the acknowledgements requested on the message, or the authenticated username for the publish command.

9.1. Preprocessing Messages

The preprocessing stage of AMPS enrichment allows you to alter a message before the SOW key is calculated. This
gives you the ability to easily add or transform fields that are used in the SOW key. Use this stage to enrich messages
when the enriched field should be used as part of the SOW key. To specify preprocessing for a topic, you add a
Preprocessing directive to the Top1ic configuration for the SOW topic.

Preprocessing field directives operate on a single message and construct fields based on that message. The results
of the preprocessing expression are merged into the incoming message. Any field in the source message that is not
changed or removed during preprocessing is left unchanged, so it is not necessary to include all fields in the message
in the Preprocessing block.

Because preprocessing fields apply to a specific message, preprocessing fields cannot specify the topic or message
type in an XPath identifier.

By default, AMPS serializes fields with a NULL value in the result of preprocessing. Preprocessing fields can include
a directive that specifies that a field that contains a NULL value should be removed from the set of fields rather
than serialized. The directive HINT OPTIONAL applied to the XPath identifier specifies that if the result of the
source expression is NULL, AMPS does not provide the value for the message type to serialize. For example, use
the following directive to remove a /source field if the value provided is not in a specific list of values:

<Field>IF(/source IN ('a','e','f"'"), /source, NULL)
AS /source HINT OPTIONAL</Field>

For more information on constructing preprocessing fields, see the section called “Constructing Preprocessing
Fields”, Constructing Preprocessing Fields.

73

State of the World Message Enrichment

9.2. Enriching Messages

AMPS enrichment operates on a message after the SOW key is computed, but before an incoming delta publish is
merged to an existing message, or the incoming message is written to the transaction log, stored to the SOW, used
to update views, or delivered to subscribers. Use this enrichment stage when the enrichment process depends on the
previous values of the message, or when the updated fields will not be used in the SOW key. To specify enrichment
for a topic, you add an Enrichment directive to the configuration for the SOW topic.

Enrichment field directives operate on a single message and construct fields based on that message. Enrichment
expressions operate on the current message and change the current message. The results of the enrichment directives
are merged into the incoming message. Any field in the source message that is not changed or removed during
preprocessing is left unchanged, so it is not necessary to include all fields in the message in the Enrichment
directive.

Because enrichment fields apply to a specific message, enrichment fields cannot specify the topic or message type
in an XPath identifier.

Within an enrichment expression, AMPS provides two special modifiers for XPath identifiers that specify whether
an XPath identifier refers to the current incoming message or the previous state of the message. These modifiers
apply only to the source expression, and cannot be used in special modifiers are as follows:

Table 9.1. XPath Identifier Modifiers for Enrichment

Modifier Description
OF CURRENT Specify that the XPath identifier refers to the incoming message.
OF PREVIOUS Specify that the XPath identifier refers to the previous state of the message in the

SOW. If there is no record in the SOW for this message, all identifiers that specify
OF PREVIOUS return NULL.

By default, AMPS serializes fields with a NULL value during enrichment. Enrichment fields can include a directive
that specifies that a field that contains a NULL value should be removed from the set of fields rather than serialized.
The directive HINT OPTIONAL applied to the XPath identifier specifies that if the result of the source expression is
NULL, AMPS does not include the value in the set of XPath identifiers for the message type to serialize. For example,
use the following directive to use remove a /source field if the value provided is not in a specific list of values:

<Field>IF(/source IN ('a','e','f'), /source, NULL)
AS /source HINT OPTIONAL</Field>

For more information on constructing enrichment fields, see the section called “Constructing Enrichment Fields”,
Constructing Enrichment Fields.

9.3. SOW Update and Enrichment Processing

The following diagram presents a simplified, high-level view of the update process for an individual message. For the
purposes of this diagram, views and conflated topics can be considered listeners on the SOW topic, while applications
that connect to AMPS and the on—-publish and on-deliver actions can be considered subscribers.

74

State of the World Message Enrichment

Message Arrives
at AMPS

Entitled To
Publish?

No Entitlement failure

Yes

y

Preprocess
Message

A

Determine SOW
Key

Enrich Message

Merge Into
Existing Message

Delta Publish?

Record in TXLog,
Update SOW

A

Deliver to listeners’
and subscribers

It's important to keep in mind the following aspects of the SOW update sequence:

« If the publish is disallowed due to topic-based entitlements or the publish filter specified for entitlements, there is
no change to the state of the SOW. The entitlement filter (if one exists) is applied to the incoming message before

preprocessing, enrichment, or delta merge occurs.

* AMPS records the enriched message in the transaction log and SOW file. When AMPS is configured for enrich-
ment or your application performs a delta publish, the transaction log and SOW do not preserve a record of the
original message received by AMPS. Instead, they record the enriched and merged message.

+ Content filtering for subscriptions, views, and so forth is done on the final enriched and merged message, not on

the original message as published.

75

Chapter 10. Delta Messaging

AMPS delta messaging allows applications to work with only the changed parts of a message in the SOW. In high-
performance messaging, it's important that applications not waste time or bandwidth for messages that they aren't
going to use.

Delta messaging has two distinct aspects:
» delta subscribe allows subscribers to receive just the fields that are updated within a message.

+ delta publish allows publishers to update and add fields within a message by publishing only the updates into
the SOW,

While these features are often used together, the features are independent. For example, a subscriber can request a
regular subscription even if a publisher is publishing deltas. Likewise, a subscriber can request a delta subscription
even if a publisher is publishing full messages.

To be able to use delta messages, the message type for the subscription must support delta messages. All of the
included AMPS message types, except for binary, support delta messages, with the limitations described in each
section below. For custom message types, contact the message type implementer to determine whether delta support
is implemented.

These features can often improve performance in environments where bandwidth is at a premium. Because these
features require AMPS to parse, compare, and create messages, these features can consume somewhat more CPU on
the AMPS server than a simple publish or subscribe, particularly for large messages with complex structure (such
as deeply-nested XML).

10.1. Delta Subscribe

Delta subscribe allows applications to receive only the changed parts of a message when an update is made to a
record in the SOW. When a delta subscription is active, AMPS compares the new state of the message to the old
state of the message, creates a message for the difference, and sends the difference message to subscribers. Using
this approach can simplify processing on the client side, and can improve performance when network bandwidth
is the most important constraint.

For example, consider a SOW that contains the following messages, with the order field as the key of the SOW
topic:

SOW

{"order":1,"customer":"Jackson","status":"active","qty":100,"ticker":"IBM"}

{"order":2,"customer":"Patrick","status":"active","qty":100,"ticker":"HPQ"}

{"order":3,"customer":"Patrick","status":"active","qty":1000, "ticker":"MSFT"}

L

Now, consider an update that changes the status of order number 3:
{"order":3,"customer":"Patrick","status":"pending","qty":1000,"ticker":"MSFT"}
))) g, qty)

For a regular subscription, subscribers receive the entire message. With a delta subscription, subscribers receive just
the key of the SOW topic and any changed fields:

76

Delta Messaging

SOW

{"order":1,"customer":"Jackson","status":"active","qty":100,"ticker":"IBM"}

{"order":2,"customer":"Patrick","status":"active","qty":100,"ticker":"HPQ"}

"order":3,"cust0mer":"Patrick","status":'—aetge—' e "gty":1000, " "ticker":"MSFT"
L{ pending ay } J _
publish delta_subscribe

[{"order":3,"customer":"Patrick","status":"pending","qty":1000,"ticker":"MSFT"}] [{"0rder":3,"status":"pending"}]

This can significantly reduce the amount of network traffic, and can also simplify processing for subscribers, since
the only information sent is the information needed by the subscriber to take action on the message.

Using Delta Subscribe

Because a client must process delta subscriptions using substantially different logic than regular subscriptions, delta
subscription is implemented as a separate set of AMPS commands rather than simply as an option on subscribe
commands. AMPS supports two different ways to request a delta subscription:

Table 10.1. Delta subscribe commands

Command Result

delta_subscribe Register a delta subscription, starting with newly re-
ceived messages.

sow_and_delta_subscribe Replay the state of the SOW and atomically register a
delta subscription.

Applications most commonly use sow_and_delta_subscribe to receive the current state of messages in the
SOW before they begin receiving deltas.

Options for Delta Subscribe

The delta subscribe command accepts several options that are unique to delta subscriptions. These options control
the precise behavior of delta messages:

Table 10.2. Options for delta subscriptions

Option Result

no_empties Do not send messages if no data fields have been updated. By default,
AMPS will publish a delta for every publish to the record, even if the
data has not changed. By specifying this option, AMPS will only send
messages when there is changed data.

no_sowkeys Do not include the AMPS generated SowKey with messages. By de-
fault, AMPS includes this key to help you identify unique records
within the SOW.

send_keys Include the SOW key fields in the message. Because the SOW key
fields indicate which message to update, without this option, updates

77

Delta Messaging

Option Result

to delta messages will never contain the SOW key fields. For views,
the SOW key fields are the fields specified in the Grouping ele-
ment.

AMPS accepts this option for backward compatibility. As of AMPS
4.0, this option isincluded on delta subscriptions by default.

oof AMPS will deliver out of focus messages on this subscription.

Delta subscriptions also support the options provided for regular subscriptions, including the timestamp option and
the conflation options described in Section 3.3, Conflated Subscriptions.

Identifying Changed Records

When an application that uses delta subscriptions receives a message, that message can either be a new record or an
update to an existing record. AMPS offers two strategies for an application to tell whether the record is a new record
or an existing record, and identify which record has changed if the message is an update to an existing record.

The two basic approaches are as follows:

1. By default, each message delivered through a delta subscription contains a SowKey header field. This field is the
identifier that AMPS assigns to track a distinct record in the SOW. If the application has previously received a
SowKey with that value, then the new message is an update to the record with that SowKey value. If the application
has not previously received a SowKey with that value, then the new message contains a new record.

2. Delta messages can also contain the key fields from the SOW in the body of the message. This is controlled by
the send_keys option on the subscription, which is always enabled as of AMPS 4.0. With this approach, the
application parses the body of the message to find the key. If the application has previously received the key, then
the message is an update to that existing record. Otherwise, the message contains a new record.

In either case, AMPS delivers the information the application needs to determine if the record is new or changed. The
application chooses how to interpret that information, and what actions to take based on the changes to the record.

AMPS also supports out-of-focus notification for delta subscriptions, as described in Chapter 8. If your application
needs to know when a record is deleted, expires, or no longer matches a subscription, you can use out-of-focus
messages to be notified.

Conflated Subscriptions and Delta Subscribe

AMPS provides subscription conflation on delta subscriptions. When conflation is enabled, each delta message
during the conflation interval is merged into the conflated message. The message that is delivered is the merge of
all of the deltas that arrived during the conflation interval.

Because AMPS combines successive delta messages into a single update, a delta subscription that uses conflation
may receive values that are identical to the previous values. For example, consider the following record in a SOW
that uses /id as the key:

{ "id": 99, "status":"open", "notes":'"none", "xref":82}
Assume that the following updates to the record are published during the conflation interval:

{ "id": 99, "status":"questioned", "notes":"none", "xref":82}

78

Delta Messaging

{ "id": 99, "status":"questioned", "notes":"jcarlo hold", "xref":82 }
{ "id": 99, "status":'"cleared", "notes":'"none", "xref":82 }
{ "id": 99, "status":"open", "notes":"none", "xref":82 }

At the end of the conflation interval, the subscription will receive the delta message
{ "id": 99, "status":"open", "notes":'"none" }

The /1d field is included because that field is the key of the SOW, and all of the delta messages produced during
the conflation interval contained that key. The /status and /notes fields are included because there were changes
to these values during the conflation interval. The delta messages produced during the conflation interval contained
changed values, so the merged update contains those fields and the state of the values at the end of the conflation
interval. The / xref field is not included, because none of the delta messages produced during the conflation interval
contained that field.

Delta Subscribe Support

To produce delta messages, the message type and the topic must both support delta subscribe. When this is not the
case, AMPS accepts the subscription, but provides full messages rather than delta messages.

All of the basic message types provided with AMPS support delta subscribe with the exception of the binary
message type. Composite message types support delta subscribe if they use the composite-1local definition, as
described in the section on composite message types.

AMPS queues do not support delta subscribe. AMPS accepts a delta subscription for a queue, but produces full
messages from the queue.

All other AMPS topic types that are based on a SOW support delta subscribe. AMPS topics that do not use a SOW
do not support delta subscribe, and instead produce full messages.

Multiple Subscriptions and Delta Subscribe

When a single connection to AMPS has multiple subscriptions, AMPS sends the message to that client once, with
information on the set of subscriptions that match. AMPS sends a message that will include the requested data for all
of the matching subscriptions. For example, if a message matches one subscription that requests full messages and
another subscription from the same connection that requests deltas, both subscriptions will receive a full message.
If your application depends on receiving deltas, take care that the application does not issue non-delta subscriptions
for the same set of messages on the same connection.

10.2. Delta Publish

Delta publish allows publishers to update a message in the SOW by providing just the key fields for the SOW and
the data to update. When AMPS receives a delta publish, AMPS parses the incoming message and the existing
messages, identifies changed fields, and creates an updated message that merges changed fields from the publish
into the existing message.

This can be particularly useful in cases where more than one worker acts on a record. For example, an order fullfill-
ment application may need to check inventory, to ensure that the order is available, and check credit to be sure that
the customer is approved for the order. These checks may be run in parallel, by different worker processes. With delta

79

Delta Messaging

publish, each worker process updates the part of the record that the worker is responsible for, without affecting any
other part of the record. Delta publish saves the worker from having to query the record and construct a full update,
and eliminates the possibility of incorrect updates when two workers try to update the record at the same time.

For example, consider an order published to the SOW:
{"id":735,"customer":"Patrick","item":90123,"qty":1000,"state": "new"}

Using delta publishing, two independent workers can operate on the record in parallel, safely making updates and
preparing the record for a final fulfillment process.

The inventory worker process is responsible for checking inventory. This worker subscribes to messages where the
/state = 'new' AND /inventory IS NULL AND /credit IS NULL. This process receives the
new message and verifies that the inventory system contains 1000 of the item # 90123. When it verifies this, it uses
delta publish to publish the following update:

"id":735,"inventory":"available"}

The credit worker process verifies that the customer is permitted to bill for the total amount. Like the inventory
worker, this worker subscribes to messages where the /state = 'new' and /inventory IS NULL and /
credit IS NULL. This process receives the new message and verifies that the customer is allowed to bill the
total value of the order. When the check is complete, the credit worker publishes this message:

"§d":735,"credit":"approved"}
After both of these processes run, the SOW contains the following record:
{"id":735,"credit":"approved", "inventory":"available",
"customer":"Patrick","item":90123,"qty":1000,

"state":"new"}

The fulfillment worker would subscribe to messages where /state = 'new' AND /inventory IS NOT
NULL AND /credit IS NOT NULL.

Using Delta Publish

Because delta messages must be processed and merged into the existing SOW record, AMPS provides a distinct
command for delta publish.

Table 10.3. Delta publish command

Command Result

delta_publish Publish a delta message. If no record exists in the SOW,
add the message to the SOW. If a record exists in the
SOW, merge the data from this record into the existing
record.

Delta Publish Support

To accept delta publishes, the message type and the topic must both support delta publish. When this is not the case,
AMPS accepts the publish, but may not produce the expected results.

80

Delta Messaging

All of the basic message types provided with AMPS support delta publish with the exception of the binary message
type. Composite message types support delta publish if they use the composite-Tlocal definition, as described
in the section on composite message types. The binary message, and types that do not support delta publish, produce
the full, literal message provided with a delta publish command.

When a topic uses the composite-local message type, parts of the composite that are provided as empty (that
is, zero-length) are considered to be unchanged, and the merged message contains the existing contents of that part.
This provides a convenient way to update only one part of a composite message, without having to republish data
that has not changed. For example, a composite-1local type contains a JSON part and a binary part can modify
the JSON part without having to republish the full binary part.

AMPS queues support delta publish to an underlying topic, if that underlying topic maintains a SOW. The merged
message is provided to the AMPS queue.

All other AMPS topic types that are based on a SOW and accept publish commands support delta publish. AMPS
topics that do not use a SOW do not support delta publish, so publishing a delta message to those topics produces
the full, literal message from the publish command rather than a merged message. Without a SOW configured for
the topic, AMPS does not track the current value of a message, and therefore does not have a way to merge the
publish into an existing message.

81

Chapter 11. Conflated Topics

AMPS provides the ability to conflate messages for an individual subscription, as described in Section 3.3, Conflated
Subscriptions. When a single subscriber requires conflation, requesting conflation for that subscription is a reason-
able approach to take. In cases where all instances of an application can benefit from conflation, conflate topics are
a more efficient and scalable approach. A conflated topic is a copy of one SOW topic into another with the ability
to control the update interval. In this case, AMPS maintains conflation for the entire topic. There is no need for
subscribers to independently request conflation, and AMPS does not need to spend resources processing conflation
for each subscriber individually.

To better see the value in a conflated topic, imagine a SOW topic called ORDER_STATE exists in an AMPS instance.
ORDER_STATE messages are published frequently to the topic. Meanwhile, there are several subscribing clients
that are watching updates to this topic and displaying the latest state in a GUI front-end.

If this GUI front-end only needs updates in five second intervals from the ORDER_STATE topic, then more frequent
updates would be wasteful of network and client-side processing resources. To reduce network congestion, a con-
flated topic for the ORDER_STATE topic can be created which will contain a copy of ORDER_STATE updated in
five second intervals. Only the changed records from ORDER_STATE will be copied to the conflated topic and then
sent to the subscribing clients. Those records with multiple updates within the time interval will have their latest
updated values copied to the conflated topic, and only those conflated values are sent to the clients. This results in
substantial savings in bandwidth for records with high update rates. This can also result in substantial savings in
processing overhead for a client.

AMPS treats the conflated topic as a conflated version of the underlying topic. Applications cannot publish directly
to the conflated topic. Likewise, AMPS does not recalculate the SowKey for messages delivered from the conflated
topic: these messages have the same SOW key as the corresponding message in the underlying topic.

11.1. SOW/ConflatedTopic

AMPS provides the ability to create ongoing snapshots of a SOW topic, called conflated topics (also called topic
replicasin previous releases of AMPS). Topic replicas are updated on an interval, and store a snapshot of the current
state of the world at each interval. This helps to manage bandwidth to clients that do not act on each update, such as
a client UT that refreshes every second rather than with every update.

For compatibility with previous versions of AMPS, AMPS allows you to use TopicReplica as a synonym for
ConflatedTopic.

Table 11.1. SOW/ConflatedTopic Parameters

Element Description

Name String used to define the name of the conflated topic. While AMPS doesn't enforce nam-
ing conventions, it can be convenient to name the conflated topic based on the underly-
ing topic name. For example, if the underlying topic is orders, it can be convenient
to name the conflated topic orders-C.

If no Name is provided, AMPS accepts Top1ic as a synonym for Name to provide com-
patibility with versions of AMPS previous to 5.0.

UnderlyingTopic String used to define the SOW topic which provides updates to the conflated topic. This
must exactly match the name of a SOW topic.

82

Conflated Topics

Element Description

MessageType The message format of the underlying topic. This MessageType must be the Mes-
sageType of the provided UnderlyingTopic.

Interval The frequency at which AMPS updates the data in the conflated topic.
Default: 5 seconds

Filter Content filter that is applied to the underlying topic. Only messages that match the con-
tent filter are stored in the conflated topic.

<ConflatedTopic>

<Topic>FastPublishTopic-C</Topic>
<MessageType>nvfix</MessageType>
<UnderlyingTopic>FastPublishTopic</UnderlyingTopic>
<Interval>5s</Interval>

<Filter>/region = '"A'</Filter>

</ConflatedTopic>

83

Chapter 12. Aggregating and Analyzing
Data in AMPS

AMPS contains a high-performance aggregation engine, which can be used to project one SOW topic onto another,
similar to the CREATE VIEW functionality found in most RDBMS software. The aggregation engine can join input
from multiple topics, of the same or different message types, and can produce output in different message types.

View topics are part of the AMPS State of the World, which means that views support delta subscriptions and out of
focus (OOF) tracking. A view can also be used as the underlying topic for another view.

In addition, for the limited cases where a view is not practical, AMPS allows an individual subscription to request
aggregation and projection a single SOW topic.

12.1. Understanding Views

Views allow you to aggregate messages from one or more SOW topics in AMPS and present the aggregation as a
new SOW topic. AMPS stores the contents of the view in a user-configured file, similar to a materialized view in
RDBMS software.

Views are often used to simplify subscriber implementation and can reduce the network traffic to subscribers. For
example, if some clients will only process orders where the total cost of the order exceeds a certain value, you can
both simplify subscriber code and reduce network traffic by creating a view that contains a calculated field for the
total cost. Rather than receiving all messages and calculating the cost, subscribers can filter on the calculated field.
You can also combine information from multiple topics. For example, you could create a view that contains orders
from high-priority customers that exceed a certain dollar amount.

AMPS sends messages to view topics the same way that AMPS sends messages to SOW topics: when a message
arrives that updates the value of a message in the view, AMPS sends a message on the view topic. Likewise, you
can query a view the same way that you query a SOW topic.

Defining a view is straightforward. You set the name of the view, the SOW topic or topics from which messages
originate and describe how you want to aggregate, or project, the messages. AMPS creates a topic and projects the
messages as requested.

All message types that you specify in a view must support view creation. The AMPS default message
A types all support views.

Because AMPS uses the SOW topics of the underlying messages to determine when to update the view, the under-
lying topics used in a view must have a SOW configured. In addition, the topics must be defined in the AMPS
configuration file before the view is defined.

12.2. Defining Views and Aggregations

Multiple topic aggregation creates a view using more than one topic as a data source. This allows you to enrich
messages as they are processed by AMPS, to do aggregate calculations using information published to more than one
topic. You can combine messages from multiple topics and use filtered subscriptions to determine which messages
are of interest. For example, you can set up a topic that contains orders from high-priority customers.

84

Aggregating and Analyzing Data in AMPS

You can join topics of different message types, and you can project messages of a different type than the underlying
topic.

To create an aggregate using multiple topics, each topic needs to maintain a SOW. Since views maintain an underlying
SOW, you can create views from views.

To define an aggregate, you decide:

+ The topic, or topics, that contain the source for the aggregation

« If the aggregation uses more than one topic, how those topics relate to each other

» What messages to publish, or project, from the aggregation

* How to group messages for aggregation

» The message type of the aggregation

Message types provided with AMPS fully support views, with the following exceptions:

* binary message types cannot be an underlying topic for a view or the type of a view

* protobuf message types can be the underlying topic for a view, but cannot be the type of a view

* composite-global message types can be the underlying topic for the view, but cannot be the type of the view

If you are using a custom message type, check with the message type developer as to whether that message type
supports aggregation.

Single Topic Aggregation: UnderlyingTopic
For aggregations based on a single topic, use the UnderlyingTopic element to tell AMPS which topic to use.

All messages from the Under lyingTopic will appear in the aggregation.

<UnderlyingTopic>MyOriginalTopic</UnderlyingTopic>

Multiple Topic Aggregation: Join

Join expressions tell AMPS how to relate underlying topics to each other. You use a separate Join element for
each relationship in the view. Most often,the join expression describes a relationship between topics:

[topic].[field]=[topic].[field]

The topics specified must be previously defined in the AMPS configuration file. The square brackets [] are optional.
If they are omitted, AMPS uses the first / in the expression as the start of the field definition. You can use any
number of join expressions to define a multiple topic aggregation.

Within a Join expression, values are always compared as strings. This means that values such as 12345,
12345.00, and 1.2345E+04 can be considered to be different values by the Jo1in expression since these are
different strings, even though these strings contain the same numeric value.

If your aggregation will join messages of different types, or produce messages of a different type than the underlying
topics, you add message type specifiers to the join:

85

Aggregating and Analyzing Data in AMPS

[nmessagetype].[topic].[field]=[nmessagetype].[topic].[field]

In this case, the square brackets [] around the messagetype are mandatory. AMPS creates a projection in the aggre-
gation that combines the messages from each topic where the expression is true. In other words, for the expression:

<Join>[Orders].[/CustomerID]=[Addresses].[/CustomerID]</Join>

AMPS projects every message where the same Customer ID appears in both the Addresses topic and the Or—
ders topic. If a CustomerID value appears in only the Addresses topic, AMPS does not create a projection for
the message. If a Customer ID value appears in only the Orders topic, AMPS projects the message with NULL
values for the Addresses topic. In database terms, this is equivalenttoa LEFT OUTER JOIN.

You can use any number of Jo1n expressions in an underlying topic:

<Join>[nvfix].[Orders].[/CustomerID]=[json].[Addresses].[/CustomerID]</Join>
<Join>[nvfix].[Orders].[/ItemID]=[nvfix].[Catalog].[/ItemID]</Join>

In this case, AMPS creates a projection that combines messages from the Orders, Addresses, and Catalog
topics for any published message where matching messages are present in all three topics. Where there are no match-
ing messages in the Catalog and Addresses topics, AMPS projects those values as NULL.

A Join element can also contain only one topic. In this case, all messages from that topic are included
z : S in the view.

Setting the Message Type

The MessageType element of the definition sets the type of the outgoing messages. The message type of the
aggregation does not need to be the same as the message type of the topics used to create the aggregation. However,
if the MessageType differs from the type of the topics used to produce the aggregation, you must explicitly specify
the message type of the underlying topics.

For example, to produce JSON messages regardless of the types of the topics in the aggregation, you would use
the following element:

<MessageType>json</MessageType>

Defining Projections

AMPS makes available all fields from matching messages in the join specification. You specify the fields that you
want AMPS to project and how to project them.

To tell AMPS how to project a message, you specify each field to include in the projection. The specification provides
a name for the projected field and one or more source field to use for the projected field. The data can be projected
as-is, or aggregated using one of the AMPS aggregation functions, as described in the section called “Aggregate
Functions” .

You refer to source fields using the XPath-like expression for the field. You name projected fields by creating an
XPath-like expression for the new field. AMPS uses this expression to name the new field.

<Projection>
<Field>[Orders].[/CustomerID]</Field>

86

Aggregating and Analyzing Data in AMPS

<Field>[Addresses].[/ShippingAddress] AS /DestinationAddress</Field>
<Field>SUM([Orders].[/TotalPrice]) AS /AccountTotal</Field>
</Projection>

The sample above uses the CustomerID from the orders topic and the shipping address for that customer from the
Addresses topic. The sample calculates the sum of all of the orders for that customer as the AccountTotal.
The sample also renames the ShippingAddress field as DestinationAddress in the projected message.

For more information on constructing fields in a view, see the section called “Constructing View Fields”, Construct-
ing View Fields.

Data Types and Projections

When projecting views, AMPS converts the original values into the AMPS internal type system and serializes those
values into a new message. This approach allows AMPS to efficiently aggregate messages of different types and
produce predictable results. The data type of the serialization is determined by the message type of the projected
message: the message types provided by 60East in this release project the AMPS internal type.

This means that, for message types that rely on type markers to identify the type (such as bson), the type of the
field in the projected message may reflect the AMPS internal type rather than the original type. This conversion is
typically a widening conversion for numeric types (for example, input typed as a 32-bit integer will typically be
widened to a 64-bit integer). For other types, the most common conversion is from a specific data type (such as
regular expression) to a string type.

For details on the AMPS data types, see the section called “AMPS Data Types”.

Grouping
Use grouping statements to tell AMPS how to aggregate data across messages and generate projected messages.

For example, an Orders topic that contains messages for incoming orders could be used to calculate aggregates
for each customer, or aggregates for each symbol ordered. The grouping statement tells AMPS which way to group
messages for aggregation.

<Grouping>
<Field>[Orders].[/CustomerID]</Field>
</Grouping>

The sample above groups and aggregates the projected messages by CustomerId. Because this statement tells
AMPS to group by Customerld, AMPS projects a message for each distinct CustomerId value. A message to the
Orders topic will create an outgoing message with data aggregated over the CustomerId.

Each field in the projection should either be an aggregate or be specified in the Grouping element. Otherwise,
AMPS returns the last processed value for the field.

Inline Conflation

AMPS has the ability to conflate updates to a view. Conflation is particularly useful when a view receives a high
velocity of updates and subscribers to the view have no need to track every update, but instead want to see the current
state of the view as quickly as possible. For applications that have a high update rate and relatively complicated

87

Aggregating and Analyzing Data in AMPS

view processing, inline conflation can significantly reduce the total number of updates processed for the view and
increase overall throughput.

Inline conflation changes how AMPS manages pending updates for a view. Without inline conflation enabled for a
view, AMPS processes all messages for a view strictly in the order in which those messages were published. Even if
there are multiple updates to the same record pending, AMPS processes each of those messages in turn and updates
the view for each message.

When inline conflation is enabled and message arrives with the same Grouping value as a message waiting to
be processed, AMPS replaces the pending message with the new message, and only processes the new message.
Inline conflation does not cause AMPS to slow down the rate at which AMPS processes updates for a view. AMPS
continues to process updates for the view as fast as possible, and makes no guarantees as to the number of updates
to a view produced by a given set of updates to an underlying topic.

The diagram below shows a simplified representation of inline conflation for a view grouped by the id field of the
message. With conflation set to none (the default for a view), each message is added to the end of the messages
waiting to be processed, whether or not an update for that group is already waiting. Both updates are processed.
By contrast, when conflation is set to inl1ine, if there is an existing update waiting, the new update replaces the
existing update, and only the new update is processed.

Conflation : none Conflation : inline

Currently Being Processed Currently Being Processed

id=42, id=42,

id=23,

id=13, id=13,

id=17,

id=17,

id=23, ...

Because inline conflation replaces messages while processing is pending, the following considerations apply to views
that enable inline conflation:

» Not every update to underlying topic will produce an individual update to the view: when multiple updates occur
to the same record in a short period of time, AMPS may only process the last update.

» Updates to the view may be produced in an order different than the order in which the messages were published
to the underlying topic, since AMPS replaces messages waiting to be processed

To enable inline conflation, add the Conflation element to the configuration for the View, as shown below:

<SOwW>
<View>

88

Aggregating and Analyzing Data in AMPS

<Conflation>inline</Conflation>

</View>

</SOwW>

Filtering Single Topic Aggregations

When a view aggregates a single topic, you can use a Fi lter element in the view definition to limit the messages
included in the view to only those messages that match the filter. For example, to aggregate only messages from an

underlying topic where the /status is complete, you could define your view as follows:

<Topic>

<Name>orders</Name>
<MessageType>json</MessageType>
<Key>/orderId</Key>
<FileName>./sow/%n.sow</FileName>

</Topic>
<View>

<Name>CompleteByRegion</Name>
<UnderlyingTopic>orders</UnderlyingTopic>
<MessageType>json</MessageType>
<Projection>
<Field>COUNT (/orderId) AS /completedOrders</Field>
<Field>/region AS /region</Field>
</Projection>
<Grouping>
<Field>/region</Field>
</Grouping>
<Filter>/status = 'complete'</Filter>

</View>

</SOW>

The Filter element is not supported for multiple topic aggregation.

12.3. Constructing Fields

The AMPS expression language is used to construct fields in aggregates, as described in Section 4.3.

12.4. Examples

Simple Aggregate View Example

For a potential usage scenario, imagine the topic ORDERS which includes the following NVFIX message schema:

89

Aggregating and Analyzing Data in AMPS

Table 12.1. ORDERS Table Identifiers

NVFIX Tag Description

OrderID unique order identifier

Tick symbol

ClientId unique client identifier

Shares currently executed shares for the chain of orders
Price average price for the chain of orders

This topic includes information on the current state of executed orders, but may not include all the information we
want updated in real-time. For example, we may want to monitor the total value of all orders executed by a client
at any moment. If ORDERS was a SQL Table within an RDBMS, the “view” we would want to create would be
similar to:

CREATE VIEW TOTAL_VALUE AS

SELECT ClientId, SUM(Shares x Price) AS TotalCost
FROM ORDERS

GROUP BY ClientId

As defined above, the TOTAL_VALUE view would only have two fields:
1. Clientld: the client identifier
2. TotalCost: the summation of current order values by client

Views in AMPS are specified in the AMPS configuration file in Vi ew sections, which are defined in the SOW section.
The example above would be defined as:

<SOwW>
<Topic>
<Name>ORDERS</Name>
<MessageType>nvfix</MessageType>
<Key>/OrderID</Key>
<FileName>./sow/%n.sow</FileName>
</Topic>
<View>
<Name>TOTAL_VALUE</Name>
<UnderlyingTopic>ORDERS</UnderlyingTopic>
<MessageType>nvfix</MessageType>
<Projection>
<Field>/ClientId</Field>
<Field>SUM(/Shares * /Price) AS /TotalCost</Field>
</Projection>
<Grouping>
<Field>/ClientId</Field>
</Grouping>
</View>
</SOw>

Views require an underlying SOW topic. See Chapter 6 for more information on creating and configuring
A SOW topics.

90

Aggregating and Analyzing Data in AMPS

The Topic element is the name of the new topic that is being defined. This Top1 ¢ value will be the topic that can
be used by clients to subscribe for future updates or perform SOW queries against.

The UnderlyingTopic is the SOW topic or topics that the view operates on. That is, the UnderlyingTopic
is where the view gets its data from. All XPath references within the Projection fields are references to values
within this underlying SOW topic (unless they appear on the right-hand side of the AS keyword.)

The Projection section is a list of 1 or more F1ields that define what the view will contain. The expressions can
contain either a raw XPath value, as in “/ClientId” above, which is a straight copy of the value found in the underlying
topic into the view topic using the same target XPath. If we had wanted to translate the C1ientId tag into a different
tag, such as CID, then we could have used the AS keyword to do the translation as in /ClientId AS /CID.

Unlike ANSI SQL, AMPS allows you to include fields in the projection that are not included in the

A Grouping or used within the aggregate functions. In this case, AMPS uses the last value processed
for the value of these fields. AMPS enforces a consistent order of updates to ensure that the value of
the field is consistent across recovery and restart.

An unexpected 0 (zero) in an aggregate field within a view usually means that the value is either zero
A or NaN. AMPS defaults to using 0 instead of NaN. However, any numeric aggregate function will result
in a NaN if the aggregation includes a field that is not a number.

Finally, the Grouping section is a list of one or more Fields that define how the records in the underlying topic
will be grouped to form the records in the view. In this example, we grouped by the tag holding the client identifier.
However, we could have easily made this the “Symbol” tag /T ck.

In the below example, we group by the /C1lientId because we want to count the number of orders for each client
that have a value greater than 1,000,000:

<SOwW>

<View>
<Name>NUMBER_OF_ORDERS_OVER_ONEMILL</Name>
<UnderlyingTopic>ORDERS</UnderlyingTopic>
<Projection>
<Field>/ClientId</Field>
<Field><![CDATA[SUM(IF(/Shares x /Price > 1000000, /Shares * /Price,
NULL)) AS /AggregateValue]]> </Field>
<Field>SUM(IF(/Shares * /Price > 1000000, /Shares * /Price, NULL))
AS /AggregateValue2</Field>
</Projection>
<Grouping>
<Field>/ClientId</Field>
</Grouping>
<FileName>
./views/numOfOrdersOverOneMil.view
</FileName>
<MessageType>nvfix</MessageType>
</View>

</SOw>

91

Aggregating and Analyzing Data in AMPS

Notice that the /AggregateValue and /AggregateValue_2 will contain the same value; however /Ag-
gregateValue was defined using an XML CDATA block, and /AggregateValue_2 was defined using the
XML > entity reference.

Since the AMPS configuration is XML, special characters in projection expressions must either be
A escaped with XML entity references or wrapped in a CDATA section.

Updates to underlying topics can potentially cause many more updates to downstream views, which can create stress
on downstream clients subscribed to the view. If any underlying topic has frequent updates to the same records and/
or a real-time view is not required, as in a GUI, then a replica of the topic may be a good solution to reduce the
frequency of the updates and conserve bandwidth. For more on topic replicas, please see Chapter 11.

Multiple Topic Aggregate Example

This example demonstrates how to create an aggregate view that uses more than one topic as a data source. For a
potential usage scenario, imagine that another publisher provides a COMPANTES topic which includes the following
NVFIX message schema:

Table 12.2. COMPANIES Table Identifiers

NVFIX Tag Description

Companyld unique identifier for the company
Tick symbol
Name company name

This topic includes the name of the company, and an identifier used for internal record keeping in the trading system.
Using this information, we want to provide a running total of orders for that company, including the company name.

If ORDERS and COMPANIES were a SQL Table within an RDBMS, the “view” we would want to create would
be similar to:

CREATE VIEW TOTAL_COMPANY_VOLUME AS

SELECT COMPANIES.CompanyId, COMPANIES.Tick, COMPANIES.Name,
SUM(ORDERS.Shares) AS TotalVolume

FROM COMPANIES LEFT OUTER JOIN ORDERS
ON COMPANIES.Tick = ORDERS.Tick

GROUP BY ORDERS.T1ick

As defined above, the TOTAL_COMPANY_VOLUME table would have four columns:
1. Companyld: the identifier for the company

2. Tick: The ticker symbol for the company

3. Name: The name of the company

4. TotalVolume: The total number of shares involved in orders

To create this view, use the following definition in the AMPS configuration file:
<SOwW>

<Topic>
<Name>ORDERS</Name>

92

Aggregating and Analyzing Data in AMPS

<MessageType>nvfix</MessageType>
<Key>/OrderID</Key>
<FileName>./sow/%n.sow</FileName>
</Topic>
<Topic>
<Name>COMPANIES</Name>
<MessageType>nvfix</MessageType>
<Key>/CompanyId</Key>
<FileName>./sow/%n.sow</FileName>
</Topic>
<View>
<Name>TOTAL_COMPANY_VOLUME</Name>
<UnderlyingTopic>
<Join>[ORDERS]./Tick = [COMPANIES]./Tick</Join>
</UnderlyingTopic>
<FileName>./views/totalVolume.view</FileName>
<MessageType>nvfix</MessageType>
<Projection>
<Field>[COMPANIES]./CompanyId</Field>
<Field>[COMPANIES]./Tick</Field>
<Field>[COMPANIES]./Name</Field>
<Field>SUM([ORDERS] . /Shares) AS /TotalVolume</Field>
</Projection>
<Grouping>
<Field>[ORDERS]./Tick</Field>
</Grouping>
</View>
</SOw>

As with the single topic example, first specify the underlying topics and ensure that they maintain a SOW database.
Next, the view defines the underlying topic that is the source of the data. In this case, the underlying topic is a
join between two topics in the instance. The definition next declares the file name where the view will be saved,
and the message type of the projected messages. The message types that you join can be different types, and the
projected messages can be a different type than the underlying message types. The projection uses three fields from
the COMPANIES topic and one field that is aggregated from messages in the ORDERS topic. The projection groups
results by the T+ ck symbols that appear in messages in the ORDERS topic.

View Projected Into Different Message Type

This example shows how to project an underlying topic of one message type into a topic of a different message type.

There is very little difference between this example and the single topic view in the section called “Simple Aggregate
View Example”. The main difference is that, because the destination view has a different message type than the
underlying topic, every reference to a field from the underlying topic must be fully-qualified with the message type.

As before, imagine the topic ORDERS which includes the following NVFIX message schema:

Table 12.3. ORDERS Table Identifiers

NVFIX Tag Description

OrderID unique order identifier

Tick symbol

93

Aggregating and Analyzing Data in AMPS

NVFIX Tag Description

Clientld unique client identifier
Shares currently executed shares for the chain of orders
Price average price for the chain of orders

As before, we want to project the summation of current order values by client. The TOTAL_VALUE view will have
two fields:

1. Clientld: the client identifier
2. TotalCost: the summation of current order values by client

However, in this case, we want to project the summary into a JSON document. To do this we simply specify that the
final view will be in JSON format, and fully qualify all references to the underlying topic in the view definition.

The example above would be defined as:

<SOw>
<Topic>
<Name>ORDERS</Name>
<MessageType>nvfix</MessageType>
<Key>/OrderID</Key>
<FileName>./sow/%n.sow</FileName>
</Topic>
<View>
<Name>TOTAL_VALUE</Name>
<UnderlyingTopic>[nvfix].[ORDERS]</UnderlyingTopic>
<MessageType>json</MessageType>
<Projection>
<Field>[nvfix].[ORDERS]./ClientId AS /ClientId</Field>
<Field>SUM([nvfix].[ORDERS]./Shares
*x [nvfix].[ORDERS]./Price) AS /TotalCost</Field>
</Projection>
<Grouping>
<Field>[nvfix].[ORDERS]./ClientId</Field>
</Grouping>
</View>
</SOw>

This example uses an underlying topic in NVFIX format, computes an aggregation by C1ientId, and then produces
output in JSON format.

12.5. Aggregated Subscriptions

In addition to precomputed views and aggregates, AMPS provides the ability for the server to compute an aggrega-
tion for an individual subscription. When an application requests an aggregated subscription, rather than providing
messages for the subscription verbatim, the AMPS server will calculate the requested aggregates and produce a
message that contains the aggregated data.

Most of the time, AMPS applications use views to provide aggregation, as described in Section 12.1. AMPS views
are shared across subscriptions, and are calculated once, when a message updates a view, regardless of the number of

94

Aggregating and Analyzing Data in AMPS

subscribers that subscribe to the view. AMPS provides aggregated subscriptions as a way to do ad hoc aggregation
in cases where a specific aggregate is only needed for a short period time, will only be used by a single subscriber,
or must be provided before the server can be restarted with a defined view. If the aggregation is frequently used, or
if multiple subscribers will use the aggregation, consider using a view rather than an aggregated subscription.

To request an aggregated subscription, the subscriber provides a definition of the fields to project and the grouping to
apply with each subscription. AMPS performs the aggregation and constructs the specified message before delivering
the message.

For example, imagine a topic in the SOW that uses the /7d field to create the SOW key. The topic contains the
following messages:

{ "id":1, "tickerId" : "IBM", "price" : 150.34 }
{ "id":2, "tickerId" : "IBM", "price" : 149.76 }
{ "id":3, "tickerId" : "IBM", "price" : 149.32 }
{ "id":4, "tickerId" : "IBM", "price" : 151.10 }

A subscriber enters a SOW query with the following options:

projection=[MAX(/price) AS /max,/tickerId as /ticker],grouping=[/tickerId]
AMPS aggregates the messages in the SOW, and delivers the following projected record:

{ "ticker" : "IBM", "max" : 151.10 }

Aggregated subscriptions are supported for all commands that read from topics: sow, subscribe,
sow_and_subscribe, delta_subscribe, and sow_and_delta_subscribe. However, there are limi-
tations on some variants of the commands, as described in the following sections.

When to Use Aggregated Subscriptions

Aggregated subscriptions require AMPS to compute the aggregate for each subscription individually, at the time
that messages are processed for the subscription. In addition, for aggregated subscriptions, the current state of the
aggregation is retained for each subscription.

In cases where more than one subscriber is using the same aggregation, a Vi ew is more efficient: each record in the
view is only computed once, saving CPU cycles, and ongoing updates for the record are only stored once, requiring
less memory.

An aggregated subscription is most appropriate when:

* A subscription has unique and unpredictable aggregation needs. For example, if no other subscription is com-
puting a given aggregation, and it is not possible to predict in advance the aggregates to compute, then per-sub-
scription aggregation is a good solution.

» The application is under development and iterating quickly. It can be convenient to use aggregated subscriptions
while developing aggregate definitions that will be eventually provided as view topics.

» The aggregation is expensive and seldom needed. For example, if an aggregation is memory-intensive and only
needed once a week at a time when the instance is otherwise lightly-used, the overall memory usage of the AMPS
instance may be reduced during the rest of the week by using an aggregated subscription.

The considerations above are general guidance to help you consider options between per-subscription aggregation
and a persistent view. In general, if it is possible to use an AMPS view for a given aggregation task and that view will
be frequently used, a view is often the best option. If a view cannot be used (because the aggregation is not known
in advance) or the view would seldom be used, an aggregated subscription may be a better option.

95

Aggregating and Analyzing Data in AMPS

Requesting an Aggregated Subscription

To request an aggregated subscription, set the following options on the subscription:

Table 12.4. Aggregated Subscription options

Option Description

projection=[field specifiers] Specifies a comma-delimited set of fields to project, within brack-
ets. Each entry has the format described in Section 4.3.

This option must contain an entry for every field in the aggregated
message. If there is no entry for a field in this option, that field
will not appear in the aggregated message, even if the field is in
the underlying message.

For example, to project the total value of orders for a specific
item, you might take the sum of the /pr-ice multiplied by the /
quantity for each item, along with the original /descrip-
tion, as follows:

projection=[SUM(/price * /quantity) AS /
total, /description]

When a field appears in the projection option, but is not part of a
grouping clause or used in an aggregation function, the message
will have the value of that field in the last message processed by
AMPS.

There is no default for this option. When this option is provided,
a grouping must also be provided.

grouping=[keys] For an aggregated subscription, the format of this option is a com-
ma-delimited list of XPath identifiers within brackets. For exam-
ple, to aggregate entries based on their /description (pro-
ducing one record in the aggregation for each distinct value in /
description), you would use the following option:

grouping=[/description]

There is no default for this option. When this option is provided,
a projection must also be provided.

For example, to request a count, by customer, of the order records stored in a topic in the SOW, you could use the
following options:

projection=[COUNT (/orderId)AS /orderCount, /customer AS /
customer],grouping=[/customer]

Considerations for Aggregated Subscriptions

When planning to use an aggregated subscription, the following considerations apply:

* The topic for the subscription must be a topic in the State of the World. This includes views and the SOW view
of a queue.

96

Aggregating and Analyzing Data in AMPS

When subscribing to a queue, an aggregated subscription does not remove messages from the queue. Like a view
definition with the queue as an underlying typic, an aggregated subscription browses the queue without taking
messages from the queue.

Filters for the subscription apply to the original messages, not the results of the projection. A filter for an aggregated
subscription is equivalent to the Filter element in a View definition rather than a filter for a subscription that
uses the view.

A subscription that uses per-subscription aggregation does not support the replace option.

An aggregated subscription cannot be a bookmark subscription. That is, replay from the transaction log does not
support aggregated subscriptions.

97

Chapter 13. Transactional Messaging and
Bookmark Subscriptions

AMPS includes support for transactional messaging, which includes persistence, consistency across restarts, and
message replay. AMPS message queues use the transaction log to hold the messages in the queue. Transactional
messaging is also the basis for replication, a key component of the high-availability capability in AMPS (as described
in Chapter 24). AMPS message queues use the transaction log as a persistent record of the messages that have entered
the queue, the order of those messages, and which messages have been acknowledged and removed from the queue.
All of these capabilities rely on the AMPS transaction log. The transaction log maintains a record of messages.
You can choose which messages are included in the transaction log by specifying the message types and topics you
want to record.

The AMPS transaction log differs from transaction logging in a conventional relational database system. Unlike
transaction logs that are intended solely to maintain the consistency of data in the system, the AMPS transaction
log is fully queryable through the AMPS client APIs. For applications that need access to historical information, or
applications that need to be able to recover state in the event of a client restart, the transaction log allows you to do
this, relying on AMPS as the definitive single version of the state of the application. There is no need for complex
logic to handle reconciliation or state restoration in the client. AMPS handles the difficult parts of this process, and
the transaction log guarantees consistency.

Topics covered by a transaction log are able to provide reliable messaging with strict consistency guarantees.

When a transaction log is enabled, topics covered by the transaction log provide atomic broadcast from that instance.
This means that the instance enforces a repeatable ordering on the messages, and guarantees that all subscribers
receive messages reliably, in a consistent order, and with no gaps or duplicates.

13.1. Recording and Replaying Messages With
Transaction Logs

AMPS includes the ability to record messages in a transaction log, and replay those messages at a later time. This
capability is key for high availability, since it gives subscribers the ability to resume a subscription at a point in time
without missing messages. This capability is also the foundation of replication, since it gives AMPS the ability to
preserve message streams to be synchronized to an instance that has gone offline.

The transaction log in AMPS contains a sequential, historical record of messages. Each message is identified by a
bookmark, a unique identifier that AMPS uses to locate the message within the overall set of recorded messages.
The transaction log can record messages for a topic, a set of topics, or for filtered content on one or more topics.

An application can request a subscription that replays messages from the transaction log. Subscriptions that replay
from the transaction log are called bookmark subscriptions, since the subscription begins at a specific point in the
transaction log identified by a specific bookmark. Bookmark subscriptions provide topic and content filtering in the
same way that normal subscriptions do, and provide a set of unique capabilities (such as the ability to pause and
resume the subscription) that are made possible because the subscription is provided from a persistent record of the
message stream. Bookmark subscriptions are also key to high availability with AMPS. When a client is recovering
from a restart or failure, this ability to replay allows a client to fill gaps in received messages and resume subscriptions
without missing a message. This feature also allows new clients to receive an exact replay of a message stream.
Replay from the transaction log is also useful for auditing, quality assurance, and backtesting.

The transaction log is used in AMPS replication to ensure that all servers in a replication group are continually
synchronized should one of them experience an interruption in service. For example, say an AMPS instance, as a

98

Transactional Messaging and Bookmark Subscriptions

member of a replication group, goes down. When it comes back up, it can query another AMPS instance for all of the
messages it did not receive, thereby catching up to a point of synchronization with the other instances. This feature,
when coupled with AMPS replication, ensures that message subscriptions are always available and up-to-date.

The AMPS transaction log records messages that are received from a publisher and events that affect those messages
such as sow_delete commands. AMPS does not record messages that are created through a view, out-of-focus
messages, or event status messages created by AMPS.

Understanding Message Persistence

To take advantage of transactional messaging, the publisher and the AMPS instance work together to ensure that
messages are written to persistent storage. AMPS lets the publisher know when the message is persisted, so that the
publisher knows that it no longer needs to track the message.

When a publisher publishes a message to AMPS, the publisher assigns each message a unique sequence number.
Once the message has been written to persistent storage, AMPS uses the sequence number to acknowledge the
message and let the publisher know that the message is persisted. Once AMPS has acknowledged the message,
the publisher considers the message published. For safety, AMPS always writes a message to the local transaction
log before acknowledging that the message is persisted. If the topic is configured for synchronous replication, all
replication destinations have to persist the message before AMPS will acknowledge that the message is persisted.

For efficiency, AMPS may not acknowledge each individual message. Instead, AMPS acknowledges the most recent
persisted message to indicate that all previous messages have also been persisted. Publishers that need transactional
messaging do not wait for acknowledgment to publish more messages. Instead, publishers retain messages that
haven't been acknowledged, and republish messages that haven't been acknowledged if failover occurs. The AMPS
client libraries include this functionality for persistent messaging.

Configuring a Transaction Log

Before demonstrating the power of the transaction log, we will first show how to configure the transaction log in
the AMPS configuration file.

O<TransactionlLog>
@®<JournalDirectory>./amps/journal/</JournalDirectory>
©<JournalArchiveDirectory>

/mnt/somedev@/amps/journal
</JournalArchiveDirectory>
O<PreallocatedJournalFiles>1</PreallocatedJournalFiles>
O<MinJournalSize>10MB</MinJournalSize>
O<Topic>

<Name>orders</Name>
<MessageType>nvfix</MessageType>
</Topic>
O<FlushInterval>40ms</FlushInterval>
</TransactionlLog>

© All transaction log definitions are contained within the TransactionlLog block. The following global set-
tings apply to all Top1ic blocks defined within the TransactionlLog: JournalDirectory, Preal-
locatedJournalFiles,and MinJournalSize.

® The JournalDirectory is the filesystem location where journal files and journal index files will be stored.

99

Transactional Messaging and Bookmark Subscriptions

® The JournalArchiveDirectory is the filesystem location to which AMPS will archive journals. Notice
that AMPS does not archive files by default. You configure an action to archive journal files, as described in
the section called “Manage Journal Files”.

O PreallocatedJournalFiles defines the number of journal files AMPS will create as part of the server
startup. Default: 2 Minimum: 1

©® The MinJournalSize is the smallest journal size that AMPS will create. Default: 1GB Minimum: 10M

©® When a Topic is specified, then all messages which match exactly the specified topic or regular expression
will be included in the transaction log. Otherwise, AMPS initializes the transaction logging, but does not record
any messages to the transaction log.

The Topi ¢ section can be specified multiple times to allow for multiple topics to be published to the transaction
log.

@ The FlushIntervalisthe interval at which messages will be flushed the journal file during periods of slow
activity. Default: 100ms Maximum: 100ms Minimum: 30us

Replaying Messages with Bookmark Subscription

One of the most useful and powerful features in AMPS is bookmark subscription, which is enabled by the transaction
log. With bookmark subscription, an application requests a subscription that starts at a specific point in the transaction
log. AMPS begins the subscription at the specified point, and provides messages from the transaction log.

Each message in the transaction log has a bookmark. A bookmark is an opaque, unique identifier that is added by
AMPS to each message recorded in the transaction log. For messages provided from a transaction log, the field is
included in the Bookmar k header of the message. AMPS guarantees that bookmarks for the instance are monoto-
nically increasing, which enables AMPS to rapidly find an individual bookmark within the transaction log.

A bookmark subscription simply requests that AMPS begin the subscription with the first message following the
bookmark provided with the subscription. AMPS locates the bookmark in the transaction log, and begins the sub-
scription at that point in time.

One way to think about a bookmark subscription is that AMPS publishes to the subscribing client only those messages
that:

1. have bookmarks after the provided bookmark,
2. match the subscription's Topic and Filter, and
3. have been written to the transaction log

AMPS provides these messages in the order in which they were recorded to the transaction log. Because a bookmark
subscription requires a transaction log, when a client requests a bookmark subscription for a topic that is not being
recorded in the transaction log, AMPS returns an error.

AMPS allows an application to submit a comma-delimited list of bookmark values as the bookmark for a subscription
request. In this case, AMPS begins replay at the oldest bookmark in the list. The client controls the bookmark
provided on the subscription request. For a bookmark subscription, the AMPS server does not keep a persistent
record of which bookmarks a specific client or subscription has processed. The AMPS client libraries provide a
facilities for easily tracking the messages which an application has processed so the application can resume at the
appropriate point in the transaction log.

lets AMPS adapt the pace of replay to the pace at which the subscriber is consuming replayed messages

@ Bookmark subscriptions are provided from the transaction log rather than the live publish stream. This
without triggering slow client offlining.

100

Transactional Messaging and Bookmark Subscriptions

There are four different ways that a client can request a bookmark replay from the transaction log. Each of these
bookmark types meets a different need and enables a different recovery strategy that an application can use. The
sections below describe the recovery types, the cases in which they can be used, and how the 60East clients implement
them.

transaction log and SOW are independent features that can be used separately. The SOW gives a snapshot
of the current view of the latest data, while the journal is capable of playback of previous messages.
Historical SOW queries provide a snapshot of the SOW at a defined point in the past, and are provided
by the SOW database rather than the transaction log.

@ While there are similarities between a bookmark subscription used for replay and a SOW query, the

Recovery With an Epoch Bookmark

The epoch bookmark, when requested on a subscription, will replay the transaction log back to the subscribing
client from the very beginning. Once the transaction log has been replayed in its entirety, then the subscriber will
begin receiving messages on the live incoming stream of messages. A subscriber does this by requesting a 0 in the
bookmar k header field of their subscription. The AMPS clients provide a constant for epoch, typically represented
as EPOCH.

This type of bookmark can be used in a case where the subscriber has begun after the start of an event, and needs
to catch up on all of the messages that have been published to the topic.

To ensure that no messages from the subscription are lost during the replay, AMPS replays messages from the
transaction log until the client reaches the last message in the transaction log. Once all of the existing messages in the
transaction log have been sent to the client, AMPS will cut over to the live subscription stream and provide messages
to the client as soon as they are persisted.

Bookmark Replay From NOW

The NOW bookmark, when requested on a subscription, declines to replay any messages from the transaction log,
and instead begins streaming messages from the live stream - returning any messages that would be published to the
transaction log that match the subscription's Topic and Filter.

This type of bookmark is used when a client is concerned with messages that will be published to the transaction
log, but is unconcerned with replaying the historical messages in the transaction log. This strategy is often used for
applications that want to ensure that they do not miss messages, even if the application temporarily loses connectivity,
but are not concerned with older messages. For this case, the application subscribes with NOW when the application
starts, and then re-establishes the subscription with the most recently-processed bookmark if connectivity is lost.
This resubscription behavior is typically handled by the client reconnection logic (as in the 60East HAClient
implementations).

The NOW bookmark is performed using a subscribe query with "0|1|" as the bookmark field. The AMPS clients
provide a constant for this value, typically represented as NOW.

Bookmark Replay With a Bookmark

Clients that store the bookmarks from published messages can use those bookmarks to recover from an interruption
in service. By placing a subscribe query with the last bookmark recorded, a client will get a replay of all messages
persisted to the transaction log after that bookmark. Once the replay has completed, the subscription will then cut
over to the live stream of messages.

101

Transactional Messaging and Bookmark Subscriptions

To perform a bookmark replay, the client places a bookmark subscription with the bookmark at which to start the
subscription.

Developer Note: the MOST_RECENT value

The AMPS client libraries provide a special constant value that requests that the library look up the bookmark for the
appropriate recovery point in the bookmark store and then provide that bookmark in the subscription request. This
special value is typically represented as MOST_RECENT. When the application requests a bookmark subscription
with a bookmark of MOST _RECENT, the client library looks for the most recent bookmark processed by the appli-
cation, then provides that bookmark for the subscription. This ensures that the subscription begins at last processed
message, and the application receives the next unprocessed message for the subscription. If there is no record of a
subscription, the AMPS clients will start with EPOCH.

It's important to remember that the AMPS server has no knowledge of the MOST_RECENT value. MOST_RECENT
is never sent to AMPS and never appears in the AMPS log. MOST_RECENT is simply a request to the AMPS client
library to look up the exact bookmark to provide to AMPS. The AMPS client libraries always translate a request for
MOST_RECENT into either a specific bookmark value or EPOCH.

Bookmark Replay From a Moment in Time

The final type of bookmark supported is the ASCII-formatted timestamp. When using a timestamp as the bookmark
value, the transaction log replays all messages that occurred after the timestamp, and then cuts over to the live
subscription once the replay stream has been consumed.

This bookmark has the format of YYYYmmddTHHMMSS [Z] where:

* YYYY is the four digit year.

* mm is the two digit month.

* dd is the two digit day.

* T the character separator between the date and time.

* HH the two digit hour.

* MM the minutes of the time.

* SS the two digit second.

* Zis an optional timezone specifier. AMPS timestamps are always in UTC, regardless of whether the timezone is
included. AMPS only accepts a literal value of Z for a timezone specifier.

For example, a timestamp for January 2nd, 2015, at 12:35:

20150102T123500Z

Content and Topic Filtering

As with all other subscriptions, bookmark subscriptions support content filtering.

102

Transactional Messaging and Bookmark Subscriptions

Bookmark subscriptions provide only messages from topics that are recorded in the transaction log. In other words,
when a bookmark subscription uses a topic regular expression, only messages from topics that are recorded in the
transaction log are provided to the subscription. This ensures that a bookmark subscription provides a consistent, re-
peatable stream of messages. The topics provided to the subscription are the same during replay, when only messages
recorded in the transaction log are available, and after replay completes, when every publish to AMPS is available.
This also ensures that bookmark subscription that replays messages for a specific timeframe gets the same messages
as bookmark subscribers that had active subscriptions during that timeframe.

Content filtering is covered in greater detail in Chapter 4, AMPS Expressions.

Delivery Rate Control for Bookmark Subscriptions

AMPS allows subscribers to specify the maximum delivery rate for messages delivered from a bookmark subscrip-
tion. A subscriber specifies the maximum rate at which AMPS should deliver messages to the subscription. AMPS
then limits the rate at which replay occurs so that the overall rate does not exceed the specified maximum. Rate
control is not available for subscriptions that use the 1 ve option.

To request rate control, a subscriber provides the rate option on the subscription. A rate can be specified in either
messages per second, number of bytes delivered per second, or a multiple of the original delivery rate. For example,
the following subscription option limits delivery to 1000 messages per second:

rate=1000
To limit delivery to 5S00KB per second, a subscriber would provide this option:
rate=500KB

To limit replay to double the speed at which messages were originally published, a subscriber would provide this
option:

rate=2X

To limit delivery to half the speed at which messages were originally published, a subscriber would provide this
option

rate=.5X

Pausing and Resuming Bookmark Subscriptions

Beginning in AMPS 5.0, AMPS offers the ability to pause a bookmark subscription. When a subscriber requests
that AMPS pause the subscription, AMPS stops providing messages from the bookmark subscription, but does not
remove the subscription. The subscriber can then resume the subscription, and AMPS will again begin providing
messages from the subscription. While the subscription is paused, AMPS maintains a record of the current position
in the transaction log, and begins replay from that point.

This feature can be useful for clients that need to temporarily stop processing messages while minimizing the buffer
space consumed during the time that the client is not consuming messages. For example, a simulation that visualizes
historical data might pause the bookmark subscription if the user pauses the visualization.

An application may create a subscription in the paused state by including pause as an option on the initial sub-
scribe command. To pause an active subscription, a subscriber sends a subscribe command with the existing
subscription ID and the pause option. To resume a subscription, a subscriber sends a subscribe command with

103

Transactional Messaging and Bookmark Subscriptions

the subscription ID (or a comma-separated list of subscription IDs) and the resume option. The AMPS clients
provide convenience constants for the pause and resume options.

AMPS allows a given client to pause or resume multiple subscriptions at once.

When multiple bookmark subscriptions are resumed at the same time, AMPS will attempt to combine replay for the
subscriptions. When AMPS can combine replay, AMPS will guarantee that messages across subscriptions are deliv-
ered from the same replay, which can help to preserve order across subscriptions. AMPS can combine subscriptions
when they are delivered to the same client connection, were paused at the same bookmark, deliver at the same rate
and are resumed with the same command. This feature can be useful for synchronizing message delivery across a
number of subscriptions. When using pause and resume for this purpose, an application typically includes the
pause option on a number of subscriptions when the subscriptions are created, and then resumes the subscriptions
when the application is ready to begin the replay.

Pausing a subscription stops AMPS from sending messages to the client once the pause command is processed.
However, any messages already on the network, or in a network buffer on the client or the server will be delivered
to the client.

AMPS allows you to begin a subscription in the paused state by providing the pause option when creating the
subscription.

AMPS removes a paused subscription if the subscriber disconnects: for restarting a subscription across subscriber
restarts, use the basic bookmark subscription features as described above.

Conflation and Bookmark Subscriptions

AMPS supports subscription conflation for bookmark subscriptions, as described in Section 3.3, Conflated Sub-
scriptions.

Conflation for bookmark subscriptions works the same way that conflation for regular subscriptions works. Messages
from the replay are held by AMPS for the conflation interval. If during that interval the replay finds a message with
the same conflation_key value, AMPS replaces the held message with the message from the replay. At the end of
the conflation interval, AMPS provides the currently held message to the subscriber. The conflation interval refers
to the replay. In other words, a conflation interval of 1s conflates messages for 1 second, regardless of whether the
messages are provided from a replay or from current publishes. If the messages are provided from the transaction log,
conflation occurs for 1 second of replay time, regardless of the rate at which the messages were originally published.

When using conflation, the bookmark provided on a message that has been provided after conflation is the bookmark
for the first conflated message during the interval rather than the message that AMPS delivers at the end of the
conflation interval.

Selecting Message Durability Options

AMPS supports two distinct options for specifying message durability. By default, messages are provided to a book-
mark subscription when they are persisted to the local transaction log.

Once replay from the transaction log is finished, AMPS sends messages to subscribers as the messages are processed.
By default, AMPS waits until a message is persisted to the local transaction log before sending the message to
subscribers. Because each message delivered is persisted, this approach ensures that the sequence of messages is
consistent for this instance across client and server restarts, and that messages that are received by a subscriber will
be available after a restart.

104

Transactional Messaging and Bookmark Subscriptions

AMPS provides options that a subscriber can use to change the point at which AMPS delivers messages once replay
from the transaction log has finished.

Using the 'fully_durable’ Option for Bookmark Subscriptions

With the fully_durable option, once replay from the transaction log is finished, AMPS sends a message to the
subscriber only when the message has been persisted in the local transaction log and all synchronous downstream
replication destinations have acknowledged the message. This option is useful for applications where processing of
a message should not begin until more than one AMPS instance has persisted the message.

This option will typically introduce more latency for incoming messages when those messages must be replicated.
When this option is used and one or more of the synchronous downstream replication destinations that receives
messages for this topic is offline, the instance will not deliver incoming messages until that destination comes back
online or is downgraded to asynchronous replication.

Using the 'live’ Option for Bookmark Subscriptions

In some cases, reducing latency may be more important than consistency. To support these cases, AMPS provides
a Live option on bookmark subscriptions. For bookmark subscriptions that use the 11ve option, once replay has
finished, AMPS sends messages to subscribers before the message has been persisted. This can provide a small
reduction in latency at the expense of increasing the risk of inconsistency upon failover. For example, if a publisher
does not republish a message after failover, your application may receive a message that is not stored in the transaction
log and that other applications have not received.

The 11 ve option increases the risk of inconsistent data between your program and AMPS in the event
of a failover. 60East recommends using this option only if the risk is acceptable and if your application
requires the small latency reduction this option provides.

Because the 11ve option does not wait for messages to be persisted, subscriptions that use this option are subject
to slow client offlining after replay from the transaction log is complete.

The rate, pause, and resume options are not supported with the 11 ve option.

Managing Journal Files

The design of the journal files for the transaction log are such that AMPS can archive, compress and remove these files
while AMPS is running. AMPS actions provide integrated adminstration for journal files, as described in Chapter 23.

Archiving a file copies the file to an archival directory, typically located on higher-capacity but higher-latency stor-
age. Compressing a file compresses the file in place. Archived and compressed journal files are still accessible to
clients for replay and for AMPS to use in rebuilding any SOW files that are damaged or removed.

When defining a policy for archiving, compressing or removing files, keep in mind the amount of time for which
clients will need to replay data. Once journal files have been deleted, the messages in those files are no longer
available for clients to replay or for AMPS to use in recreating a SOW file. If journal files are removed, and a SOW
file is retained, this means that the SOW may have data that is not in the transaction log.

To determine how best to manage your journal files, consider your application's access pattern to the recorded mes-
sages. Most applications have a period of time (often a day or a week) where historical data is in heavy use, and

105

Transactional Messaging and Bookmark Subscriptions

a period of time (often a week, or a month) where data is infrequently used. One common strategy is to create the
journal files on high-throughput storage. The files are archived to slower, higher-capacity storage after a short peri-
od of time, compressed, and then to removed after a longer period of time. This strategy preserves space on high-
throughput storage, while still allowing the journals to be used. For example, if your applications frequently replay
data for the last day, occasionally replay data older than the last week, and never request data older than one month,
a management strategy that meets these needs would be to archive files after one day, compress them after a week,
and remove them after one month.

If you remove journal files when AMPS is shut down, keep in mind that the removal of journal files must

A be sequential and can not leave gaps in the remaining files. For example, say there are three journal files,
001, 002 and 003. If only 002 is removed, then the next AMPS restart could potentially overwrite
the journal file 03, causing an unrecoverable problem.

When using AMPS actions to manage journal files, AMPS ensures that all replays from a journal file are complete,
all queue messages in that journal file have been delivered (and acknowledged, if required), and all messages from
a journal file have been successfully replicated before removing the file.

106

Chapter 14. Message Queues

AMPS includes high performance queuing built on the AMPS messaging engine and transaction log. AMPS mes-
sage queues combine elements of classic message queuing with the advanced messaging features of AMPS, includ-
ing content filtering, aggregation and projection, historical replay, and so on. This chapter presents an overview of
queues.

AMPS message queues help you easily solve some common messaging problems:

+ Ensuring that a message is only processed once

+ Distributing tasks across workers in a fair manner

+ Ensuring that a message is delivered to and processed by a worker

+ Ensuring that when a worker fails to process a message, that message is redelivered

While it's possible to create applications with these properties by using the other features of AMPS, message queues
provide these functions built into the AMPS server. In addition, message queues allow you to:

* Replicate messages between AMPS instances while preserving delivery guarantees
+ Create views and aggregates based on the current contents of a queue

+ Filter messages into and out of a queue

* Provide a single published message to multiple queues

+ Aggregate multiple topics into a single queue

Use message queues when you need to ensure that a message is processed by a single consumer. When you need to
distribute messages to a number of consumers, use the AMPS pub/sub delivery model.

The following diagram illustrates a simple usage of a queue to distribute work across three publishers.

107

Message Queues

SUBSCRIBER 1

/ Topic: WorkToDo

Topic: WorkToDo

AMPS Id: 1 | Work: ...

\ Topic: WorkToDo SUBSCRIBER 2

| Id: 3 | Work: ... >

Transaction Log Topic: Work

PUBLISHER

Topic: Work
Id: 1| Work: ...

Topic: Work
Id: 2 | Work: ...

Topic: Work
Id: 3 | Work: ...

Topic: WorkToDo

Topic: WorkToDo

Id: 2 | Work: ...
SUBSCRIBER 3
Topic: WorkToDo

This diagram shows a simple use of AMPS queues to distribute work. In the diagram, the transaction log is configured
to record a topic named Work. AMPS is also configured with a a queue named WorkToDo, which is based on
the underlying topic Wor k. The publisher publishes three messages to the topic Work, and AMPS includes those
messages in the WorkToDo queue. Each message is delivered to one of the three subscribers to the WorkToDo

queue. Unlike pub/sub messaging, each subscriber only receives one message, and each message is delivered to only
one subscriber.

Notice that, even though AMPS provides queue semantics over the WorkToDo topic, the messages are recorded
in the transaction log once, in the Work topic. Other subscribers could subscribe to the Work topic to receive the
full stream of messages, or do a bookmark replay over the Work topic to recreate the message flow or audit the
messages published to that topic.

14.1. Getting Started with AMPS Queues

To add a simple queue to AMPS, add the following options to your configuration file.

First, create a transaction log that will record the messages for the queue, as described in Chapter 13. You add the
transaction log entry if your AMPS configuration does not already have one. Otherwise, you can simply adda Topic
statement or modify an existing Top1ic statement to record the messages. The sample below captures any JSON
messages published to the Work topic.

108

Message Queues

<AMPSConfig>

<TransactionlLog>
<JournalDirectory>./journals</JournalDirectory>
<Topic>
<Name>Work</Name>
<MessageType>json</MessageType>
</Topic>
</TransactionlLog>

</AMPSConfig>

Next, declare the queue topic itself. Queues are defined in the SOW element of the AMPSConfig file, as shown
below:

<AMPSConfig>

<SOw>
<Queue>
<Name>WorkToDo</Name>
<MessageType>json</MessageType>
<Semantics>at-most-once</Semantics>
<UnderlyingTopic>Work</UnderlyingTopic>
</Queue>
</SOw>

</AMPSConfig>

These simple configuration changes create an AMPS message queue. Notice that the Topic for the queue in this
case is WorkToDo, which includes every message published to the underying topic Work. You could also use a
regular expression to include messages to more than one topic, or leave out the UnderlyingTopic to include
only messages published to the topic with the same name as the queue.

This simple queue provides each message that arrives for the queue to at most one subscriber. After AMPS delivers
the message to one subscriber, AMPS removes the message from the queue without waiting for the subscriber to
acknowledge the message.

While it's easy to create a simple queue, AMPS offers a rich queuing model that is designed to meet a wide variety
of queueing needs. The options are described in the following sections and the AMPS Configuration Guide.

By default, AMPS queues are distributed queues. That is, if the queue topic or the underlying topics are replicated,
AMPS provides the queue delivery guarantees as though all of the instances were delivering messages from a single
queue. AMPS also provides local queues (where each instance has a separate, independent queue) when a queue is
defined with the LocalQueue tag.

14.2. Understanding AMPS Queuing

AMPS message queues take advantage of the full historical and transactional power of the AMPS engine. Each queue
is implemented as a view over an underlying topic or set of topics. Each of the underlying topics must be recorded
in a transaction log. Publishers publish to the underlying topic, and the messages are recorded in the transaction
log. Consumers simply subscribe to the queue. AMPS tracks which messages have been delivered to subscribers

109

Message Queues

and which messages have been processed by subscribers. AMPS delivers the next available message to the next
subscriber.

Unlike traditional queues, which require consumers to poll for messages, AMPS queues use a subscription model.
In this model, each queue consumer requests that AMPS provide messages from the queue. The consumer can also
request a maximum number of messages to have outstanding from the queue at any given time, referred to as the
backlog for that consumer. When a message is available, and the consumer has fewer messages outstanding than
the backlog for that consumer, AMPS delivers the message to the consumer. This improves latency and conserves
bandwidth, since there is no need for consumers to repeatedly poll the queue to see if work is available. In addition,
the server maintains an overall view of the consumers, which allows the server to control message distribution
strategies to optimize for latency, optimize to prefer delivery to clients with the most unused capacity, or optimize
for general fairness.

The following diagram presents a simplified view of an AMPS queue.

Transaction Log

topic: orders {"order":1,"customer":"Jackson","status":"active","qty":100,"ticker":"IBM"}

topic: orders {"order":2,"customer":"Patrick","status":"active","qty":100,"ticker":"HPQ"} leased

topic: orders {"order":3,"customer":"Patrick","status":"active","qty":1000,"ticker":"MSFT"} leased

available
topic: orders {"order":4,"customer":"John","status":"active","qty":100,"ticker":"HPQ"}
available Queue

topic: orders {"order":5,"customer":"Patrick","status":"active","qgty":1500,"ticker":"IBM"}
available orders_queue

topic: orders {"order":4,"customer":"Patrick","status":"cancel"} e

topic: orders {"order":2,"customer":"Patrick","status":"update", "qty":1000}
availabl;

topic: orders {"order":6,"customer":"Joy","status":"active", "qty":750, ticker:"IBM"}

As the diagram indicates, a queue tracks a set of messages in the transaction log. The messages the queue is currently
tracking are considered to be in the queue. When the queue delivers a message, it marks the message as having been
delivered (shown as leased in the diagram above). Messages that have been processed are no longer tracked by the
queue (for example, the message for the order 1 in the diagram above). When a message has been delivered and
processed, that event is recorded in the transaction log to ensure that the queue meets the delivery guarantees even
across restarts of AMPS.

Because queues are implemented as views over underlying topics, AMPS allows you to create any number of queues
over the same underlying topic. Each queue tracks messages to the topic independently, and can have different
policies for delivery and fairness. When a queue topic has a different name than the underlying topic, you can
subscribe to the underlying topic directly, and that subscription is to the underlying (non-queue) topic. When a queue
topic has the same name as the underlying topic (the default), all subscriptions to that topic are to the queue.

Likewise, AMPS queues work seamlessly with the AMPS entitlement system. Permissions to queues are managed
the same way permissions are managed to any other topic, as described in the Entitlements section of the AMPS
User Guide.

AMPS queues provide a variety of options to help you tailor the behavior of each queue to meet your application's
needs.

Delivery Semantics

AMPS supports two different levels of guarantees for queue delivery:

* With at-least-once delivery, AMPS delivers the message to one subscriber at a time, and expects that sub-
scriber to explicitly remove the message from the queue when the message has been received and processed. With

110

Message Queues

this guarantee, each message from the queue must be processed within a specified timeout, or lease period. AMPS
tracks the amount of time since the message was sent to the subscriber. If the subscriber has not responded by
removing the message within the lease period, AMPS revokes the lease and the message is available to another
subscriber.

In this model, receiving a message is the equivalent of a non-destructive get from a traditional queue. To acknowl-
edge and remove the message, a subscriber uses the sow_delete command with the bookmark of the message.

Leases are broken and messages are returned to the queue if the lease holder disconnects from AMPS. This ensures
that, if a message processor fails or loses its connection to AMPS, the message can immediately be processed by
another message processor.

* With at-most-once delivery, AMPS removes the message from the queue as soon as the message is sent to
a subscriber. However, the subscriber still needs to acknowledge that the message was processed, so that AMPS
can track the subscription backlog, as described below.

In this model, receiving a message is the equivalent of a destructive get from a traditional queue. The message is
immediately removed by AMPS, and is no longer available in the queue.

Subscription Backlog

For efficiency, queues in AMPS use a push model of delivery, providing messages to consumers when the message
becomes available rather than requiring the consumer to poll the queue. To manage the workload among consumers,
AMPS queues keep track of a subscription backlog. This backlog is the number of messages that have been provided
to an individual subscription that have not yet been acknowledged. This backlog helps AMPS provide strong delivery
guarantees while still optimizing for high throughput processing. AMPS calculates the subscription backlog for each
subscription by calculating:

* The minimumMaxPerSubscriptionBacklog setting for the queues matched by the subscription, or

* The max_backlog specified on the subscribe command,

whichever is smallest

Notice that, if a subscriber does not provide amax_backlog on a subscription, AMPS defaults toamax_backlog
of 1. In practical terms, this means that an application must explicitly specify a backlog to be able to receive more
than one message from a queue at a time, regardless of the queue configuration.

Subscribers request a max_backlog by adding the request to the options string of the subscribe command.
For example, to request a max_backlog of 10, a subscriber includes max_backlog=10 in the options for the
command.

To improve concurrency for subscribers, 60East recommends using a backlog of at least 2. This allows efficient
pipelined delivery, as the consumer can be processing one message while the previous message is being acknowl-
edged. With a max_backlog higher than 1, the consumer never needs to be stopped waiting for the next message
from the queue.

Delivery Fairness

When a queue provides at-least-once delivery, AMPS provides three different algorithms for distributing
messages among subscribers. Each algorithm has different performance and fairness guarantees. For at-most-
once delivery, AMPS supports only the round-robin method of distributing messages.

111

Message Queues

Table 14.1. Message Distribution Algorithms

Algorithm Description

fast This strategy optimizes for the lowest latency. AMPS delivers the message to the
first subscription found that does not have a full backlog. With this algorithm, AMPS
tries to minimize the time spent determining which subscription receives the message
without attempting to distribute messages fairly across subscriptions.

round-robin This strategy optimizes for general fairness across subscriptions. AMPS delivers the
message to the next available subscription that does not have a full backlog. With this
algorithm, AMPS delivers messages evenly among the subscribers that have space
in their backlog.

proportional This strategy optimizes for delivery to subscriptions with the most unused capacity.
AMPS delivers the message to the subscription that has the highest proportion of
backlog capacity unused. AMPS determines this by taking the ratio of unacknowl-
edged messages to the maximum backlog.

For example, if there are three active subscribers for the queue, with backlog settings
and outstanding messages as follows:

Table 14.2. Proportional delivery example

Subscriber Unacknowledged Mes- Maximum Backlog
sages

Inky 1

Blinky 3 4

Clyde 4 10

In this case, with proportional delivery, a new message for the queue will be
delivered to Clyde, since that subscriber has only filled 40% of the backlog, as com-
pared with 50% for Inky and 75% for Blinky.

AMPS defaults to proportional delivery for at-1least-once queues and defaults to round-robin (the
only valid delivery model) for at-most-once queues.

Acknowledging Messages

Subscribers must acknowledge each message to indicate to AMPS that a message has been processed. The point
at which a subscriber acknowledges a message depends on the exact processing that the subscriber performs and
the processing guarantees for the application. In general, applications acknowledge messages at the point at which
the processing has a result that is durable and which would require an explicit action (such as another message) to
change. Some common points at which to acknowledge a message are:

» When processing is fully completed

» When work is performed that would require a compensating action (that is, when information is committed to a
database or forwarded to a downstream system)

» When work is submitted to a processor that is guaranteed to either succeed or explicitly indicate failure

To acknowledge a message, the subscriber uses the acknowledge convenience methods in the AMPS client. These
commands issue a sow_delete command with the bookmark from the message to acknowledge. AMPS allows
subscribers to acknowledge multiple messages simultaneously by providing a comma-delimited list of bookmarks
in the sow_delete command: the AMPS clients provide facilities for batching acknowledgements for efficiency.

112

Message Queues

A subscriber can also explicitly release a message back to the queue. AMPS returns the message to the queue,
and redelivers the message just as though the lease had expired. To do this, the subscriber sends a sow_delete
command with the bookmark of the message to release and the cance'l option.

Message Flow for Queues

The message flow for AMPS queues is as follows. The message flow differs depending on whether the queue is
configured for at-most-once delivery or at-least-once delivery.

When the queue is configured for at-most-once delivery:

1.
2.

3.

A publisher publishes a message to an underlying topic.

The message becomes available in the queue.

The message is published to a subscriber when:

 There is a subscription that matches the message, and the subscriber is entitled to see the message
* The message is the oldest message in the queue that matches the subscription

» The subscription has remaining capacity in its backlog

* The subscription is the next subscription to receive the message as determined by the delivery fairness for the
queue
AMPS removes the message from the queue when the message is published.

If no subscription has requested the message, and the message has been in the queue longer than the Expiration
time, AMPS removes the message from the queue. With AMPS queues, message expiration is considered to be
a normal way for the message to leave the queue, and is not considered an error.

The subscriber processes the message, and acknowledges the message when processing is finished to indicate to
AMPS that the subscriber has capacity for another message.

When the queue is configured for at-Tleast-once delivery:

1.
2.

3.

A publisher publishes a message to an underlying topic.

The message becomes available in the queue.

The message is published to a subscriber when:

* There is a subscription that matches the message

» The message is the oldest unleased message in the queue that matches the subscription
 The subscription has remaining capacity in its backlog

 The subscription is the next subscription to receive a message as determined by the delivery fairness for the
queue
AMPS calculates the lease time for the message and provides that time to the subscriber along with the message.

If the message has been in the queue longer than the Expiration time, and there is no current lease on the
message, AMPS removes the message from the queue.

If a subscriber has received the message, but has not removed the message from the queue at the time the lease
expires, AMPS returns the message to the queue if the message has been in the queue less than the Expiration

113

Message Queues

time. If the message has been in the queue longer than the Expiration time, AMPS removes the message from
the queue when the lease expires.

6. The subscriber processes the message, and removes the message from the queue by acknowledging the message
(which is translated by the client into the appropriate sow_de lete command).

Advanced Messaging and Queues

Queues are implemented as AMPS topics which lets you use the advanced messaging features of AMPS to create your
queues and provide insight into your queues. For example, consumers can use content filtering to select the messages
from the queue that they want to consume. You can use content filters to select only a subset of messages published
to an underlying topic to populate the queue. You can even create a view that aggregates data from multiple topics,
and use that view as the underlying topic for the queue. Since messages for queues are recorded in the transaction
log, you can easily replay messages published from the queue using a bookmark subscription.

Querying Queues as a View

For each queue, AMPS provides a view of the currently available messages. Applications can query this queue just
as though it were a view. For example, if you have a queue named PendingOrders, you can see the currently
available messages in the queue by querying the queue as though it were a view, with a sow command.

A query of a queue is read-only. AMPS does not lease the returned messages to the querying application, or remove
them from the queue.

Topics with a SOW as Underlying Topics for Queues

AMPS fully supports a topic that maintains a SOW as an underlying topic for a queue. Since a queue records every
individual publish to a topic (rather than simply preserving the current state of a distinct message identified by a
SOW key), each publish to the SOW topic creates a new message in the queue.

AMPS does not provide Out-of-Focus messages to the queue. Only publish messages are added to the queue.

Deleting a message from an underlying topic that maintains a SOW does not remove the corresponding messages
from the queue. Likewise, when a message expires from the SOW, it is not removed from the queue.

Delta Messaging with Queues

AMPS delta subscriptions rely on being able to determine the last state of a message delivered on a subscription and
providing a set of changes to the subscriber. With AMPS queues, AMPS treats each update to a SOW record as a new
message, so there's no previous state that would generate a delta message. When an underlying topic of a queue is a
SOW topic, AMPS supports delta publish to that underlying topic. The full, merged message is added to the queue.

AMPS allows delta subscriptions to a queue, but treats each message as a new publish and delivers the full message.

Views and Aggregated Subscriptions over Queues

AMPS fully supports creating a view or an aggregated subscription with a queue as an underlying topic. In both
cases, AMPS operates on the messages that are currently available in the queue. When a message is leased, that

114

Message Queues

message is no longer available to the queue and does not appear in the view or the aggregated subscription. If the
message is returned to the queue, then the message is again available to the view or aggregated subscription. When
a message expires, that message is no longer available in the view or aggregated subscription.

Views and aggregated subscriptions are considered to be query of the queue, so they are read-only. Views and
aggregated subscriptions do not lease messages from the queue and do not affect message delivery.

Views over queues can be useful to show constantly-updated aggregates of the activity in the queue. For example,
you could create an aggregate that shows the total value of unprocessed orders currently in the queue.

Bookmark Subscriptions and Queues

The queue itself does not provide redelivery or replay of messages. Therefore, AMPS translates a bookmark sub-
scription to a queue to be a bookmark subscription to the underlying topic for the queue. This allows you to replay
messages from the underlying topic without queue delivery semantics. A bookmark subscription to a queue becomes
a publish/subscribe bookmark subscription to the underlying topic. Messages from this subscription do not have
at-most-once or at-least-once delivery, and do not need to be acknowledged. The subscription is a pub-
lish/subscribe bookmark subscription, just as though there was no queue for the topic.

To get queueing semantics, do not include a bookmark on subscriptions to a queue.

14.3. Replacing Queue Subscriptions

Queues support the replace option for subscriptions. As with subscriptions to other topics, queue subscriptions
can replace the content filter, the topic, the options, or all of the above. Replacement is atomic. The queue consumer
is guaranteed that, after the replace occurs, only messages that match the new subscription will be delivered.

Replacing queue subscriptions differs from unsubscribing and resubscribing with new parameters in two ways:

1. AMPS does not break message leases or adjust the number of currently-unacknowledged messages for the sub-
scription, even if the messages no longer match the current subscription. AMPS makes no assumptions about the
state of the messages, and requires the subscriber to acknowledge them or allow the lease to expire.

2. AMPS may change the maximum backlog for the subscription if either the max_backlog option the topic
for the subscription has changed. AMPS adjusts the backlog using the same logic as when the subscription was
entered: the maximum backlog will be the smaller of the option set by the consumer or the limit on the queue.
This can result in a situation where the consumer has more messages leased than the current maximum for the
subscription, and no new messages will be delivered until that number drops below the current maximum.

For example, if the consumer has a requested max_backlog of 10 and updates a subscription from a queue with
a configured maximum of 10 to a queue with a configured maximum of 5, the new backlog for the subscription
will be 5. However, the consumer may still have 10 messages outstanding.

In all other ways, AMPS behaves as though the replaced subscription was a new subscription to the queue.

14.4. SOW/Queue and SOW/LocalQueue

This section lists configuration parameters for queues.

The Queue tag and the LocalQueue tag are used to configure message queues.

115

Message Queues

When an AMPS queue is defined with the Queue tag, the queue will be a distributed queue. To make a queue that
is limited to the local instance, use the LocalQueue tag.

AMPS accepts QueueDefinition as a synonym for Queue.

Table 14.3. Queue configuration elements

Element Description

Name The name of the queue topic. This name is the name that
consumers subscribe to.

If no Name is provided, AMPS accepts Topic as a syn-
onym for Name in the Queue definition.

MessageType The message type of the queue.

UnderlyingTopic A topic name or regular expression for the topic that con-
tains the messages to capture in the queue. These topics
must be recorded in a transaction log, and all must be of the
same message type as the queue.

If an UnderlyingTopic is not provided, the Under-
lyingTopic defaults to the Name of the queue.

DefaultPublishTarget The topic to publish to when an application publishes a mes-
sage to the queue. For simplicity, AMPS allows applications
to publish messages to the queue, and for those messages to
be routed to one of the underlying topics.

This element is required if the UnderlyingTopic con-
tains regular expression characters. Otherwise, the Under -
lyingTopic is asingle topic and this element is optional
and defaults to the UnderlyingTopic.

LeasePeriod The amount of time that a subscriber has ownership of the
message before the message is returned to the queue. For
at-least-once delivery semantics, the consumer must
process and acknowledge the message within this lease pe-
riod, or the message may be provided to another subscriber.

The LeasePeriod is measured from the time that AMPS
sends the message to the subscriber. Set the LeasePeri-
od to account for round trip network latency as well as the
expected processing time for the subscribers.

Default: infinite (no expiration)

Semantics The delivery semantics to use for this queue. There are two
accepted values:

* at-least-once With these semantics, you can guar-
antee that a message has been processed by at least one
subscriber, as described in the introduction to Queues in
the AMPSUser Guide. With this value, a subscriber must
explicitly remove the message from the queue once the
message is processed.

116

Message Queues

Element

Description

* at-most-once With these semantics, AMPS removes
the message from the queue immediately when AMPS
sends the message. This allows you to guarantee that no
more than one subscriber will process the message.

Default: at-least-once

MaxBacklog

The maximum number of outstanding, unacknowledged
messages in the queue at any one time. This parameter
allows you to set limits on the number of pending mes-
sages from the queue overall. When the queue reaches the
MaxBacklog, no incoming messages are delivered from the
queue until a message is removed from the queue (either by
expiring, or being acknowledged by a client). This parame-
ter allows you to avoid overwhelming clients during peri-
ods of heavy activity.

Notice that this does not set a limit of any sort on the ca-
pacity of the queue. This parameter allows you to limit the
number of messages that the queue will make available to
subscribers at a given time, but does not restrict the capacity
of the queue to track messages.

Default: infinite

MaxPerSubscriptionBacklog

The maximum number of outstanding, unacknowledged
messages in the queue for an individual subscription. This
parameter allows you to avoid overwhelming a single sub-
scriber during a period of heavy activity.

Subscribers can declare the maximum number of messages
that the subscription is prepared to lease at a given time.
This maximum defaults to 1 when there is no maximum
explicitly specified for a subscription. AMPS will lease the
number specified in the subscription or the maximum set
for the queue, whichever is lower.

Notice that this does not set a limit of any sort on the ca-
pacity of the queue. This parameter allows you to limit the
number of messages that the queue will make available for
a single subscription at a given time, but does not restrict
the capacity of the queue to track messages.

Default: 1

Expiration

The length of time a message can remain in the queue before
AMPS considers the message undeliverable.

Messages may expire while a subscriber has a lease on the
message. AMPS does not send an additional notification in
this case.

Default: infinite

117

Message Queues

Element

Description

Filter

An AMPS Filter that is applied to the Underly-
ingTopic. When a Filter is specified, only messages
matching the Filter appear in the queue.

By default, there is no filter and all messages from the Un-
derlyingTopic are presented in the queue.

RecoveryPoint

This option allows you to specify the point at which AMPS
begins reviewing the transaction log to recover the state of
the queue when AMPS restarts. By default, AMPS reviews
the full log to determine the contents and state of the queue.

The RecoveryPoint can be one of the following:

* epoch - Recovery begins at the beginning of the trans-
action log

* creation - Recovery begins at the time the queue was
created

* AMPS bookmark - When an AMPS bookmark is provid-
ed, AMPS starts recovery at the specified bookmark.

* ISO-8601 timestamp - When a timestamp is provided,
AMPS starts recovery at the specified timestamp.

Default: epoch

FairnessModel

AMPS provides different methods to distribute messages
across active subscriptions:

* fast- AMPS delivers to the first subscription found that
can process the message

* round-robin- AMPS distributes to the next subscrip-
tion found that can process the message

* proportional - AMPS delivers to the subscription
with the lowest ratio of active messages to available
backlog

Default: proportional for at-least-once queues,
round-robin for at-most-once queues

Leasing

Ownership model for leased messages. AMPS supports the
following models:

* strict - AMPS allows a client to acknowledge
(sow_delete) only messages that are leased to the
client or currently unleased. If a client acknowledges a
message leased to another client, there is no effect.

* sublet - AMPS allows any client to acknowledge any
message, regardless of whether another client has a lease
on the message.

118

Message Queues

Element Description

Default: sublet

<l—=
Notice that the topics to use for
the queue (ORDERS_.*) must be
recorded in a transaction log.
-=>

<SOW>
<Queue>
<Name>MQ</Name>
<MessageType>json</MessageType>
<UnderlyingTopic>ORDERS_.*</UnderlyingTopic>
<DefaultPublishTarget>0ORDERS_DIRECT</DefaultPublishTarget>
<LeasePeriod>60s</LeasePeriod>
<Expiration>1d</Expiration>
<MaxBacklog>3</MaxBacklog>
</Queue>
</SOow>

Example 14.1. Queue Example

119

Chapter 15. Message Types

Message communication between the publisher and subscriber in AMPS is managed through the use of message
types. Message types define the data contained within an AMPS message. Each topic has a specific message type.
Transports used for publishers and subscribers can also define specific message types. For a given transport, AMPS
only process messages of the type or types that the transport accepts.

When AMPS needs to use the data within a message, AMPS uses the message type to parse the message into an
internal representation. AMPS uses the same internal representation for all message types. Likewise, if AMPS needs
to create a new message from a set of values (for example, for a view), AMPS uses the message type to serialize
that set of values into the correct format. AMPS filters, commands, processing flow, and so forth are the same for
every message type. Message types do not change how AMPS processes messages. A message type simply allows
AMPS to work with data of a particular format.

In some cases, a given message type cannot support all of the capabilities in AMPS. For example, the unparsed
binary message type allows arbitrary payloads. This can be extremely useful, but because there is no set format
for that message type, none of the capabilities that rely on parsing data are supported by the binary message type.
Where a message type cannot provide a specific capability to AMPS, those limitations are described below.

Except where limitations are described in this section, all message types provided with the AMPS server support all
AMPS features. The AMPS engine itself is message-type agnostic. There is no difference in configuring a SOW that
uses a composite type than there is configuring a SOW that uses JSON, or BFlat, or Google Protocol buffers.

Message types in AMPS are implemented as plug-in modules. For more information on plug-in modules, contact
60East support for access to the AMPS Server SDK.

15.1. Default Message Types

AMPS automatically loads modules for the following message types:

Table 15.1. AMPS Default Message Types

Message Type Name Description

bson Binary JSON (BSON) messages. See http://
www.bsonspec.org for information on this format.

bflat BFlat, a schemaless message format based on key-value
pairs that includes support for binary representations of
numeric data.

fix FIX messages using numeric tags. FIX is a stan-
dard format widely used in the financial industry.
See http://www.fixtradingcommunity.org/pg/main/what-
is-fix for more information on this format.

json JSON (JavaScript Object Notation) messages. See http://
www.json.org for information on this format.

nvfix NVFIX messages. NVFIX uses the basic format as FIX,
but allows arbitrary alphanumeric tags.

xml XML messages (of any schema)

binary Uninterpreted binary payload. Because this module does

not attempt to parse the payload, it does not support con-

120

http://www.bsonspec.org
http://www.bsonspec.org
http://www.fixtradingcommunity.org/pg/main/what-is-fix
http://www.fixtradingcommunity.org/pg/main/what-is-fix
http://www.json.org
http://www.json.org

Message Types

Message Type Name Description

tent filtering, views and aggregates. Likewise, because
there is no set format for the payload, this message type
cannot support features that construct messages (such
as delta messaging, /AMPS/ . % topic subscriptions and
stats acks).

protobuf Google protocol buffer messages. To use this message
type, you must configure a MessageType with the for-
mat of the messages (the . proto files).

With these message types, AMPS automatically loads the module that provides the message type. AMPS declares
message types for all of the above message types except for protobuf.

For efficiency, AMPS only parses the content of a message if required, and only to the extent required. For example,
if AMPS only needs to find the 7d tag in an NFVIX message, AMPS will not fully parse the message, but will stop
parsing the message after finding the id tag. This provides significant performance improvements, and also means
that AMPS does not verify the format or validity of messages unless it needs to parse the messages. When AMPS
parses a message, it may only partially parse a message, and may not detect corruption or invalid format in a message
if that corruption occurs after the point at which AMPS has all of the required information from the message.

The FIX and NVFIX message types support configuration of the field and message delimiters.

AMPS also allows you to create new message types by assembling existing message types into a composite message.
Composite message types are described in Section 15.3, and require additional configuration:

Table 15.2. AMPS composite message types

Message Type Name Description

composite-global Composite message type that combines message parts
for content filtering. This message type combines one or
more existing message types into a message. This type is
described in more detail in Section 15.3.

composite-local Composite message type, filterable by individual parts.
This message type combines one or more existing mes-
sage types into a message. This type is described in more
detail in Section 15.3.

15.2. BFlat Messages

The BFlat message format combines the simplicity and efficiency of simple, schema-less data formats such as FIX
and NVFIX with the ability to manage binary data and preserve the full precision of numeric values. BFlat is espe-
cially useful for applications that deal with binary data or precise numeric values while demanding high levels of
throughput.

A BFlat message is composed of any number of tag/value pairs, similar to FIX and NVFIX messages. Tags and
values can contain any value, and can be of any length: unlike formats such as FIX, there are no reserved characters.
In practical terms, the name of a tag must be a valid XPath identifier to filter the message in AMPS. However, this
is a limitation of XPath, and not of the BFlat message format.

The BFlat message type supports all AMPS features, and there are no special considerations when using the BFlat
message type.

121

Message Types

BFlat Data Types

BFlat messages are strongly typed. BFlat supports a string type for string data, and a binary type for arbitrary
binary data. For numeric values, BFlat can preserve the precise value of the following numeric types:

Table 15.3. BFlat Numeric Types

Type Description

int8 8-bit integer

int16 16-bit integer

int32 32-bit integer

int64 64-bit integer

double 64-bit IEEE 754 floating point number

datetime UTC datetime containing milliseconds since Unix epoch
(64-bit representation)

leb128 Signed LEB128 integer (variable length)

BFlat also supports arrays of values.

15.3. Composite Messages

Sometimes, applications only need to filter on a small subset of the fields in a message. Sometimes applications
need to send and receive messages that cannot be meaningfully parsed by AMPS, such as images or audio files.
For these cases, AMPS provides a composite message type that lets you create a new message type by combining
existing message types.

For example, you might create a message type that includes three parts: the metadata for an image as a json docu-
ment, a small JPG thumbnail as a binary message part, and a full size PNG image as another binary message part.

Composite messages can also be useful when the message itself is large or resource-intensive to parse. In this case,
you can create a message type that includes the information needed to filter messages in a JSON or NVFIX part, and
include the full message in the unparsed payload of the composite message, as described below.

AMPS provides two different types of composite messages. Messages created using the composite-Tlocal mod-
ule preserve information about the individual parts for filtering, aggregation, and projection. Messages creating using
the composite-global module treat the individual parts as elements of a single document.

Configuring Composite Message Types

To use a composite message type, you must first configure the type by declaring it in the MessageTypes section
of the AMPS configuration file. The declaration contains the name of the new composite message type, specifies
that the new type is composite, and lists the parts of the composite message type.

For example, the MessageType element below declares a new composite message type named images. The new
type contains a json document at the beginning of the message, followed by two uninterpreted binary message
parts. AMPS will combine the XPath identifiers for all message parts into a single set of identifiers. Notice that,

122

Message Types

because only one part of the message type is parsable, using composite-global simplifies the identifiers for
the message.

<MessageTypes>

<MessageType>
<Name>images</Name>
<Module>composite-global</Module>
<MessageType>json</MessageType>
<MessageType>binary</MessageType>
<MessageType>binary</MessageType>
</MessageType>

</MessageTypes>

The MessageType entries for the composite message can be any AMPS message type, including both the built-
in types and any previously defined message type.

Once the new composite message type is created, you can use the new type in the configuration file.
Composite message types have the following restrictions:
* Delta subscribe and delta publish are not supported for message types that use composite-global.

* Views, joins, and aggregation cannot project message types that use composite-global. (However, com-
posite message types that use composite-global canbe an UnderlyingTopic or one of the topics in
aJoin.)

» Composite message types do not support features that automatically construct messages, such as subscriptions the
AMPS/ . x topics and stats acks, regardless of the module the type uses.

Unparsed Payload Section

All composite message types, regardless of how they are defined, provide an unparsed payl oad section. The unparsed
payload section does not need to be declared in the MessageType declaration. As the name suggests, AMPS
does not parse or interpret this section, so the unparsed payload can contain any content of any type. The AMPS
clients provide access to set the unparsed payload on outgoing messages, and to retrieve the unparsed payload from
incoming messages.

The unparsed payload is included to simplify the common technique where a message type contains a header that
is used for filtering followed by an unparsed binary. If your composite message type contains a single binary part,
consider using the unparsed payload section in your application rather than declaring a binary message part.

Content Filtering with Composite Message Types

Composite message types support filtering on the contents of the composite message. There are some simple conven-
tions to remember when constructing expressions to filter on. For more details about content filtering, see Section 3.2.

These conventions are consistent anywhere that AMPS needs to find a value within the composite message type.
That includes content filters for client subscriptions, identifying SOW keys, creating views and aggregates, creating
conflated topics, and so on.

123

Message Types

composite-global

When using the composite-global message type, AMPS combines all parts of the message into a unified set of
XPath identifiers. AMPS creates the set of identifiers for each part of the message. If different parts of the message
contain the same identifier, AMPS treats that identifier as though the identifier contained an array of values: AMPS
creates an array that contains all of the values in the different parts of the message. Message types that do not support
content filtering do not provide XPath identifiers.

For example, consider the message below for a composite-global message type that includes two j son parts
and a binary part:

{"id":1,"data":"sample","message":"part one message"}
{"message":"another part","customer":"Awesome Amalgamated, Ltd."}
OxXxDEEA®934DF23A37780934. ..

AMPS constructs the following set of XPath identifiers and values:

Table 15.4. Composite-global message identifiers

Identifier Value

/1id 1

/data "sample"

/message ["part one message", "another part"]
/customer "Awesome Amalgamated, Ltd."

In short, when using composite-global, AMPS combines the parsable parts of the message into a single global
set of XPath values, and ignores any part of the message that cannot be parsed.

composite-local

When using the compos-ite-local message type, AMPS creates a distinct set of XPath identifiers for each part
of the message. AMPS adds an XPath step with the position of the message part at the beginning of the identifier.
Message types that do not support content filtering do not provide XPath identifiers, and AMPS skips over them.

For example, consider the message below for a composite-1local message type that includes two json parts
and a binary part:

"id":1,"data":"sample", "message":"part one message'"}
{"message":"another part",'"customer":"Awesome Amalgamated, Ltd."}
OXDEEAO934DF23A37780934. ..

AMPS constructs the following set of XPath identifiers and values:

Table 15.5. Composite-local message identifiers

Identifier Value

/0/1d 1

/0/data "sample"
/0/message "part one message"
/1/message "another part"

124

Message Types

Identifier Value

/1l/customer "Awesome Amalgamated, Ltd."

In short, when using composite-local, AMPS creates XPath identifiers for each part of the message, using the
position of the message part within the composite as the first part of the identifier. AMPS skips over any part of the
message that cannot be parsed, and simply produces no values for that part of the message.

Choosing A Composite Type

To choose which composite type best fits your application, consider the following factors:
* If you need to use delta messaging with this message type, use composite-local.

+ If there may be redundant field names in the parts of the message, and it is important to be able to filter based on
which part contains the field, use composite-local.

* If you need to be able to create views of this type, use composite-local.

Otherwise, composite-global may be easier and more straightforward for client filtering, since clients do not
need to know the detailed structure of the message type to be able to filter on the message.

15.4. Protobuf Message Types

Protocol buffers, or protobufs for short, is an efficient, automated mechanism for serializing structured data. AMPS
supports Google protobuf messages (version 2) as a message format.

Because Google protocol buffers use a fixed format for messages, to use protobuf, you must configure AMPS with
the definition of the messages AMPS will process. This involves defining a MessageType. You must define a
MessageType for AMPS to be able to parse protobuf messages.

The AMPS engine is message-type agnostic. Except for the limitations described in this section, there is no difference
to the AMPS engine between message types that use protocol buffers and other message types such as JSON or
XML or FIX.

Configuring Protobuf Message Types

To use a protobuf message, you must first edit the configuration file to include a new MessageType. Then, specify
the path to the protobuf file and the name of the protobuf file itself inside the MessageType. Below is a sample
configuration of a protobuf message type:

<MessageType>
<Name>my-protobuf-messages</Name>
<Module>protobuf</Module>
<ProtoPath>proto-archive;/mnt/shared/protofiles</ProtoPath>
<ProtoFile>proto-archive/person.proto</ProtoFile>
<Type>MyNamespace.Message</Type>

</MessageType>

125

Message Types

Each message type references a ProtoF i le, and specifies a single top-level type from the file. The ProtoFile
may include other files through the standard protocol buffer include mechanism. Likewise, the top-level type may
be any valid protocol buffer definition, including definitions that contain other types.

When creating a protobuf message type, you must provide the following parameters:

Table 15.6. protobuf Message Type Parameters

Parameter Description

Name The name of the new, customized message type. The rest
of the configuration file will use this name to refer to the
message type.

Modu'le The module that contains the message type. Use pro-
tobuf for protocol buffer messages.

ProtoPath The path in which to search for . proto files. The con-
tent of this element has the following syntax:

alias ; full-path

The alias provides a short identifier to use when searching
for .proto files. The full path is the path that is substituted
for that identifier.

For example, in the sample above, proto-archiveis
an alias for /mnt/shared/protofiles.

A configuration may omit the alias, and simply provide
the path. For example:

;/mnt/repository/protodefs

You may specify any number of ProtoPath declara-
tions.

ProtoFile The name of the .proto file to use for this message
type. To use an alias, prefix the name of the file with the
alias, as shown in the example above.

Type The name of the type inside the . proto file to use for
this message type. AMPS requires a single type.

Filtering with Protobuf Messages

To filter protobuf messages, there are a couple of conventions you must remember. AMPS XPath identifiers begin
at the outermost message, so you can simply use member names for that message. If you have nested messages, you
use the name of the nested message and the member name when creating an XPath identifier.

For example, suppose you have the following . proto file:

message person {
required string name = 1;

126

Message Types

required int32 personID = 2;

}

To access the personID data member, you simply use the name of the data member as the XPath identifier. An
example filter that verifies that a personID is greater than 1000 would be:

/personID > 1000
If you have nested messages, you simply provide the path to the nested message you want to access.

Let's assume that that the person message from the above example was nested inside another message with the
name of record. The example filter below shows how to access the nested person message, and then filter to
the personID:

/person/personID > 1000

In this case, the first part of the identifier (/ person) specifies the submessage. The second part of the identifier (/
personlD) specifies the field within that submessage. Notice that, as always, there is no need to specify the name
of the message for the outermost message.

Union Types

When using a protocol buffer message type that contains a union, you can navigate the union using the names defined
in the top-level element. For example, given the union defined below:

message MyUnion {
optional Order order_type = 1;
optional Payment payment_type = 2;

}

message Order {
required string customer_id = 1;

}...

message Payment {
required string customer_id = 1;

}
Providing a filter of /order_type IS NOT NULL will return all of the MyUnion messages that contain an
Order, while providing a filter of /payment_type/customer_id = '42"' will return only the MyUnion

messages that contain a Payment message with a customer_id of 42.

Limitations of the protobuf message type

Because the protobuf message type requires a specific, fixed definition for messages, AMPS does not support
operations that construct messages that may contain arbitrary values. In particular, protobuf does not support:

* Creating a View with protobuf as the MessageType. AMPS allows you to aggregate protobuf messages
and project the results as another type, but destination the MessageType for a View cannot be a protobuf
message type.

127

Message Types

» Subscriptions to AMPS internal topics. Protobuf message types do not support creating messages for AMPS
internal topics, such as /AMPS/ClientStatus.

There are no other limitations in working with protocol buffer message types.

Working with Optional Default Values

Google protocol buffers provide the ability for a message to have fields that are both optional, so they need not
be provided in the serialized message, and defaulted, so that there is a specific value interpreted when there is no
value provided.

When no value is provided in the serialized message for an optional default value, AMPS interprets the message
differently depending on the context:

 For most uses, AMPS interprets the message as though the value is present and set to the default value. This
means that you can filter on optional default values, use them as SOW keys, and aggregate optional default values
regardless of whether a value is present in the serialized message.

« For delta messaging, AMPS treats an optional default value as though there is no value present. AMPS does not
provide the default value. This means that a delta update must provide the default value explicitly in the serialized
message to set the field to the default value. This also means that, if the value present in the message is not the
default value, but was not changed on the current update, AMPS will not emit that value in messages to delta
subscribers.

15.5. Loading Additional Message Types

AMPS includes the ability to load custom message types in external modules. As with all AMPS modules, custom
message types are compiled into shared object files. AMPS dynamically loads these message types on startup, using
the information provided in the configuration file. Once you have loaded and declared those types, you can use the
type just as you use the default message types.

For example, the configuration below creates a message type named custom-type that uses a module named
libmy-type-module. so and specifies a transport for messages of that type:

<Modules>
<Module>
O<Name>custom-type-module</Name>
O<Library>./custom-modules/libmy-type-module.so</Library>
</Module>
</Modules>

<MessageTypes>
<MessageType>
O<Name>custom-type</Name>
O<Module>custom-type-module</Module>
</MessageType>
</MessageTypes>

<Transports>
<Transport>
<Name>custom-type-tcp</Name>

128

Message Types

<Type>tcp</Type>
<InetAddr>9008</InetAddr>
O<MessageType>custom-type</MessageType>
<Protocol>amps</Protocol>

</Transport>

</Transports>

© Specifies the name to use to refer to this module in the rest of the configuation file

® Path to the library to load for this module. In this example, the path is a relative path below the directory where
AMPS is started.

© The name to use for this message type in the rest of the configuration file.

O Reference to the module that implements this message type, using the Name defined in the Module config-
uration.

© The message type that this transport uses, using the Name defined in the MessageType configuration.

Once a message type has been declared, you can use it in exactly the same way you use the default message types.

Notice, however, that custom-developed message types may only provide support for a subset of the features of
AMPS. For example, the binary message type provided with AMPS does not support features that require AMPS
to parse or construct a message, as described above. The developer of the message type must provide information
on what capabilities the message type provides.

129

Chapter 16. Command Acknowledgement

AMPS command processing is designed to be asynchronous. The design of the server makes it possible for an
application to send a command to AMPS, and receive the results of that command at a later time. Acknowledgement
of commands is always optional: the server makes no requirement that an application request acknowledgement. The
AMPS client libraries automatically request the acknowledgements required to maintain the guarantees the client
API provides.

The status and results of a command are returned to a client in the form of an acknowledgment, or ack, message.
AMPS can return status updates at various checkpoints throughout the command processing sequence.

For many applications, it may not be necessary for the application to request message acknowledgements explicitly.
The AMPS clients request a set of acknowledgements by default that balance performance with error detection.

AMPS supports a variety of ack types, and allows you to request multiple ack types on each command. For example,
the received ack type requests that AMPS acknowledge when the command is received, while the completed ack
type requests that AMPS acknowledge when it has completed the command (or the portion of the command that runs
immediately). Each AMPS command supports a different set of types, and the precise meaning of the ack returned
depends on the command that AMPS is acknowledging.

AMPS commands are inherently asynchronous, and AMPS does not provide acknowledgement messages by default.
A client must both explicitly request an acknowledgement and then receive and process that acknowledgement to
know the results of a command. It is normal for time to elapse between the request and the acknowledgement, and
so AMPS acknowledgements provide ways to correlate the acknowledgement with the command that produced it.
This is typically done with an identifier that the client assigns to a command, which is then returned in the acknowl-
edgement for the command.

AMPS supports the acknowledgement types listed in the following table:

Table 16.1. AMPS acknowledgement messages

Acknowledgment Type General Description

completed The command (or a portion of the command) has completed.
persisted The results of the command have been persisted to durable storage.
processed AMPS has processed the command.

received AMPS has received the command.

stats AMPS returns statistics associated with the command.

Not all commands support all acknowledgement types, and the meaning of each acknowledgement may differ de-
pending on the command submitted. See the AMPS Command Reference for details.

Acknowledgements for different commands may not arrive in the order that commands were submitted to AMPS.
For example, a pub1ish command to a topic that uses synchronous replication will not return a persisted ac-
knowledgment until the synchronous replication destinations have persisted the message. If the client issues a sub-
scribe command in the meantime, the processed acknowledgement for the subscribe command -- indicat-
ing that AMPS has processed the subscription request -- may well return before the persisted acknowledgement.

Acknowledgement Conflation

For some commands, AMPS will conflate acknowledgements and return acknowledgements for multiple commands
at one time. When AMPS conflates acknowledgements, AMPS provides an identifier other than the command iden-

130

Command Acknowledgement

tifier that describes which commands the acknowledgement applies to. For example, in response to pub 17 sh com-
mands and sow_delete commands, AMPS conflates pers-sted acknowledgements. These conflated acknowl-
edgements contain the last client sequence number that the acknowledgement applies to rather than the command
identifiers or sequence numbers for all messages being acknowledged. For example, if an application publishes
messages with sequence numbers 1, 2, 3, 4, and 5, and message 3 fails due to entitlement restrictions, AMPS will
return an ack indicating success for message 2, an ack indicating failure for message 3, and an ack indicating
success for message 5.

To see more information about the different commands and their supported acknowledgment types, please refer to
the AMPS Command Reference, provided with 4.0 and greater versions of the AMPS clients and available on the
60East web site.

131

Chapter 17. Transports

In order to send and receive messages, an AMPS server must allow incoming connections. Transports configure
incoming connections to AMPS. Transports are configured in the Transports element of the AMPS configuration
file.

AMPS provides two distinct kinds of incoming connections:
+ Client connections, for use by the AMPS clients to support external applications
* Replication connections, to replicate to other AMPS instances

Each transport controls how authentication and entitlements are enforced for that transport. The transport can either
accept the defaults for the instance as a whole, or choose settings unique to that transport.

17.1. Client connections

To accept connections from publishers or subscribers, an AMPS instance must have at least one Transport con-
figured for client connections. The transport must specify:

» The network protocol used for the transport, called the transport type
» The AMPS command header format, called the protocol
+ The network address, such as IP address and port, that the AMPS server will listen to for incoming connections

A transport can optionally set other parameters on the transport. This includes setting the authentication and entitle-
ments that apply to connections for this transport, setting slow client parameters for the transport, and so forth.

TCP Connections

This is the most commonly used connection type for AMPS clients.

With this option, communication occurs over a standard TCP/IP connection.

SSL Connections

AMPS supports SSL connections between clients and servers. To enable SSL on a transport, you must:
* Specify a Transport type of tcp or tcps, and
 Provide a certificate and private key for the connection

You can optionally set other parameters for SSL connections, as described in the AMPS Configuration Reference.

60East recommends using the tcps transport type for SSL connections for clarity. However, AMPS
A uses SSL connections for a tcp connection whenever a PrivateKey and Certificate are provided for a
Transport, regardless of whether the transport Type is specified as tcp or tcps.

132

Transports

AMPS clients require that the connection string use tcps for SSL connections, even if the AMPS
Transport configuration uses tcp.

Unix domain sockets

AMPS provides transports that use unix domain sockets for applications that run on the same system as the AMPS
server and require extremely low-latency messaging. Unix domain sockets are not supported by all AMPS clients,
since some programming environments do not support these sockets.

With this transport type, many of the configuration settings that apply to TCP/IP sockets are not relevant. Instead,
the transport requires the name of a file on the local filesystem as the location at which to create the socket.

17.2. Replication Connections

To receive replicated messages from other AMPS instances, an AMPS instance must have a transport configured
as Type amps-replication.

Replication connections accept any message type, and can service multiple upstream AMPS instances.

Replication connections are configured as part of an overall High Availability plan. See Overview of AMPS High
Availability and the AMPS Configuration Reference for details.

133

Part lll. Deployment,
Monitoring, and Administration

Chapter 18. Running AMPS as a Linux
Service

AMPS is designed to be able to easily integrate into your existing infrastructure: AMPS includes all of the depen-
dencies it needs to run, and is configured easily with a single configuration file. Some deployments integrate AMPS
into a third-party service management infrastructure: for those deployments, the needs of that infrastructure deter-
mine how to install AMPS.

More typically, AMPS runs as a Linux service. This chapter describes how to install AMPS as a service.

18.1. Installing the Service

AMPS includes a shell script that installs the service. The shell script is included in the b n directory of your AMPS
installation. Run the script with root permission, as follows:

$ sudo ./install-amps-daemon.sh
This script does the following installation work:
* Installs the AMPS distribution into /opt/amps

* Creates the /opt/etc/amps directory if it does not already exist. By default, the daemon uses an AMPS con-
figuration file at /opt/etc/amps/config.xml.

+ Installs the service management scripts. Depending on the init system the script detects on your system, this will
either be a System V style script located at /etc/7init.d/amps or a SystemD service definition file named
amps.service installed under /usr/lib/systemd/.

 Updates the service management infrastructure to register AMPS as a service and configure the service to start on
startup. The exact steps that the script takes to do this depend on the init system detected.

In addition, you must copy the AMPS configuration file for the instance to /opt/etc/amps/config.xml.

You can only run one instance of AMPS as a service on a system at a given time using this script. AMPS does not
enforce any restriction on how many instances can be run on the system at the same time through other means, but
this script is designed to manage a single instance running as a service.

18.2. Configuring the Service

When running as a service, the following considerations apply to the configuration file:

AMPS Logging

60East recommends logging the most important AMPS messages to syslog when running as a service. For example,
the following configuration file snippet logs messages of warning level and above to the system log:

<Logging>
<Target>

135

Running AMPS as a Linux Service

<Protocol>syslog</Protocol>
<Level>warning</Level>
<Ident>amps</Ident>
<Options>LOG_CONS,LOG_NDELAY,LOG_PID</Options>
<Facility>LOG_USER</Facility>
</Target>
</Logging>

60East does not recommend logging a level lower than warning to syslog, since an active AMPS instance can produce
a large volume of messages.

File Paths

When running as a service, file paths in the configuration file also require attention. In particular:
+ For simplicity, use absolute paths for all file paths in the configuration file.
+ Consider startup order, and ensure that any devices that AMPS uses are mounted before AMPS starts.

As with any other AMPS installation, it's also important to estimate the amount of storage space AMPS requires,
and ensure that the device where AMPS stores files has the needed capacity.

Configuration File Location

The AMPS service scripts require the configuration file to be located at /opt/etc/amps/config.xml.

18.3. Managing the Service

The scripts that AMPS installs provide management functions for the AMPS service. The scripts are used in the
same way scripts for other Linux services are used.

Starting the AMPS Service

To start the AMPS service, use the following command if your system uses System V-style init scripts:
sudo /etc/init.d/amps start

Many systems that use System V init scripts also provide convenience commands (such as service) to locate and
run commands for working with daemons. Check your distribution's documentation for details.

If your system uses SystemD, you can use a command like:

sudo systemctl start amps

Stopping the AMPS Service

To stop the AMPS service, use the following command if your system uses System V init scripts:

136

Running AMPS as a Linux Service

sudo /etc/init.d/amps stop

Many distributions that use System V init scripts also provide convenience commands (such as the serviice pro-
gram) for working with daemons. Check your distribution's documentation for details.

If your system uses SystemD, you can use a command like:

sudo systemctl stop amps

Restarting the AMPS Service

To restart the AMPS service, use the following command if your system uses System V init scripts:
sudo /etc/init.d/amps restart

Many distributions that use System V init scripts also provide convenience commands (such as the serv-ice pro-
gram) for working with daemons. Check your distribution's documentation for details.

If your distribution uses SystemD, you can use a command like:

sudo systemctl restart amps

View status for the AMPS Service

To see the status of the AMPS service, use the following command if your distribution uses System V init scripts:
sudo /etc/init.d/amps status

Many distributions that use System V init scripts also provide convenience commands (such as the service pro-
gram) for working with daemons. Check your distribution's documentation for details.

If your distribution uses SystemD, you can use a command like:

sudo systemctl status amps

18.4. Uninstalling the Service

AMPS includes a script that uninstalls AMPS as a service. The script reverses the changes that the install script
makes to your system. Run the script with root permission, as follows:

$ sudo ./uninstall-amps-daemon.sh

The uninstall script does not remove the configuration file or any files or data that AMPS creates at runtime.

18.5. Upgrading the Service

To upgrade the service to a new version of AMPS, follow these steps:

1. Stop the service.

137

Running AMPS as a Linux Service

2. Uninstall the previous version of the service using the uninstall script included with that version.
3. If necessary, upgrade any data files or configuration files that you want to retain.

4. Install the new version of the service using the install script included with the new version. Ensure that the con-
figuration file is at the appropriate path for the new installation.

5. Start the service.

For AMPS instances that participate in failover, you must coordinate your upgrades as you would for a standalone
AMPS instance.

138

Chapter 19. Logging

AMPS supports logging to many different targets including the console, syslog, and files. Every error message within
AMPS is uniquely identified and can be filtered out or explicitly included in the logger output. This chapter of the
AMPS User Guide describes the AMPS logger configuration and the unique settings for each logging target.

19.1. Configuration

Logging within AMPS is enabled by adding a Logging section to the configuration. For example, the following
would log all messages with an 'info’ level or higher to the console:

<AMPSConfig>

<Logging>
O<Target>
<Protocol>stdout</Protocol>
@<Level>info</Level>
</Target>
</Logging>

</AMPSConfig>

© The Logging section defines a single Target, which is used to log all messages to the stdout output.
® States that only messages with a log level of info or greater will be output to the screen.

19.2. Log Messages

An AMPS log message is composed of the following:

+ Timestamp (eg: 2010-04-28T21:52:03.4766640-07:00)
» AMPS thread identifier

» Log Level (eg: info)

* Error identifier (eg: 15-0008)

* Log message

An example of a log line (it will appear on a single line within the log):

2011-11-23T14:49:38.3442510-08:00 [1] info: 00-0015 AMPS initialization
completed (0 seconds).

Each log message has a unique identifier of the form TT-NNNN where TT is the component within AMPS which is
reporting the message and NNNN the number that uniquely identifies that message within the module. Each logging
target allows the direct exclusion and/or inclusion of error messages by identifier. For example, a log file which would
include all messages from module 00 except for 00-0001 and 00-0004 would use the following configuration:

139

Logging

<Logging>
<Target>
<Protocol>stdout</Protocol>
<IncludeErrors>00-0002</IncludeErrors>
<ExcludeErrors>00-0001,00-0004,12-1.*</ExcludeErrors>
</Target>
</Logging>

The above Logging configuration example, all log messages which are at or above the default log level of info
will be emitted to the logging target of stdout. The configuration explicitly wants to see configuration messages
where the error identifier matches 00-0002. Additionally, the messages which match 00-0001, 00-0004 will
be excluded, along with any message which match the regular expression of 12-1 . .

19.3. Log Levels

AMPS has nine log levels of escalating severity. When configuring a logging target to capture messages for a specific
log level, all log levels at or above that level are sent to the logging target. For example, if a logging target is
configured to capture at the “error” level, then all messages at the “error”, “critical”, and “emergency” levels will
be captured because “critical” and “emergency” are of a higher level. The following table Table 19.1 contains a list

of all the log levels within AMPS.

Table 19.1. Log Levels

Level Description

developer information on the internal state of AMPS

trace all inbound/outbound data

debug Obsolete. The AMPS server no longer logs messages at this level. Plugin modules that
attempt to log messages at this level will log messages at info level instead.

stats statistics messages

info general information messages

warning problems that AMPS tries to correct that are often harmless

error events in which processing had to be aborted

critical events impacting major components of AMPS that if left uncorrected may cause a fatal
event or message loss

emergency a fatal event

none no logging, even in the case of a critical or fatal event

Each logging target allows the specification of a Level attribute that will log all messages at the specified log level
or with higher severity. The default Level is none which would log nothing. Optionally, each target also allows
the selection of specific log levels with the Levels attribute. Within Levels, a comma separated list of levels
will be additionally included.

For example, having a log of only trace messages may be useful for later playback, but since trace is at the
lowest level in the severity hierarchy it would normally include all log messages. To only enable trace level,
specify trace in the Levels setting as below:

140

Logging

<AMPSConfig>

<Logging>
<Target>
<Protocol>gzip</Protocol>
<FileName>traces. log.gz</FileName>
<Levels>trace</Levels>
</Target>
</Logging>

</AMPSConfig>
Logging only trace and info messages to a file is demonstrated below:

<AMPSConfig>
<Logging>
<Target>
<Protocol>file</Protocol>
<FileName>traces-info.log</FileName>
<Levels>trace,info</Levels>
</Target>
</Logging>

</AMPSConfig>

Logging trace, info messages in addition to levels of er ror and above (error,critical and emergency)
is demonstrated below:

<Target>
<Protocol>file</Protocol>
<FileName>traces-error-info.log</FileName>
<Level>error</Level>
<Levels>trace,info</Levels>

</Target>

19.4. Logging to a File

To log to a file, declare a logging target with a protocol value of f7ile. Beyond the standard Level, Levels,
IncludeErrors, and ExcludeErrors settings available on every logging target, file targets also permit the
selection of a FileName mask and RotationThresho'ld.

Selecting a Filename

The FileName attribute is a mask which is used to construct a directory and file name location for the log file.
AMPS will resolve the file name mask using the symbols in Table 19.2. For example, if a file name is masked as:

141

Logging

%Y =9%m=9%dT%H :%M:%S . Log

..then AMPS would create a log file in the current working directory with a timestamp of the form:
2012-02-23T12:59:59. log.

IfaRotationThresholdis specified in the configuration of the same log file, the the next log file created will be
named based on the current system time, not on the time that the previous log file was generated. Using the previous
log file as an example, if the first rotation was to occur 10 minutes after the creation of the log file, then that file

would be named 2012-02-23T13:09:59. log.

Log files which need a monotonically increasing counter when log rotation is enabled can use the %n mask to provide
this functionality. If a file is masked as:

localhost-amps-%n. log

Then the first instance of that file would be created in the current working directory with a name of local-
host-amps-00000. log. After the first log rotation, a log file would be created in the same directory named
localhost-amps-00001. log.

Log file rotation is discussed in greater detail in the section called “Log File Rotation™.

Table 19.2. Log Filename Masks

Mask Definition

%Y Year

%m Month

% Day

%H Hour

% Minute

%S Second

%N Iterator which starts at 90000 when AMPS is first started and increments each time a Rota-

tionThresho'ld size is reached on the log file.

Log File Rotation

Log files can be “rotated” by specifying a valid threshold in the RotationThresho'ld attribute. Values for this
attribute have units of bytes unless another unit is specified as a suffix to the number. The valid unit suffixes are:

Table 19.3. Log File Rotation Units

Unit Suffix Base Unit Examples
no suffix bytes “1000000” is 1 million bytes
k or K thousands of bytes “50k” is 50 thousand bytes

142

Logging

Unit Suffix Base Unit Examples

m or M millions of bytes “10M” is 10 million bytes
gor G billions of bytes “2G” is 2 billion bytes
torT trillions of bytes “0.5T” is 500 billion bytes

before logging continues. For example, if “amps.log” is used as the FileName mask and a Rota-
tionThreshold is specified, then the second rotation of the file will overwrite the first rotation. If it
is desirable to keep all logging history, then it is recommended that either a timestamp or the %n rotation
count be used within the Fi leName mask when enabling log rotation.

@ When using log rotation, if the next filename is the same as an existing file, the file will be truncated

Examples

The following logging target definition would place a log file with a name constructed from the timestamp
and current log rotation number in the . /logs subdirectory. The first log would have a name similar to ./
1logs/20121223125959-00000. Llog and would store up to 2GB before creating the next log file named. /
logs/201212240232-00001. log

<AMPSConfig>

<Logging>
<Target>
<Protocol>file</Protocol>
<Level>info</Level>
<FileName>./logs/%Y%m%d%H%M%S~%n . log</FileName>
<RotationThreshold>2G</RotationThreshold>
</Target>
</Logging>

</AMPSConfig>

This next example will create a single log named amps . Log which will be appended to during each logging event.
If amps . Log contains data when AMPS starts, that data will be preserved and new log messages will be appended
to the file.

<AMPSConfig>

<Logging>
<Target>
<Protocol>file</Protocol>
<Level>info</Level>
<FileName>amps. log</FileName>
</Target>
</Logging>

</AMPSConfig>

143

Logging

19.5. Logging to a Compressed File

AMPS supports logging to compressed files as well. This is useful when trying to maintain a smaller logging foot-
print. Compressed file logging targets are the same as regular file targets except for the following:

* the Protocol value is gzip instead of file;
+ the log file is written with gzip compression;
* the RotationThreshold is metered off of the uncompressed log messages;

 makes a trade off between a small increase in CPU utilization for a potentially large savings in logging footprint.

Example

The following logging target definition would place a log file with a name constructed from the timestamp
and current log rotation number in the . /logs subdirectory. The first log would have a name similar to ./
logs/20121223125959-0. log. gz and would store up to 2GB of uncompressed log messages before creating
the next log file named . /logs/201212240232-1.log.gz.

<AMPSConfig>
<Logging>
<Target>
<Protocol>gzip</Protocol>
<Level>info</Level>
<FileName>./logs/%Y%m%d%H%M%S-%n. log.gz</FileName>
<RotationThreshold>2G</RotationThreshold>
</Target>
</Logging>

</AMPSConfig>

19.6. Logging to the Console

The console logging target instructs AMPS to log certain messages to the console. Both the standard output and
standard error streams are supported. To select standard out use a Protocol setting of stdout. Likewise, for
standard error use a Protocol of stderr.

Example

Below is an example of a console logger that logs all messages at the info or warning level to standard out and

all messages at the error level or higher to standard error (which includes error, critical and emergency
levels).

144

Logging

<AMPSConfig>

<Logging>
<Target>
<Protocol>stdout</Protocol>
<Levels>info,warning</Levels>
</Target>
<Target>
<Protocol>stderr</Protocol>
<Level>error</Level>
</Target>
</Logging>

</AMPSConfig>

19.7. Logging to Syslog

AMPS can also log messages to the host’s syslog mechanism. To use the syslog logging target, use a Protocol

of sys'log in the logging target definition.

The host’s syslog mechanism allows a logger to specify an identifier on the message. This identifier is set through
the Tdent property and defaults to the AMPS instance name (see AMPS Configuration Reference Guide for con-

figuration of the AMPS instance name.)

The syslog logging target can be further configured by setting the Options parameter to a comma-delimited list

of syslog flags. The recognized syslog flags are:

Table 19.4. Logging Options Available for SYSLOG Configuration

Level Description

LOG_CONS Write directly to system console if there is an error while sending to system logger.

LOG_NDELAY Open the connection immediately (normally, the connection is opened when the first
message is logged).

LOG_NOWAIT No effect on Linux platforms.

LOG_ODELAY The converse of LOG_NDELAY; opening of the connection is delayed until sys-
log () is called. (This is the default, and need not be specified.)

LOG_PERROR Print to standard error as well.

LOG_PID Include PID with each message.

AMPS already includes the process identifier (PID) with every message it logs, however, it is a good
@ practice to set the LOG_PID flag so that downstream syslog analysis tools will find the PID where they

expect it.

The Facility parameter can be used to set the syslog “facility”. Valid options are: LOG_USER (the default),
LOG_LOCALO, LOG_LOCAL1L, LOG_LOCAL2,LOG_LOCAL3, LOG_LOCAL4, LOG_LOCALS5, LOG_LOCALSG, or

LOG_LOCALT.

145

Logging

Finally, AMPS and the syslog do not have a perfect mapping between their respective log severity levels. AMPS
uses the following table to convert the AMPS log level into one appropriate for the syslog:

Table 19.5. Comparison of AMPS Log Severity to Syslog Severity

AMPS Severity Syslog Severity
none LOG_DEBUG
developer LOG_DEBUG
trace LOG_DEBUG
debug LOG_DEBUG
stats LOG_INFO
info LOG_INFO
warning LOG_WARNING
error LOG_ERR
critical LOG_CRIT
emergency LOG_EMERG
Example

Below is an example of a syslog logging target that logs all messages at the crit-ical severity level or higher and
additionally the log messages matching 30-0001 to the syslog.

<AMPSConfig>

<Logging>
<Target>
<Protocol>syslog</Protocol>
<Level>critical</Level>
<IncludeErrors>30-0000</IncludeErrors>
<Ident>\amps dma</Ident>
<Options>LOG_CONS,LOG_NDELAY,LOG_PID</Options>
<Facility>LOG_USER</Facility>
</Target>
</Logging>

</AMPSConfig

19.8. Error Categories

In the AMPS log messages, the error identifier consists of an error category, followed by a hyphen, followed by
an error identifier. The error categories cover the different modules and features of AMPS, and can be helpful in
diagnostics and troubleshooting by providing some context about where a message is being logged from. A list of
the error categories found in AMPS are listed in Table 19.6.

146

Logging

Table 19.6. AMPS Error Categories

AMPS Code Component

00 AMPS Startup

01 General

02 Message Processing

03 Expiration

04 Publish Engine

05 Statistics

06 Metadata

07 Client

08 Regex

09 ID Generator

0A Diff Merge

0B Out of Focus processing
0C View

0D Message Data Cache

OE Conflated Topic

OF Message Processor Manager
11 Connectivity

12 Trace In - for inbound messages
13 Datasource

14 Subscription Manager

15 SOW

16 Query

17 Trace Out - for outbound messages
18 Parser

19 Administration Console
1A Evaluation Engine

1B SQLite

1C Meta Data Manager

1D Transaction Log Monitor
1E Replication

1F Client Session

20 Global Heartbeat

21 Transaction Replay

22 TX Completion

23 Bookmark Subscription
24 Thread Monitor

25 Authorization

147

Logging

AMPS Code Component

26 SOW cache

28 Memory cache

29 Plug-in modules (including AMPS features implemented as modules)
2A Message pipeline

2B Module manager

2C File management

2D NUMA module

2F SOW update broadcaster
30 AMPS internal utilities
70 AMPS networking

FF Shutdown

19.9. Looking Up Errors with ampserr

In the SAMPSDIR/b7n directory is the ampserr utility. Running this utility is useful for getting detailed infor-
mation and messages about specific AMPS errors observed in the log files.

The AMPSUtilities User Guide contains more information on using the ampser r utility and other debugging tools.

148

Chapter 20. Event Topics

AMPS publishes specific events to internal topics that begin with the /AMPS/ prefix, which is reserved for AMPS
only. For example, all client connectivity events are published to the internal /AMPS/ClientStatus topic. This
allows all clients to monitor for events that may be of interest.

@ Event topic messages can be subscribed with content filters like any other topic within AMPS.

A client may subscribe to event topics on any connection with a message type that supports views. This includes all
of the default message types and bson, but does not include the binary message type.

Messages are delivered as the message type for the connection. For example, if the connection uses JSON messages,
the event topic messages with be JSON. A connection that uses FIX will receive FIX messages from an event topic.

20.1. Client Status

The AMPS engine will publish client status events to the internal /AMPS /ClientStatus topic whenever a client
issues a Logon command, disconnects, enters or removes a subscription, queries a SOW, or issues a sow_de lete.
AMPS sends a message if a client fails authentication. In addition, upon a disconnect, a client status message will be
published for each subscription that the client had registered at the time of the disconnect. This mechanism allows
any client to monitor what other clients are doing and is especially useful for publishers to determine when clients
subscribe to a topic of interest.

To help identify clients, it is recommended that clients send a Llogon command to the AMPS engine and specify a
meaningful client name. This client name is used to identify the client within client status event messages, logging
output, and information on clients within the monitoring console. The client name must be unique if a transaction
log is configured for the AMPS instance.

Each message published to the client status topic will contain an Event and a ClientName. For subscribe and
unsubscribe events, the message will contain Topic, Filter and SubId.

When the connection uses the xml message type, the client status message published to the /AMPS/ClientSta-
tus will contain a SOAP body with a ClientStatus section as follows:

<?xml version="1.0" encoding="1is0-8859-1"7>
<SOAP-ENV:Envelope>
<SOAP-ENV:Header>
<Cmd>publish</Cmd>
<TxmTm>20090106-23:24:40-0500</TxmTm>
<Tpc>/AMPS/ClientStatus</Tpc>
<MsgId>MAMPS-55</MsgId>
<SubId>SAMPS-1233578540_1</SubId>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
<ClientStatus>
<Event>subscribe</Event>
<ClientName>test_client</ClientName>

149

Event Topics

<Topic>order</Topic>
<Filter>(/FIXML/Order/Instrmt/@Sym = "'"IBM')</Filter>
<SubId>SAMPS-1233578540_10</SubId>
</ClientStatus>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Table 20.1 defines the header fields which may be returned as part of the subscription messages to the /AM-
PS/ClientStatus topic.

Table 20.1. /AMPS/ClientStatus Event Message Fields

FIX XML JSON / BSON Definition

20065 Timestamp timestamp Timestamp at which AMPS processed the message
20066 Event event Command executed by the client

20067 ClientName client_name Client Name

20068 Tpc topic Topic for the event (if applicable)

20069 Filter filter Filter (if applicable)

20070 SubId sub_1id Subscription ID (if applicable)

20071 ConnName connection_name Internal AMPS connection name

20072 Options options The options for the subscription (if applicable)
20073 QId query_-id The identifier for the query (if applicable)

20074 CorrelationId correlation_id The correlation ID sent on the command, if any.
20080 ClientAddr client_address The remote address of the client

20081 AuthId auth_1id The authenticated identity of the client (if applica-

ble)

20.2. SOW Statistics

AMPS can publish SOW statistics for each SOW topic which has been configured. To enable this functionality,
specify the SOWStatsInterval in the configuration file. The value provided in SOWStatsInterval is the
time between updates to the /AMPS/SOWStats topic.

For example, the following would be a configuration that would publish /AMPS /SOWStats event messages every
5 seconds.

<AMPSConfig>
<SOWStatsInterval>5s</SOWStatsInterval>
</AMPSConfig>

When receiving from the AMPS engine using the xml protocol, the SOW status message published to the /AM-
PS/SOWStats topic will contain a SOAP body with a SOWStats section as follows:

150

Event Topics

<?xml version="1.0" encoding="1is0-8859-1"7>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/
envelope/">
<SOAP-ENV:Header>
<Cmd>publish</Cmd>
<TXxmTm>2010-09-08T17:49:06.9439120Z</TxmTm>
<Tpc>/AMPS/SOWStats</Tpc>
<SowKey>18446744073709551615</SowKey >
<MsgId>AMPS-10548998</MsgId>
<SubIds>SAMPS-1283968028_2</SubIds>
</SOAP-ENV :Header>
<SOAP-ENV:Body>
<SOWStats>
<Timestamp>2010-09-08T17:49:06.9439120Z</Timestamp>
<Topic>MyTopic</Topic>
<Records>10485760</Records>
</SOWStats>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

In the SOWStats message, the Timestamp field includes the time the event was generated, Top-i c includes the
topic, and Records includes the number of records.

Table 20.2 defines the header fields which may be returned as part of the subscription messages to the /AM-
PS/SOWStats topic.

Table 20.2. /AMPS/SOWStats Event Message Default Fields

FIX XML JSON/BSON Definition

20007 MessageType message_type> Message type of the topic

20065 Timestamp timestamp Timestamp in which AMPS sent the message
20066 Topic topic Topic that statistics are being reported on
20067 Records record_count Number of records in the SOW topic

For compatibility with systems that expect a consistent set of FIX tags across messages, AMPS provides a set of
FIX tags that are unified with the tags used in the /AMPS/ClientStatus topic. To use the unified FIX tags, set
the AMPSVersionCompliance configuration element to 5. The following table lists the unified FIX tags:

Table 20.3. /AMPS/SOWStats Event Message Unified Fields (Version 5)

FIX Definition

20007 Message type of the topic

20065 Timestamp in which AMPS sent the message
20068 Topic that statistics are being reported on
20075 Number of records in the SOW topic

20.3. Persisting Event Topic Data

151

Event Topics

By default, AMPS event topics are not persisted to the SOW. However, because AMPS event topic messages are
treated the same as all other messages, the event topics can be persisted to the SOW. Providing a topic definition
with the appropriate Key definition can resolve that issue by instructing AMPS to persist the messages.

The Key definition you specify must match the field name used for the message type specified in the SOW topic.
That is, to track distinct records by client name for a SOW that uses j son, you would use the following key:

<Key>/client_name</Key>
While to track distinct records by client name for a SOW that uses 1 x, you would use the following key:
<Key>/20067</Key>

For example, to persist the last /AMPS/SOWStats message for each topic in fix, xml and json format, the
following Top-ic sections could be added to the SOW section of the AMPS configuration file:

<SOwW>
<I-- Persist /AMPS/SOWStats in FIX format -->
<Topic>

<Name>/AMPS/SOWStats</Name>
<FileName>./sow/sowstats.fix.sow</FileName>
<MessageType>fix</MessageType>
<!-- use FIX field for the key -->
<Key>/20066</Key>

</Topic>

<l-— Persist /AMPS/SOWStats in JSON format -->
<Topic>
<Name>/AMPS/SOWStats</Name>
<FileName>./sow/sowstats.json.sow</FileName>
<MessageType>json</MessageType>
<!-- use the JSON field for the key -->
<Key>/topic</Key>
</Topic>

<l-— Persist /AMPS/SOWStats in XML format -->

<Topic>
<Name>/AMPS/SOWStats</Name>
<FileName>./sow/sowstats.xml.sow</FileName>
<MessageType>xml</MessageType>
<!-- use the XML field for the key -->
<Key>/Topic</Key>

</Topic>

</SOwW>

Every time an update occurs, AMPS will persist the /AMPS/SOWStats message and it will be stored three times,
once to the fix SOW topic, once to the xml SOW topic, and once to the json SOW topic. Each update to the
respective SOW topic will overwrite the record with the same Topic, topic or 20066 tag value. Doing this
allows clients to now query the SOWStats topic instead of actively listening to live updates.

152

Chapter 21. Utilities

AMPS provides several utilities that are not essential to message processing, but can be helpful in troubleshooting or
tuning an AMPS instance. Some of the most commonly-used utilities are listed below. Each of the following utilities
is covered in greater detail in the AMPS Utilities Guide:

amps_upgrade upgrades data files for existing AMPS instances to the current release of AMPS. 60East recom-
mends running this utility whenever an upgrade changes either the major or minor version number (for example,
an upgrade from 3.8.0.0 to 3.9.0.0).

AMPS provides a command-line client, spark, as a useful tool for diagnostics, such as checking the contents
of a SOW topic. The spark client can also be used for simple scripting to run queries, place subscriptions, and
publish data.

ampserr is used to expand and examine error messages that may be observed in the logs. This utility allows a
user to input a specific error code, or a class of error codes, examine the error message in more detail, and where
applicable, view known solutions to similar issues.

amps_sqlite3 provides a more convenient interface for querying AMPS statistics databases.
amps_sow_dump is used to inspect the contents of a SOW topic store.

amps_journal_dump is used to examine the contents of an AMPS journal file during debugging and program
tuning.

amps_f1i le is used for identifying the filetype and version of files that AMPS persists (for example, AMPS sow
6.0 for a SOW that uses version 6 of the SOW file format).

153

Chapter 22. Monitoring Interface

AMPS includes a monitoring interface which is useful for examining many important aspects about an AMPS in-
stance. This includes health and monitoring information for the AMPS engine as well as the host AMPS is running
on. All of this information is designed to be easily accessible to make gathering performance and availability infor-
mation from AMPS easy. The monitoring interface also provides easy access to perform administrative actions.

The information in the monitoring database is taken from the statistics database for the AMPS instance. AMPS pro-
vides actions for managing the statistics database, as described in the section called “Manage the Statistics Database”.

For a reference regarding the fields and their data types available in the AMPS monitoring interface, see the AMPS
Monitoring Reference

22.1. Configuration

The AMPS monitoring interface is defined in the configuration file used on AMPS start up. Below is an example
configuration of the Admin tag.

<I-- Configure the adnmin/stats HTTP server -->

<Admin>
<FileName>stats.db</FileName>
<InetAddr>localhost:8085</InetAddr>
<Interval>10s</Interval>

</Admin>

In this example Localhost is the hostname and 8085 is the port assigned to the monitoring interface. This chapter
will assume that

http://localhost:8085/

is configured as the monitoring interface URL.

The Interval tag is used to set the update interval for the AMPS monitoring interface. In this example, statistics
will be updated every 10 seconds.

in system memory. If the AMPS instance is going to be up for a long time, or the monitoring interface
statistics interval will be updated frequently, it is strongly recommended that the Fi leName setting be
specified to allow persistence of the data to a local file. See the AMPS Configuration Reference Guide
for more information.

@ It is important to note that by default AMPS will store the monitoring interface database information

The administrative console is accessible through a web browser, but also follows a Representational State Transfer
(RESTful) URI style for programmatic traversal of the directory structure of the monitoring interface.

The root of the AMPS monitoring interface URI contains two child resources—the host URI and the instance
URI —each of which is discussed in greater detail below. The host URI exposes information about the current
operating system devices, while the instance URI contains statistics about a specific AMPS deployment.

154

Monitoring Interface

22.2. Time Range Selection

AMPS keeps a history of the monitoring interface statistics, and allows that data to be queried. By selecting a leaf
node of the monitoring interface resources, a time-based query can be constructed to view a historical report of
the information. For example, if an administrator wanted to see the number of messages per second consumed by
all processors from midnight UTC on October 12, 2011 until 23:25:00 UTC on October 10, 2011, then pointing a
browser to

http://localhost:8085/amps/instance/processors/all/messages_received per_sec?
t0=20111129T0&t1=20111129T232500

will generate the report and output it in the following plain text format (note: entire dataset is not presented, but
is truncated).

20111130T033400,0
20111130T033410,0
20111130T033420,0
20111130T033430,94244
20111130T033440.000992,304661
20111130T033450.000992,301078
20111130TO33500,302755
20111130T033510,308922
20111130T033520.000992,306177
20111130T0O33530.000992,302140
20111130T033540.000992,302390
20111130T0O33550,307637
20111130TO33600.000992,310109
20111130T033610,309888
20111130T033620,299993
20111130T033630,310002
20111130T033640.000992,300612
20111130T033650,299387

is of the following form: YYYYMMDDThhmmss, where YYYY is the year, MM is the month, DD is the
year, T is a separator between the date and time, hh is the hours, mm is the minutes and s is the seconds.
Decimals are permitted after the ss units.

@ All times used for the report generation and presentation are ISO- 8601 formatted. ISO-8601 formatting

As discussed in the following sections, the date-time range can be used with plain text (html), com-
@ ma-separated values (csv), and XML formats.

22.3. Output Formatting

The AMPS monitoring interface offers several possible output formats to ease the consumption of monitoring re-
porting data. The possible options are XML, CSV and RNC output formats, each of which is discussed in more
detail below.

155

Monitoring Interface

XML Document Output

All monitoring interface resources can have the current node, along with all child nodes list its output as an XML
document by appending the . xm1 file extension to the end of the resource name. For example, if an administrator
would like to have an XML document of all of the currently running processors—including all the relevant statistics
about those processors—then the following URI will generate that information:

http://localhost:8085/amps/instance/processors/all.xml
The document that is returned will be similar to the following:

<amps>
<instance>
<processors>
<processor id='all'>
<denied_reads>0</denied_reads>
<denied_writes>0</denied_writes>
<description>AMPS Aggregate Processor Stats</description>
<last_active>1855</last_active>
<matches_found>0</matches_found>
<matches_found_per_sec>0</matches_found_per_sec>
<messages_received>0</messages_received>
<messages_received_per_sec>0</messages_received_per_sec>
<throttle_count>0</throttle_count>
</processor>
</processors>
</instance>
</amps>

Appending the . xm1 file extension to any AMPS monitoring interface resource will generate the corresponding
XML document.

CSV Document Output

Similar to the XML document output discussed above, the . csv file extension can be appended to any of the leaf
node resources to have a CSV file generated to examine those values. This can also be coupled with the time range
selection to generate reports. See Section 22.2 for more details on time range selection.

Below is a sample of the . csv output from the monitoring interface from the following URL:

http://localhost:8085/amps/instance/processors/all/
matches_found_per_sec.csv?t0=20111129T0

This resource will create a file with the following contents:

20111130T033400,0
20111130T033410,0
20111130T033420,0
20111130T033430,94244
20111130T033440.000992,304661
20111130T033450.000992,301078

156

Monitoring Interface

20111130T0O33500,302755
20111130T033510,308922
20111130T033520.000992,306177
20111130T033530.000992,302140
20111130T033540.000992,302390
20111130T033550,307637
20111130T033600.000992,310109
20111130T033610,309888
20111130T033620,299993
20111130T033630,310002
20111130T033640.000992,300612
20111130T033650,299387
20111130T0O33700.000992,304548

JSON Document Output

All monitoring interface resources can have the current node, along with all child nodes list its output as an JSON
document by appending the . j son file extension to the end of the resource name. For example, if an administrator
would like to have an JSON document of all of the CPUs on the server—including all the relevant statistics about
those CPUs—then the following URI will generate that information:

http://localhost:8085/amps/host/cpus.json

The document that is returned will be similar to the following:

{
"amps": {
"host": {
"cpus": [

ll—idll : lla'L"Lll
,"idle_percent":"62.452316076294"
,"Towait_percent":"0.490463215259"
,"system_percent":"10.681198910082"
,"user_percent":"26.376021798365"

}

’{ll—idll : llcpuoll
,"idle_percent":"75.417130144605"
,"Towait_percent":"0.333704115684"
,"system_percent":"7.563959955506"
,"user_percent":"16.685205784205"

}

s ll—idll:llcpulll
,"idle_percent":"50.000000000000"
,"Towait_percent":"0.642398286938"
,"system_percent":"13.597430406852"
,"user_percent":"35.760171306210"

}

]
}
}
}

157

Monitoring Interface

Appending the . json file extension to any AMPS monitoring interface resource will generate the corresponding
JSON document.

RNC Document Output

AMPS supports generation of an XML schema via the Relax NG Compact (RNC) specification language. To generate
an RNC file, enter the following URL in a browser http://localhost:port/amps.rnc and AMPS will
display the RNC schema.

To convert the RNC schema into an XML schema, first save the RNC output to a file:

%> wget http://localhost:9090/amps.rnc

The output can then be converted to an xml schema using Trang (available at http://code.google.com/p/jing-trang/)
with

trang -I rnc -0 xsd amps.rnc amps.xsd

158

http://code.google.com/p/jing-trang/

Chapter 23. Automating AMPS With
Actions

AMPS provides the ability to run scheduled tasks or respond to events, such as Linux signals, using the Actions
interface.

To create an action, you add an Actions section to the AMPS configuration file. Each Action contains one (or
more) On statement which specifies when the action occurs, and one (or more) Do statement which specifies what
the AMPS server does for the action. Within an action, AMPS performs each Do statement in the order in which
they appear in the file.

AMPS actions may require the use of parameters. AMPS allows you to use variables in the parameters of an action.
You can access these variables using the following syntax:

{{VARIABLE_NAME}}

AMPS defines a set of default variables when running an action. The event, or a previous action, can add variables
in the context of the action. Those variables can be expanded in subsequent parameters. If a variable is used that
isn't defined at the point where it is used, AMPS will expand that variable to an empty string literal. The context can
also be updated as the module is running, so any variables that are available at any given point in the file depend
on what action was previously executed.

By default, AMPS loads the following variables when it initializes an AMPS action:

Table 23.1. Default Context Variables

Variable Description
AMPS _INSTANCE_NAME The name of the AMPS instance.
AMPS_BYTE_XX Insert byte XX, where XX is a 2-digit uppercase hex number (00-

FF). AMPS expands this variable to the corresponding byte value.
These variables are useful for creating field separators or producing
characters that are not permitted within XML

AMPS_DATETIME The current date and time in ISO-8601 format.
AMPS _UNIX_TIMESTAMP The current date and time as a UNIX timestamp.

An example to echo a message when AMPS starts up is shown below. Note the AMPS_INSTANCE_NAME is one
of the variables that AMPS pushes to the context when an action is loaded.

<Actions>
<Action>
<0On>
<Module>amps-action-on-startup</Module>
</0n>
<Do>
<Module>amps-action-do-echo-message</Module>
<Options>
<Message>instance={{AMPS_INSTANCE_NAME}}</Message>
</Options>
</Do>
</Action>

159

Automating AMPS With Actions

</Actions>

AMPS actions are implemented as AMPS modules. AMPS provides the modules described in the following sections
by default.

23.1. Setting when an Action Runs

This section describes the options for configuring when AMPS runs a given action.

Running an Action on a Schedule

AMPS provides the amps-action-on-schedule module for running actions on a specified schedule.

The options provided to the module define the schedule on which AMPS will run the actions in the Do element.

Table 23.2. Parameters for Scheduling Actions

Parameter Description

Every Specifies a recurring action that runs whenever the time matches the provided specification.
Specifications can take three forms:

* Timer action. A specification that is simply a duration, such as 4h or 1d, creates a timer
action. AMPS starts the timer when the instance starts. When the timer expires, AMPS runs
the action and resets the timer.

* Daily action. A specification that is a time of day, such as ©0:30 or 17:45, creates a
daily action. AMPS runs the action every day at the specified time. AMPS uses a 24 hour
notation for daily actions.

* Weekly action. A specification that includes a day of the week and a time, such as Satur-
day at 11:00 orWednesday at 03:30 creates a weekly action. AMPS runs the
action each week on the day specified, at the time specified. AMPS uses a 24 hour notation
for weekly actions.

AMPS accepts both local time and UTC for time specifications. To use UTC, append a Z to
the time specifier. For example, the time specification 11:30 is 11:30 AM local time. The
time specification 11:307 is 11:30 AM UTC.

Name The name of the schedule. This name appears in log messages related to this schedule.

Default: unknown

This module does not add any variables to the AMPS context.

Running an Action in Response to a Signal

AMPS provides the amps-action-on-signal module for running actions when AMPS receives a specified
signal.

The module requires the Signal parameter:

160

Automating AMPS With Actions

Table 23.3. Parameters for Responding to Signals

Parameter Description

Signal Specifies the signal to respond to. This module supports the standard Linux signals. Configuring
an action uses the standard name of the signal.

For example, to configure an action to SIGUSR1, the value for the Signal element is
SIGUSRL. To configure an action for STGHUP, the value for the Signal element is STGHUP
and so on.

AMPS reserves STGQUIT for producing minidumps, and does not allow this module to override
SIGQUIT. AMPS registers actions for several signals by default. See the section called “Default
Signal Actions” for details.

This module does not add any variables to the AMPS context.

2 Actions can be used to override the default signal behavior for AMPS.

Default Signal Actions

By default, AMPS registers the following actions for signals.

Table 23.4. Default Actions

On Event Action

SIGUSR1 amps—-action-do-disable-authentication
SIGUSR1 amps-action-do-disable-entititlement
SIGUSR2 amps-action-do-enable-authentication
SIGUSR2 amps—-action-do-enable-entitlement
SIGINT amps-action-do-shutdown

SIGTERM amps-action-do-shutdown

SIGHUP amps-action-do-shutdown

The actions in the table above can be be overridden by creating an explicit action in the configuration file.

AMPS reserves STGQUIT to perform the action amps—-action-do-minidump. This behavior is reserved, and
cannot be overridden.

Running an Action on Startup or Shutdown

AMPS includes modules to run actions when AMPS starts up or shuts down.

The amps—-action-on-startup module runs actions as the last step in the startup sequence. The amps-ac-
tion-on-shutdown module runs actions as the first step in the AMPS shutdown sequence.

In both cases, actions run in the order that the actions appear in the configuration file.

These modules do not require any parameters.

161

Automating AMPS With Actions

These modules do not add any variables to the AMPS context.

Runnning an Action on Client Logon

AMPS provides the amps—-action-on-1logon module for running actions when a user logs into an AMPS client.
This module does not require any parameters.

This module adds the following variables to the AMPS context:

Table 23.5. Context Variables for On Client Logon

Variable Description
AMPS_CLIENT_NAME The name of the AMPS Client.
AMPS_CONNECTION_NAME The name of the AMPS connection.

Running an Action on Client Connection

AMPS provides modules for running actions on the connection or disconnection of an AMPS client.

The amps-action-on-disconnect-client runs actions once an AMPS client instance disconnects. The
amps-action-on-connect-client runs actions once an instance of an AMPS client successfully connects.

These modules do not require any parameters.

These modules add the following variables to the AMPS context.

Table 23.6. Context Variables for On Connect and Disconnect Client

Variable Description
AMPS_CLIENT_NAME The name of the AMPS client.
AMPS_CONNECTION_NAME The name of the AMPS connection.

Running an Action on Message Delivery

AMPS provides modules to run actions when AMPS delivers a message to subscribers. The basic flow of AMPS
messaging is to first receive a published message, find the subscriber(s) to which this message will be sent, then
deliver the message.

The amps-action-on-deliver-message runs actions when AMPS delivers a message to subscribers.

This module requires the MessageType and the Topi c of the message that has been delivered:

Table 23.7. Parameters for On Deliver Message

Parameter Description

MessageType The message type of the topic to monitor for message delivery. There is no default for this
parameter.

Topic The name of the topic to monitor for message delivery. This parameter supports regular ex-
pressions. There is no default for this parameter.

162

Automating AMPS With Actions

This module adds the following variables to the AMPS context:

Table 23.8. Context Variables for On Deliver Message

Variable Description
AMPS_TOPIC The topic of the message.
AMPS_DATA The data the message contains.

AMPS_DATA_LENGTH

The length of the data the message contains.

AMPS_BOOKMARK

The bookmark associated with this message. This is an empty string
if the message does not have a bookmark.

AMPS_CLIENT_NAME

The name of the client to which this message was delivered.

Running an Action on Message Publish

AMPS provides modules to run actions when a message is published to AMPS. The basic flow of AMPS messaging
is to first receive a published message, find the subscriber(s) to which this message will be sent, then deliver that

message to the subscriber(s).

The amps-action-on-publish-message runs actions as soon as a message is published to AMPS.

This module requires the MessageType and the Top1i c of the message that was published. In addition to that, this
module also accepts an optional MessageSource parameter:

Table 23.9. Parameters for On Publish Message

MessageType

The message type of the topic to monitor for publishes. There is no default for this
parameter.

Topic

The name of the topic to monitor for publishes. This parameter supports regular
expressions. There is no default for this parameter.

MessageSource

The source to monitor for publishes. The source of the message defaults to all,
which monitors both publishes directly to this AMPS instance and messages re-
ceived via replication.

This parameter also accepts Local for when the message source is published di-
rectly to this AMPS instance and replicated for messages received via repli-
cation.

Filter

Sets the filter to apply. Only messages that match this filter will cause the action
to run.

This module adds the following variables to the AMPS context:

Table 23.10. Context Variables for On Publish Message

Variable Description
AMPS_TOPIC The topic of the message.
AMPS_DATA The data the message contains.

AMPS_DATA_LENGTH

The length of the data that the message contains.

AMPS_BOOKMARK

The bookmark associated with this message.

163

Automating AMPS With Actions

Variable Description

AMPS_TIMESTAMP The time at which the message was processed by AMPS.

AMPS_CLIENT_NAME The name of the client from which the message was pub-
lished.

Running an Action on OOF Message

When a record that previously matched a subscription has been updated so that the record no longer matches its
subscription, AMPS sends an out-of-focus (OOF) message to let subscribers know that their record no longer matches
the subscription. With amps-action-on-ocof-message, you can enter a subscription within AMPS and run
actions when an OOF message for that subscription is produced.

This module requires the following parameters:

Table 23.11. Parameters for On OOF Message

Parameter Description

MessageType The message type of the topic to monitor for OOF messages. This parameter sup-
ports regular expressions. There is no default for this parameter.

Topic The topic to monitor for OOF messages.The topic specified must be a SOW topic,
view, or conflated topic. This parameter supports regular expressions. There is no
default for this parameter.

Filter Set the filter to apply. This filter forms the internal subscription for which OOF
messages will be generated.

Type The type of OOF message to take action on.

Table 23.12. OOF message types for amps-action-on-oof-message

Parameter Description

match Take action on OOF messages generat-
ed because message no longer matches
filter.

delete Take action on OOF messages generat-

ed because message has been removed
from the SOW.

expire Take action on OOF messages generat-
ed because the message expired from the
SOW.

all Take action on all of the above types.

Defaults to all.

This module adds the following variables to the AMPS context:

Table 23.13. Context Variables for On OOF Message

Variable Description
AMPS_TOPIC The topic of the OOF message.
AMPS_DATA The data of the OOF message.

164

Automating AMPS With Actions

Variable Description

AMPS_DATA_LENGTH The length of the data of the OOF message.

AMPS_PREVIOUS_DATA The data previously contained from the updated
record.

AMPS_PREVIOUS_DATA_LENGTH The length of the data previously contained from
the updated record.

Running an Action on Minidump

AMPS provides the amps-action-on-minidump module for running actions when AMPS generates a
minidump.

This module does not require parameters.

This module adds the following variable to the AMPS context:

Table 23.14. Context Variable for On Minidump

Variable Description

AMPS_MINIDUMP_PATH The path to where the minidump is created.

Running an Action on Offline Start or Stop

AMPS provides modules to run actions when an AMPS client is marked as a slow client, and also for when the
AMPS client catches up to no longer be subject to slow client offlining.

Slow client offlining is a feature in AMPS that reduces the memory resources consumed by slow clients. More on
this feature can be found in the section called “Slow Client Management ”.

The amps-action-on-offline-start module runs actions as the first step when AMPS's result set reaches
its disk limit and has to disconnect the client. The amps-action-on-offline-stop module runs actions as
AMPS is no longer subject to slow client offlining.

In both cases, actions run in the order that the actions appear in the configuration file.
Both modules do not require any parameters.

Both modules add the following variables to the AMPS context:

Table 23.15. Context Variables for On Offline Start and Stop

Variable Description
AMPS_CLIENT_NAME The name of the AMPS client.
AMPS_CONNECTION_NAME The name of the AMPS connection.

Running on Action on SOW Message Deletion

AMPS provides a module to run an action when a message is deleted from a topic in the SOW.

165

Automating AMPS With Actions

The amps-action-on-sow-delete-message module monitors a topic for deletions from the SOW. The action runs once
for each message that is deleted in the matching topic.

Table 23.16. Parameters for On SOW Message Deletion

MessageType The message type of the topic to monitor for messages. There is no default for this
parameter.
Topic The name of the topic to monitor for messages. This parameter does not support

regular expressions. The topic name must be one of the topics in the SOW (either
a topic in the SOW, a view, a conflated topic, or a queue). There is no default for
this parameter.

The module adds the following variables to the AMPS context:

Table 23.17. Context Variables for On SOW Message Delete

Variable Description
AMPS_TOPIC The topic of the message that expired the alert.
AMPS_DATA The current data of the message.

AMPS_DATA_LENGTH

The length of the current data of the message, in bytes.

Running an Action on SOW Message Expiration

AMPS provides a module to run an action when a message expires from a topic in the SOW.

The amps-action-on-sow-expire-message module monitors a topic for expirations. The action runs once
for each message that expires in the matching topic. Notice, in particular, that this includes monitoring messages that
expire from the queue, which are presented as SOW expirations to this module.

Table 23.18. Parameters for On SOW Message Expiration

MessageType The message type of the topic to monitor for messages. There is no default for this
parameter.
Topic The name of the topic to monitor for messages. This parameter does not support

regular expressions. The topic name must be one of the topics in the SOW (either
a topic in the SOW, a view, a conflated topic, or a queue). There is no default for
this parameter.

The module adds the following variables to the AMPS context:

Table 23.19. Context Variables for On SOW Message Expire

Variable Description
AMPS_TOPIC The topic of the message that expired the alert.
AMPS_DATA The current data of the message.

AMPS_DATA_LENGTH

The length of the current data of the message, in bytes.

166

Automating AMPS With Actions

Running an Action on Message Condition Timeout

AMPS provides a module to run an action when a message in a SOW topic meets a specific condition for longer than
a specified period of time. For example, an action might be configured to publish a message to an Alerts topic if
an order is unprocessed for more than a specified timeout.

The amps-action-on-message-condition-timeout monitors a SOW topic for messages that match a
filter and triggers an action for each message that remains matched on that filter for at least the specified duration.

This module uses the Out-of-Focus notification (OOF) mechanism. When a message matches the specified topic
and filter, the module begins tracking that message. If no OOF notification is received for that message within the
specified timeout, the action runs for that message.

The module tracks each message that matches the filter individually, and will run once for each message that exceeds
the timeout.

While the AMPS server is running, this action will trigger exactly once for each message after it reaches

A the timeout period. When AMPS restarts, if a message that had previously triggered this action still
exists in the SOW topic (and still matches the filter provided, if any), the action will run for that message
immediately after module initializes on restart.

Table 23.20. Parameters for On Message Condition Timeout

MessageType The message type of the topic to monitor for messages. There is no default for this
parameter.
Topic The name of the topic to monitor for messages. This parameter does not support

regular expressions. The topic name must be one of the topics in the SOW (either
a topic in the SOW, a view, or a conflated topic). Queues are not supported. There
is no default for this parameter.

Duration The amount of time to wait for an OOF notification for the message before running
the action.
Filter Sets the filter to apply. Only messages that match this filter will be monitored by

this action. If no filter is provided, every message of the specified message type in
topics that match the Top1 ¢ value will be monitored.

The module adds the following variables to the AMPS context:

Table 23.21. Context Variables for On Message Condition Timeout

Variable Description

AMPS_TOPIC The topic of the message that triggered the alert.

AMPS_DATA The current data of the message.

AMPS_DATA_LENGTH The length of the current data of the message, in bytes.

AMPS_BOOKMARK The bookmark of the message. Empty if ther eis no book-
mark for the message.

AMPS_TIMESTAMP The timestamp at which the module began tracking the
message.

AMPS_CLIENT_NAME The client name of the current value of the message.

167

Automating AMPS With Actions

Variable Description

AMPS_SOW_KEY The current SowKey for the message.

23.2. Defining the Action to Take

This section describes the default modules for specifying what AMPS does when an action runs.

Rotate Log Files

AMPS provides the following module for rotating log files. AMPS loads this module by default:

Table 23.22. Managing Logs

Module Name Does
amps-action-do- Rotates logs that are older than a specified age, for log types that support
rotate-logs log rotation. Rotating a log involves closing the log and opening the next

log in sequence.

AMPS will use the name specifier provided in the AMPS configuration for
the new log file. This may overwrite the current log file if the specifier
results in the same name as the current log file.

This module does not require options.

This module does not add any variables to the AMPS context:

Manage the Statistics Database

AMPS provides the following modules for managing the statistics database. As a maintenance strategy, 60East
recommends truncating statistics on a regular basis. This frees space in the database file, which will be reused as
new statistics are generated. It is generally not necessary to vacuum statistics unless you have changed your retention
policy so that less data is retained between truncation operations. With regular truncation, the statistics database file
will usually stabilize at the correct size to hold the amount of data your application generates between truncation
operations.

AMPS loads these modules by default.

Table 23.23. Managing Logs

Module Name Does

amps-action-do-truncate-statistics Removes statistics that are older than a specified age.
This frees space in the statistics file, but does not reduce
the size of the file.

amps-action-do-vacuum-statistics Remove unused space in the statistics file to reduce the
size of the file.

In general, it is not necessary to remove unused space
in the statistics file. This operation can be expensive,
and query access to the statistics database can be un-

168

Automating AMPS With Actions

Module Name

Does

available for an extended period of time if the file is
large. If storage space is in high demand, and the in-
terval at which the file is vacuumed has been reduced,
removing space from the file can sometimes reduce the
space needs.

60East recommends using this action only in long-run-
ning AMPS environments where space is at a premi-
um, and scheduling the action during times when it is
acceptable for monitoring of the system to be unavail-
able while the file is processed.

The amps-action-do-truncate-statistics module requires an Age parameter that specifies the age of

the statistics to process.

Table 23.24. Parameters for Managing Statistics

Parameter

Description

Age

Specifies the age of the statistics to remove. The module processes any file older
than the specified Age. For example, when the Age is 5d, the module removes
statistics that are older than 5d.

There is no default for this parameter.

These modules do not add any variables to the AMPS context.

Manage Journal Files

AMPS provides the following modules for managing journal files. AMPS loads these modules by default:

Table 23.25. Managing Journals

Module Name

Does

amps-action-do-archive-journal

Archives journal files that are older than a specified age to the
JournalArchiveDirectory specified for the transac-
tion log.

amps-action-do-compress-journal

Compresses journal files that are older than a specified age.

amps-action-do-remove-journal

Deletes journal files that are older than a specified age.

Each of these modules requires an Age parameter that specifies the age of the journal files to process.

AMPS will only remove journal files that are no longer needed by the instance. AMPS ensures that all replays from a
journal file are complete, all queue messages in that journal file have been delivered (and acknowledged, if required),
and all messages from a journal file have been successfully replicated before removing the file.

Table 23.26. Parameters for Managing Journals

Parameter

Description

Age

Specifies the age of files to process. The module processes any file older than the
specified Age. For example, when the Age is 5d, only files that have not been
written to for longer than 5 days will be processed by the module. AMPS does not

169

Automating AMPS With Actions

Parameter Description

process the current log file, or files that are being used for replay, files that are being
used for replication, or files that contain unacknowledged and unexpired messages
in a queue; even if the file has been inactive for longer than the Age parameter.
AMPS does not allow gaps in the journal files, so it will only remove a given file
if all previous files have been removed.

There is no default for this parameter.

These modules do not add any variables to the AMPS context.

Removing Files

AMPS provides the following module for removing files. Use this action to remove error log files that are no longer
needed. AMPS loads this module by default. This action cannot be used to safely remove journal files (also known
as transaction log files). For those files, use the journal management actions described in the section called “Manage
Journal Files”.

This action removes files that match an arbitrary pattern. If the pattern is not specified carefully, this
A action can remove files that contain important data, are required for AMPS, or are required by the
operating system.

This action cannot be used to safely remove journal files. Use the actions in the section called “Manage
A Journal Files” to manage journal files.

Table 23.27. Removing Files

Module Name Does
amps-action-do- Removes files that match the specified pattern that are older than the spec-
remove-files ified age. This action accepts an arbitrary pattern, and removes files that

match that pattern. While AMPS attempts to protect against deleting journal
files, using a pattern that removes files that are critical for AMPS, for the
application, or for the operating system may result in loss of data.

The module does not recurse into directories. It skips open files. The module
does not remove AMPS journals (that is, files that end with a . journal
extension), and reports an error if a file with that extension matches the
specified Pattern.

The commands to remove files are executed with the current permissions
of the AMPS process.

This module requires an Age parameter that specifies the age of the files to remove, as determined by the update to
the file. This module also requires a Pattern parameter that specifies a pattern for locating files to remove.

Table 23.28. Parameters for Removing Files

Parameter Description

Age Specifies the age of files to process. The module removes any file older than the
specified Age that matches the specified Pattern. For example, when the Age is
5d, only files that have not modified within 5 days and that match the pattern will
be processed by the module.

170

Automating AMPS With Actions

Parameter Description

There is no default for this parameter.

Pattern Specifies the pattern for files to remove. The module removes any files that match
the specified Pattern that have not been modified more recently than the specified
Age.

This parameter is interpreted as a Unix shell globbing pattern. It is not interpreted
as a regular expression.

As with other parameters that use the file system, when the pattern specified is a
relative path the parameter is interpreted relative to the current working directory
of the AMPS process. When the pattern specified is an absolute path, AMPS uses
the absolute path.

There is no default for this parameter.

Keep Specifies the number of files that meet the Age and Pattern criteria to retain. When
this parameter is specified, AMPS will remove files matching the criteria, starting
with the oldest files, and stop when the number of remaining files is the number
specified in this parameter.

There is no default for this parameter. When both Keep and Count are specified,
AMPS will not remove any files if the number of files meeting the criteria is less
than the number specified in the Keep parameter.

Count Specifies the maximum number of files that meet the Age and Pattern criteria to
remove. AMPS will remove files matching the criteria, starting with the oldest files,
and stop when the number of files specified in this parameter have been removed.

There is no default for this parameter. When both Keep and Count are specified,
AMPS will not remove any files if the number of files meeting the criteria is less
than the number specified in the Keep parameter.

This module does not add any variables to the AMPS context.

Deleting Messages from SOW

AMPS also provides modules for deleting SOW contents. The amps-action-do-delete-sow module deletes
messages from the specified SOW topic.

This module requires the MessageType, Topic, and Filter parameters in order to delete the desired message.

Table 23.29. Parameters for Deleting SOW Messages

Parameter Description

MessageType The MessageType of the SOW topic or topics to delete from.

There is no default for this parameter.

Topic The name of the SOW topic from which to delete messages. This parameter sup-
ports regular expressions.

There is no default for this parameter.

Filter Set the filter to apply. Only messages matching that filter will be deleted.

171

Automating AMPS With Actions

This module does not add any variables to the AMPS context.

Compacting a SOW File

AMPS also provides provides a module for reducing the unused space in a SOW file. The amps-action-do-
compact-sow module rearranges the messages in the SOW into a smaller amount of space, where possible.

This module can compact a specific SOW file, or the SOW files for every topic in the instance. When a Mes-
sageType and Topic are provided, this module compacts the SOW file for that topic. Otherwise, the module
compacts the file for all topics in the SOW.

While messages are being added or updated within a topic in the SOW, AMPS reuses free space as possible: it is not
necessary to compact the SOW file during most normal operation. This action is most useful after an activity peak
that leaves a large amount of unneeded space in the file, or in installations where space is at a premium. Depending
on the file size, the number of topics to be compacted, and the amount of free space, the reogranization that this
operation performs may require a noticeable amount of I/0 bandwidth. 60East recommends that this action run
during a maintenance window or in response to a critical lack of disk space.

Table 23.30. Parameters for Deleting SOW Messages

Parameter

Description

MessageType

The MessageType of the SOW topic or topics to delete from. This option must be
specified if the Top-ic is provided.

There is no default for this parameter.

Topic

The name of the SOW topic from which to delete messages. This option must be
specified if the MessageType is provided.

There is no default for this parameter.

This module does not add any variables to the AMPS context.

Querying a SOW Topic

AMPS provides a module for querying a SOW topic. The amps-action-do-query-sow queries the SOW
topic, and stores the first message returned by the SOW query into a user-defined variable.

This module requires the MessageType, Topic,and Fi Ll ter parameters to identify the query to run. This module
requires the CaptureData parameter in order to be able to store the result of the query.

Table 23.31. Parameters for Querying SOW Messages

Parameter Description

MessageType The message type of the topic to query. There is no default for this parameter

Topic The name of the topic to query. This topic must be a SOW topic, a view, a queue,
or a conflated topic. There is no default for this parameter. This parameter supports
regular expressions.

Filter Set the filter to apply. If a Filter is present, only messages matching that filter
will be returned by the query.

172

Automating AMPS With Actions

Parameter Description

CaptureData Sets the name of the variable within which AMPS will store the first message re-
turned.

DefaultData If no records are found, AMPS stores the DefaultData in the variable specified

by CaptureData.

OrderBy An OrderBy expression to use to order the results returned by the query. For ex-
ample, to order in descending order of the /date field in the messages, you would
provide an OrderBy option of /date DESC.

Once you query messages from the SOW topic, you can use the captured data in other actions. The example below
uses amps-action-do-query-sow to query the SOW on a schedule in order to echo messages to the log for
diagnostic purposes:

<Actions>
<Action>
<0n>
<Module>amps-action-on-schedule</Module>
<Options>
<Every>Saturday at 23:59</Every>
<Name>Diagnostic_Schedule</Name>
</Options>
</0n>
<Do>
<Module>amps—-action-do-query-sow</Module>
<Options>
<MessageType>xml</MessageType>
<Topic>SOW_TOPIC</Topic>
<Filter>/Trans/Order/@Oname = 'PURCHASE'</Filter>
<CaptureData>AMPS_DATA</CaptureData>
</Options>
</Do>
<Do>
<Module>amps-action-do-extract-values</Module>
<Options>
<MessageType>xml</MessageType>
<Data>{{AMPS_DATA}}</Data>
<Value>SAVED_VARIABLE=/Value</Value>
</Options>
<Do>
<Module>amps-action-do-echo-message</Module>
<Options>
<Message>{{SAVED_VARIABLE}} was in the message</Message>
</Options>
</Do>
</Action>
</Actions>

Manage Security

AMPS provides modules for managing the security features of an instance.

173

Automating AMPS With Actions

Authentication and entitlement can be enabled or disabled, which is useful for debugging or auditing purposes. You
can also reset security and authentication, which clears the AMPS internal caches and gives security and authenti-
cation modules the opportunity to reinitialize themselves, for example, by re-parsing an entitlements file.

AMPS loads the following modules by default:

Table 23.32. Security Modules

Module Name Does

amps-action-do-disable-authentication Disables authentication for the instance.

amps-action-do-disable-entitlement Disables entitlement for the instance.

amps-action-do-enable-authentication Enables authentication for the instance.

amps-action-do-enable-entitlement Enables entitlement for the instance.

amps-action-do-reset-authentication Resets authentication by clearing AMPS caches and reini-
tializing authentication

amps-action-do-reset-entitlement Resets entitlement by clearing AMPS caches and reini-
tializing entitlement

These modules require no parameters. The amps-action-do-reset-authentication module and the
amps-action-do-reset-entitlement module accept an optional Transpor t parameter which specifies
the transport to reset.

Table 23.33. Parameters for Reset Authentication or Entitlement

Parameter Description

Transport The Name of the transport for which to reset authentication or entitlements.

If no Name is provided, these modules affect all transports.

These modules do not add any variables to the AMPS context.

Enable and Disable a Transport

AMPS provides modules that can enable and disable specific transports. The amps-action-do-en-
able-transport module enables a transport. The amps-action-do-disable-transport module dis-
ables a transport.

Table 23.34. Transport Action Modules

Module Name Does

amps-action-do-enable-transport Enables a specific transport.

amps-action-do-disable-transport Disables a specific transport.

Both modules require the name of the transport to disable or enable.

Table 23.35. Parameters for Managing Transports

Parameter Description

Transport The Name of the transport to enable or disable.

174

Automating AMPS With Actions

Parameter

Description

If no Name is provided, the module affects all transports.

Both modules do not add any variables to the AMPS context.

Publishing Messages

The amps-

action-do-publish-message module publishes a message into a specified topic.

Publishes from this action are treated as publishes from an AMPS client inside the AMPS engine. This means that:

* There are no user credentials associated with the publish, so entitlements are not applied.

* There is no special handling for the publish. The publish is recorded in the transaction log exactly as if it arrived
from outside of the instance, and is processed within the instance as if the had arrived from an external publisher.

%

This action is treated by the AMPS engine as a publish from an internal AMPS client.When an amps-—
action-do-publish-message runs in response to the amps-action-on-publish-mes-
sage event or the amps-action-on-deliver-message event, use caution when the message
published from this action could cause the event to trigger again.

This warning includes cases where the action publishes to a topic directly monitored by the action, cases
where the action monitors a view and publishes to an underlying topic of the view. The warning also
applies to configurations in which two or more actions "cross publish" to topics that are monitored by
the other action. An example of the last case is an action that monitors TopicOne and publishes to
TopicTwo, while another action monitors TopicTwo and publishes to TopicOne.

The result of a configuration like the ones described above is called a publish loop. AMPS does not
support unterminated publish loops or loops that produce a large number of cycles before terminating.

To publish a message, this module requires the MessageType, a Topic to publish on, and also the Data that
the message will contain.

Table 23.36. Parameters for Publishing Messages

Parameter Description

MessageType The MessageType for the topic. There is no default for this parameter.

Topic The topic of the message being published.

Data The data that the message will contain.

Delta Whether to use a delta publish. When this option is present, and the value is true, the
action will use a delta publish.

When no value is specified, this option is false.

UpdateOnly Specifies whether a delta publish is allowed to insert a record, or only update a record.
When a delta publish is specified (that is, Delta is true), and this option is set to
true, AMPS will only accept the publish if there is a record present to be updated.
When no value is specified, this option is false.

175

Automating AMPS With Actions

action-do-publish-message runs in response to the amps-action-on-publish-mes-
sage event or the amps-action-on-deliver-message event, use caution when the message
published from this action could cause the event to trigger again.

o This action is treated by the AMPS engine as a publish from an internal AMPS client.When an amps—

This includes both cases where the action publishes to a topic directly monitored by the action, cases
where the action monitors a view and publishes to an underlying topic of the view, and cases where two
or more actions each publish to a topic that is monitored by another action.

In effect, a configuration like the one described above creates a recursive call to the action: that recur-
sion must terminate, and must terminate at a relatively low depth. (The exact limits depend on system
capacity, message size, and so on).

This module does not add any variables to the AMPS context.

Manage Replication

AMPS provides modules for downgrading replication destinations that fall behind and upgrading them again when
they catch up.

Table 23.37. Replication Modules

Module Name Does

amps—-action-do- Downgrades replication connections from synchronous to

downgrade-replication asynchronous if the age of the last acknowledged message is
older than a specified time period.

amps—-action-do- Upgrades previously-downgraded replication connections

upgrade-replication from asynchronous to synchronous if the age of the last ac-

knowledged message is more recent than a specified time peri-
od. This action has no effect on replication destinations that are
specified as async in the configuration file.

The modules determine when to downgrade and upgrade based on the age of the oldest message that a destination
has not yet acknowledged. When using these modules, it is important that the thresholds for the modules are not set
too close together. Otherwise, AMPS may repeatedly upgrade and downgrade the connection when the destination
is consistently acknowledging messages at a rate close to the threshold values. To avoid this, 60East recommends
that the Age set for the upgrade module is 1/2 of the age used for the downgrade module.

The amps-action-do-downgrade-replication module accepts the following options:

Table 23.38. Parameters for Downgrading Replication

Parameter Description

Age Specifies the maximum message age at which AMPS downgrades a replication des-
tination to async. When this action runs, AMPS downgrades any destination for
which the oldest unacknowledge message is older than the specified Age.

For example, when the Age is 5m, AMPS will downgrade any destination where a
message older than 5 minutes has not been acknowledged.

There is no default for this parameter.

176

Automating AMPS With Actions

Parameter Description

GracePeriod The approximate time to wait after start up before beginning to check whether to
downgrade links. The GracePeriod allows time for other AMPS instances to
start up, and for connections to be established between AMPS instances.

The amps-action-do-upgrade-replication module only applies to destinations configured as sync that
have been previously downgraded. The module accepts the following options:

Table 23.39. Parameters for Upgrading Replication

Parameter Description

Age Specifies the maximum message age at which a previously-downgraded destination
will be upgraded to sync mode. When this action runs, AMPS upgrades any desti-
nation that has been previously downgraded where the oldest unacknowledged mes-
sage to AMPS is more recent than time value specified in the Age parameter.

For example, if a destination has been downgraded to async mode and the Age is
2m, AMPS will upgrade the destination when the oldest unacknowledged message
to that destination is less than 2 minutes old.

There is no default for this parameter.

GracePeriod The approximate time to wait after start up before beginning to check whether to
upgrade links. The GracePeriod allows time for other AMPS instances to start
up, and for connections to be established between AMPS instances.

These modules do not add any variables to the AMPS context.

Extract Values

The amps-action-do-extract-values module extracts message values from a message and stores the val-
ues in a variable.

To extract values from a message, this module requires the MessageType, Data, and Va lue parameters.

Table 23.40. Parameters for Extract Values

Parameter Description
MessageType The MessageType for the message to parse. There is no default for this parameter.
Data Contains the data to parse: typically a message received from a publish event or re-

trieved from a SOW query. There is no default value for this parameter. If it is omit-
ted, AMPS will not parse data when the action is run.

Value An assignment statement that specifies the variable to store the extracted value in and
the XPath identifier for the value to extract. This action can contain any number of
Value elements, each providing an assignment statement.

The format of the assignment statement is as follows:
vari abl e = anps expression

For example, the following assignment statement stores the value of the /previ-
ousRegionCode within the message to the variable PREVIOUS_REGION. After

177

Automating AMPS With Actions

Parameter Description

this action runs, the content of the variable can be referenced in subsequent actions
as { {PREVIOUS_REGION}}.

PREVIOUS_REGION=/previousRegionCode

Likewise, the following assignment statement creates a string from the values of the
/firstName and /lastName fields within the message, and stores that to the
variable COMBINED_NAME. After this action runs, the content of the variable can be
referenced in subsequent actions as { { COMBINED_NAME}}.

COMBINED_NAME=CONCAT (/firstName, ' ', /lastName)

There is no default for this option. If no Value options are provided, AMPS does
not save any values from the parsed message.

The module amps-action-do-extract-values adds the variables specified by the Value options to the
current context.

Translate Data

The amps-action-do-translate-data action allows you to translate the value from variables in the current
context. One common use for this action is to translate a large number of status values into a smaller number of
states before publishing that information in a message. For example, an order processing system may track a large
number of finely-grained status codes, while the reporting view for customers may want to map those status codes

to a smaller set of codes such as "pending", "shipped", and "delivered". This action allows you to easily translate
those codes within AMPS.

When used to assemble a message, this action provides equivalent results to a set of nested conditional statements
in a view projection. However, if you are using actions to parse, assemble, and publish messages, this action gives
you the ability to change values.

Table 23.41. Parameters for Translate Data

Parameter Description

Data The data to translate. Most often, this is the value of a variable in the current context.
Value The variable to store the translated value in.

Case An translation statement. The translation statement takes the form of

ori gi nal _val ue=transl at ed_val ue. This action allows you to provide
any number of Case statements.

The action matches the Data provided to the ori gi nal _val ue in each Case
statement. When it finds a matching value, the action stores the translated value in
the variable identified by the Value statement.

For example, the following translation statement translates a value of
credit_check_in_progress to avalue of pending

<Case>credit_check_in_progress=pending</Case>

There is no default for this option.

178

Automating AMPS With Actions

Parameter Description

Default The default translation. AMPS sets the value of the variable to the contents of this
element if no Case statement matches the Data provided.

This element is optional. If no Default is specified, AMPS uses the value of the
original Data as the default translation.

Increment Counter

The amps-action-do-increment-counter module allows AMPS to increment a counter by a value. Coun-
ters persist across action runs, and are saved in the instance memory until the instance is restarted.

If a counter with the specified name does not currently exist in the instance when the action runs, AMPS creates
the counter with a value of 0 and then immediately increments it with the specified value. If the counter is already
present, AMPS will simply increment the counter.

To see an example of amps—-action-do-increment-counter, refer to the Action Configuration Examples
section at the end of this chapter.

This module requires a Key that tells AMPS which counter to increment and a Va lue that tells AMPS where to
store the incremented value.

Table 23.42. Parameter for Increment Counter

Parameter Description

Key The name of the counter that AMPS will increment. There is no default value for this
parameter.

Value The variable in which to store the current value of the counter.

This module adds variable that contains the counter, as specified in the Va lue parameter, to the current context.

Executing System Commands

The amps-action-do-execute-system module allows AMPS to execute system commands.

The parameter for this module is simply the command. The command executes in the current working directory of
the AMPS process, with the credentials and environment of the AMPS process.

Table 23.43. Parameter for Execute System

Parameter Description

Command The command to execute. When the action runs, this command is executed as a shell
command on the system where AMPS is running.

This module does not add any variables to the AMPS context.

damage the system, interrupt the AMPS service, or cause data loss by executing commands with this
module. 60East recommends against using any data extracted from an AMPS message in the command
executed.

2 This module executes system commands with the credentials of the AMPS process. It is possible to

179

Automating AMPS With Actions

Debugging Actions

AMPS provides modules for debugging your AMPS action configuration.

Table 23.44. Debugging Modules

Module Name Does

amps—-action-do-nothing Takes no action. Does not modify the state of AMPS in any way. The module
simply logs that it was called.

amps-action-do-echo- Echoes the specified message to the log. The message appears in the log

message as message 29-0103,at info level.The logging configuration must allow

this message to be recorded for the output of this action to appear in the log.

The amps-action-do-nothing module requires no parameters.

The amps-action-do-echo-message module requires the following parameter:

Table 23.45. Parameter for Echo Message

Parameter Descsription

Message The message to echo. The default for this parameter is simply an empty string.

These modules do not add any variables to the AMPS context.

Creating a Minidump

AMPS provides a module for creating a minidumps. The amps—-action-do-minidump module provides a way
for developers and/or administrators to easily create minidumps for diagnostic purposes.

Table 23.46. Creating a Minidump Module

Module Name Does

amps—-action-do-minidump Creates a minidump.

This module does not require any parameters.

This module does not add any variables to the AMPS context.

Shut Down AMPS

The amps-action-do-shutdown module shuts down AMPS. This module is registered as the default action
for several Linux signals, as described in the section called “Default Signal Actions”.

Table 23.47. Shut Down Module

Module Name Does
amps-action-do- Shuts down AMPS.
shutdown

This module does not require any parameters.

180

Automating AMPS With Actions

This module does not add any variables to the the AMPS context.

23.3. Conditionally Run Actions

AMPS includes the ability to run actions only if certain conditions are true. For some actions (such as the replication
management actions), the condition is included as a part of the action. In other cases, AMPS provides I actions.

An If action is evaluated each time the execution of an action reaches the I f action. When the condition specified
inan I action is true, AMPS proceeds to the next Do action. If the condition in an I action is False, AMPS
does not run any further Do elements in the action.

File System Usage

AMPS provides the following If module for taking action based on the file system capacity. AMPS loads this
module by default:

Table 23.48. File System Usage

Module Name Does
amps-action-if-file- Checks whether the specified path on the filesystem meets the specified
system-usage usage level. If so, allows execution to continue. If not, stops the action.

Table 23.49. Parameters for Running Actions Based on File System Usage

Parameter Description

Path Specifies the filesystem path to monitor. The AMPS process must have sufficient
permissions to check the disk usage for this path at the time the check runs.

There is no default for this parameter.

GreaterThan The threshold to check, specified as a percentage. If the provided path has more
space used than specified in this parameter, subsequent Do and I f blocks will run.
Otherwise, the action will complete with this step.

This module does not add any variables to the AMPS context.

For example, the following action will log a message in the AMPS log every minute when the file system becomes
more than 90% full, and perform a full shutdown of AMPS if the file system is more than 98% full.

<Actions>
<Action>

<0n>
<Module>amps-action-on-schedule</Module>
<Options>

<Every>1m</Every>

</Options>

</0n>

<If>
<Module>amps-action-if-file-system-usage</Module>
<Options>

<GreaterThan>90%</GreaterThan>

181

Automating AMPS With Actions

<Path>/mnt/fastdrive/amps</Path>
</Options>
</JIf>
<Do>
<Module>amps-action-do-echo-message</Module>
<Options>
<Message>ALERT: You're getting low on space!</Message>
</Options>
</Do>
<If>
<Module>amps-action-if-file-system-usage</Module>
<Options>
<GreaterThan>98%</GreaterThan>
<Path>/mnt/fastdrive/amps</Path>
</Options>
</JIf>
<Do>
<Module>amps-action-do-echo-message</Module>
<Options>
<Message>CRITICAL: Shutting down AMPS</Message>
</Options>
</Do>
<Do>
<Module>amps-action-do-shutdown</Module>
</Do>
</Action>
</Actions>

23.4. Action Configuration Examples

Archive Files Older Than One Week, Every Saturday

The listing below asks AMPS to archive files older than 1 week, every Saturday at 12:30 AM:

<Actions>
<Action>
<0n>
<Module>amps-action-on-schedule</Module>
<Options>
<Every>Saturday at 00:30</Every>
<Name>Saturday Night Fever</Name>
</Options>
</0n>
<Do>
<Module>amps-action-do-archive-journal</Module>
<Options>
<Age>T7d</Age>
</Options>
</Do>

182

Automating AMPS With Actions

</Action>
</Actions>

Disable and Re-enable Security on Signal

The listing below disables authentication and entitlement when AMPS receives on the USR1 signal. When AMPS
receives the USR2 signal, AMPS re-enables authentication and entitlement. This configuration is, in effect, the

configuration that AMPS installs by default for these signals:

<Actions>
<Action>
<0On>
<Module>amps—-action-on-signal</Module>
<Options>
<Signal>SIGUSR1</Signal>
</Options>
</0n>
<Do>
<Module>amps-action-do-disable-authentication</Module>
</Do>
<Do>
<Module>amps-action-do-disable-entitlement</Module>
</Do>
</Action>
<Action>
<0On>
<Module>amps—-action-on-signal</Module>
<Options>
<Signal>SIGUSR2</Signal>
</Options>
</0n>
<Do>
<Module>amps—-action-do-enable-authentication</Module>
</Do>
<Do>
<Module>amps-action-do-enable-entitlement</Module>
</Do>
</Action>
</Actions>

Extract Values on Publish of a Message

The listing below extracts values from a locally published xml message and stores them into VALUE.

<Actions>
<Action>
<0n>
<Module>amps-action-on-publish-message</Module>
<Options>
<Topic>message-sow</Topic>
<MessageType>xml</MessageType>

183

Automating AMPS With Actions

<MessageSource>local</MessageSource>
</Options>
</0n>
<Do>
<Module>amps-action-do-extract-values</Module>
<Options>
<MessageType>xml</MessageType>
<Data>{{AMPS_DATA}}</Data>
<Value>VALUE = /VALUE</Value>
</Options>
</Do>
</Action>
</Actions>

Increment a Counter and Echo a Message on Signal

The listing below increments a counter and echoes the counter's value when AMPS receives on the USR1 signal.

<Actions>
<Action>
<0n>
<Module>amps-action-on-signal</Module>
<Options>
<Signal>SIGUSR1</Signal>
</Options>
</0n>
<Do>
<Module>amps-action-do-increment-counter</Module>
<Options>
<Key>MY_COUNTER</Key>
<Value>CURRENT_COUNTER_VALUE</Value>
</Options>
</Do>
<Do>
<Module>amps-action-do-echo-message</Module>
<Options>
<Message>AMPS has gotten {{CURRENT_COUNTER_VALUE}}
SIGUSR1 signals.</Message>
</Options>
</Do>
</Action>
</Actions>

Copy a Message to a Different Topic When a Timeout is Ex-
ceeded

The listing below, in effect, copies messages from the Orders topic to the Orders_Sta le topic when the status
has been PENDING for more than 5 seconds.

<Actions>

184

Automating AMPS With Actions

<Action>
<0n>
<Module>amps-action-on-message-condition-timeout</Module>
<Options>
<MessageType>nvfix</MessageType>
<Topic>0Orders</Topic>
<Filter>/status = 'PENDING'</Filter>
<Duration>5s</Duration>
</Options>
</0n>
<Do>
<Module>amps-action-do-publish-message</Module>
<Options>
<MessageType>nvfix</MessageType>
<Topic>0Orders_Stale</Topic>
<Data>{{AMPS_DATA}}</Data>
</Options>
</Do>
</Action>
</Actions>

Recording Expired Queue Messages in a Dead Letter Topic

The listing below detects when a message expires from a queue, and publishes those messages to a dead letter topic.

<Action>
<Action>
<0n>
<Module>amps-action-on-sow-expire-message</Module>
<Options>
<Topic>interesting-queue</Topic>
<MessageType>json</MessageType>
</Options>
</0n>
<0n>
<Module>amps-action-on-sow-expire-message</Module>
<Options>
<Topic>another-interesting-queue</Topic>
<MessageType>json</MessageType>
</Options>
</0n>
<Do>
<Module>amps-action-do-publish-message</Module>
<Options>
<Topic>dead-letter</Topic>
<MessageType>json</MessageType>
<Data>{"topic":{{AMPS_TOPIC}}, "message" : {{AMPS_DATA}} }</
Data>
</Options>
</Do>
</Action>
</Actions>

185

Automating AMPS With Actions

Shutting Down AMPS When Filesystem Fills

The listing below directs AMPS to perform a graceful shutdown when the filesystem becomes full, with a check
run every 3 seconds.

<Actions>
<Action>
<On>
<Module>amps-action-on-schedule</Module>
<Options>
<Every>3s</Every>
</Options>
</0n>
<If>
<Module>amps-action-if-file-system-usage</Module>
<Options>
<Path>./</Path>
<GreaterThan>99%</GreaterThan>
</Options>
</IF>
<Do>
<Module>amps-action-do-shutdown</Module>
</Do>
</Action>
</Actions>

186

Chapter 24. Replication and High
Availability

This chapter discusses the support that AMPS provides for replication, and how AMPS features help to build systems
that provide high availability.

24.1. Overview of AMPS High Availability

AMPS is designed for high performance, mission-critical applications. Those systems typically need to meet avail-
ability guarantees. To reach those availability guarantees, systems need to be fault tolerant. It's not realistic to expect
that networks will never fail, components will never need to be replaced, or that servers will never need maintenance.
For high availability, you build applications that are fault tolerant: that keep working as designed even when part of
the system fails or is taken offline for maintenance. AMPS is designed with this approach in mind. It assumes that
components will occasionally fail or need maintenance, and helps you to build systems that meet their guarantees
even when part of the system is offline.

When you plan for high availability, the first step is to ensure that each part of your system has the ability to continue
running and deliverying correct results if any other part of the system fails. You also ensure that each part of your
system can be independently restarted without affecting the other parts of the system.

The AMPS server includes the following features that help ensure high availability:

» Transaction logging writes messages to persistent storage. In AMPS, the transaction log is not only the definitive
record of what messages have been processed, it is also fully queryable by clients. Highly available systems
make use of this capability to keep a consistent view of messages for all subscribers and publishers. The AMPS
transaction log is described in detail in Chapter 13.

» Replication allows AMPS instances to copy messages between instances. AMPS replication is peer-to-peer, and
any number of AMPS instances can replicate to any number of AMPS instances. Replication can be filtered by
topic. By default, AMPS instances only replicate messages published to that instance. An AMPS instance can
also replicate messages received via replication using passthrough replication: the ability for instances to pass
replication messages to other AMPS instances.

» Heartbeat monitoring to actively detect when a connection is lost. Each client configures the heartbeat interval
for that connection.

The AMPS client libraries include the following features to help ensure high availability:

» Heartbeat monitoring to actively detect when a connection is lost. As mentioned above, the interval for the
heatbeat is configurable on a connection-by-connection basis. The interval for heartbeat can be set by the client,
allowing you to configure a longer timeout on higher latency connections or less critical operations, and a lower
timeout on fast connections or for clients that must detect failover quickly.

» Automatic reconnection and failover allows clients to automatically reconnect when disconnection occurs, and
to locate and connect to an active instance.

» Guaranteed publication from clients, including an optional persistent message store. This allows message pub-
lication to survive client restarts as well as server failover.

+ Subscription recovery and transaction log playback allows clients to recover the state of their messaging after
restarts.

187

Replication and High Availability

When used with a regular subscription or a sow and subscribe, the HAClient can restore the subscription at the
point the client reconnects to AMPS.

When used with a bookmark subscription, the HAClient can provide the ability to resume at the point the client
lost the connection. These features guarantee that clients recieve all messages published in the order published,
including messages received while the clients were offline. Replay and resumable subscription features are pro-
vided by the transaction log, as described in Chapter 13.

For details on each client library, see the developer's guide for that library. Further samples can be found in the evalua-
tion kit for the client, available from the 60East website at http: //www.crankuptheamps.com/evaluate.

24.2. High Availability Scenarios

You design your high availability strategy to meet the needs of your application, your business, and your network.
This section describes commonly-deployed scenarios for high availability.

Failover Scenario

One of the most common scenarios is for two AMPS instances to replicate to each other. This replication is synchro-
nous, so that both instances persist a message before AMPS acknowledges the message to the publisher. This makes
a hot-hot pair. In the figure below, any messages published to important_top-c are replicated across instances,
so both instances have the messages for important_topic.

Synchronous
Replication

Between
Instances

important_topic

AMPS AMPS
Instance Instance
1 2

important_topic

Notice that, because AMPS replication is peer-to-peer, clients can connect to either instance of AMPS when both
are running. Further, messages can be published to either instance of AMPS and be replicated to the other instance.
In this case, clients are configured with the addresses of both AMPS instances.

In this case, clients are configured with Instance 1 and Instance 2 as equivalent server addresses. If a client cannot con-
nect to one instance, it tries the other. Because both instances contain the same messages for important_topic,
there is no functional difference in which instance a client connects to. Because these instances replicate to each
other, AMPS can optimize this to a single connection. Two connections are shown in the diagram to demonstrate
the required configuration.

188

Replication and High Availability

Geographic Replication

AMPS is well suited for replicating messages to different regions, so clients in those regions are able to quickly
receive and publish messages to a local instance. In this case, each region replicates all messages on the topic of
interest to the other two regions. A variation on this strategy is to use a region tag in the content, and use content
filtering so that each replicates messages intended for use in the other regions or worldwide.

Sites Replicate

Each Other

////
// e
/ //
/ s \\
/ // / \
/ / / \
/ / / \
| | / \

For this scenario, an AMPS instance in each region replicates to an instance in the two other regions. For the best
performance, replication between the regions is asynchronous, so that once an instance in one region has persisted
the message, the message is acknowledged back to the publisher.

In this case, clients in each region connect to the AMPS instance in that region. Bandwidth within regions is con-
served, because each message is replicated once to the region, regardless of how many subscribers in that region will
receive the message. Further, publishers are able to publish the message once to a local instance over a relatively
fast network connection rather than having to publish messages multiple times to multiple regions.

To configure this scenario, the AMPS instances in each region are configured to forward messages to known instances
in the other two regions.

Geographic Replication with High Availability

Combining the first two scenarios allows your application to distribute messages as required and to have high avail-
ability in each region. This involves having two or more servers in each region, as shown in the figure below.

189

Replication and High Availability

Sites Replicate
Each Other

Chicago

Each region is configured as a group. Within each group, the instances replicate to each other synchronously, and
replicate to the remote instances asynchronously. The figure below shows the expanded detail of the configuration

for these servers.

Chicago
Backup

London

London
Backup

190

Replication and High Availability

to NEW YORK to LONDON group
group
\ /
N -7
N~ - 7

~
~ -~ — s

synchronous ———

asynchronous — — — —»

Chicago Chicago
1 2

CHICAGO group

The instances in each region are configured to be part of a group for that region. Within a region, the instances
synchronously replicate to each other, and asynchronously replicate to instances at each remote site. The instances
use the replication downgrade action to ensure that message publishing continues in the event that one of the instances
goes offline. As with all connections where instances replicate to each other, this replication is configured as one
connection in each direction, although AMPS may optimize this to a single replication connection.

Each instance at a site provides passthrough replication from the other sites to local instances, so that once a message
arrives at the site, it is replicated to the other instances at the local site. The remote sites are configured in the same
way. This configuration balances fault-tolerance and performance.

Each instance at a site replicates to the remote sites. The instance specifies one Destination for each remote site,
with the servers at the remote site listed as failover equivalents for the remote site. With the passthrough configura-
tion, this ensures that each message is delivered to each remote site exactly once. Whichever server at the remote
site receives the message distributes it to the other server using passthrough replication.

With this configuration, publishers at each site publish to the primary local AMPS instance, and subscribers subscribe
to messages from their local AMPS instances. Both publishers and subscribers use the high availability features of
the AMPS client libraries to ensure that if the primary local instance AMPS fails, they automatically failover to the
other instance. Replication is used to deliver both high availability and disaster recovery. In the table below, each
row represents a replication destination. Servers in brackets are represented as sets of InetAddr elements in the
Destination definition.

Table 24.1. Geographic Replication with HA Destinations

Server Destinations

Chicago 1 sync to Chicago 2
async to [NewYork 1, NewYork 2]

async to [London 1, London 2]

191

Replication and High Availability

Server Destinations

Chicago 2 sync to Chicago 2
async to [NewYork 1, NewYork 2]

async to [London 1, London 2]

NewYork 1 sync to NewYork 2
async to [Chicago 1, Chicago 2]

async to [London 1, London 2]

NewYork 2 sync to NewYork 1
async to [Chicago 1, Chicago 2]

async to [London 1, London 2]

London 1 sync to London 2

async to [Chicago 1, Chicago 2]
async to [NewYork 1, NewYork 2]

London 2 sync to London 1

async to [Chicago 1, Chicago 2]
async to [NewYork 1, NewYork 2]

24.3. AMPS Replication

AMPS has the ability to replicate messages to downstream AMPS instances once those messages are stored to a
transaction log. Replication in AMPS involves the configuration of two or more instances designed to share some or
all of the published messages. Replication is an efficient way to split and share message streams between multiple
sites where each downstream site may only want a subset of the messages from the upstream instances. Additionally,
replication can be used to improve the availability of a set of AMPS instances by creating redundant instances for
fail-over cases.

AMPS supports two forms of replication links: synchronous and asynchronous; these settings control when publish-
ers of messages are sent persisted acknowledgments. These settings do not affect when or how messages are
replicated, or when or how messages are delivered to subscribers. These settings only affect when AMPS acknowl-
edges to the publisher that the message has been persisted.

AMPS replication consists of a message stream (or, more precisely, a command stream) provided to downstream
instances. AMPS replicates publish commands and sow_delete commands. AMPS does not replicate mes-
sages produced internally by AMPS, such as the results of Views or updates sent to a ConflatedTopic. When
replicating Queues, AMPS also uses the replication connection to send and receive administrative commands related
to queues, as described in the section on Replicated Queues.

To replicate between two instances, both instances must have the same major and minor version number
of AMPS. For example, an instance running 3.5.0.5 can replicate to an instance running 3.5.0.6, but
could not replicate to an instance running 3.8.0.0. .

192

Replication and High Availability

Configuration

Replication configuration involves the configuration of two or more instances of AMPS. For testing purposes both
instances of AMPS can reside on the same physical host before deployment into a production environment. When
running both instances on one machine, the performance characteristics will differ from production, so running both
instances on one machine is more useful for testing configuration correctness than testing overall performance.

It's important to make sure that when running multiple AMPS instances on the same host that there are
A no conflicting ports. AMPS will emit an error message and will not start properly if it detects that a
port is already in use.

For the purposes of explaining this example, we're going to assume a simple primary-secondary replication case
where we have two instances of AMPS - the first host is named amps-1 and the second host is named amps-2.
Each of the instances are configured to replicate data to the other —that is to say, all messages published to amps—1
are replicated to amps—2 and vice versa. This configuration ensures that the data on our two instances are always
synchronized in case of a failover.

We will first show the relevant portion of the configuration used in amps-1, and then we will show the relevant
configuration for amps-2.

action Log configuration for brevity. Please reference the Transaction Log chapter for information on

@ All replication topics must also have a Transaction Log defined. The examples below omit the Trans-
how to configure a transaction log for a topic.

<AMPSConfig>
<Name>amps-1</Name>
<Group>DataCenter-NYC-1</Group>

<Transports>
<Transport>
O<Name>amps-replication</Name>
<Type>amps-replication</Type>
<InetAddr>localhost:10004</InetAddr>
<ReuseAddr>true</ReuseAddr>
</Transport>
<Transport>
B<Name>tcp-fix</Name>
<MessageType>fix</MessageType>
<Type>tcp</Type>
<InetAddr>localhost:9004</InetAddr>
<Protocol>fix</Protocol>
<ReuseAddr>true</ReuseAddr>
</Transport>
</Transports>

©<Replication>
O<Destination>
O©<Topic>
<MessageType>fix</MessageType>

193

Replication and High Availability

O<Name>orders</Name>
O<Filter>/55="IBM'</Filter>
</Topic>
<Name>amps-2</Name>
O<Group>DataCenter-NYC-1</Group>
O<SyncType>sync</SyncType>
O<Transport>
®<InetAddr>amps-2-server.example.com:10005</InetAddr>
<Type>amps-replication</Type>
</Transport>
</Destination>
</Replication>

</AMPSConfig>

Example 24.1. Configuration used for amps-1

©® The amps-replication transport is required. This is a proprietary message format used by AMPS to
replicate messages between instances. This AMPS instance will receive replication messages on this transport.
The instance can receive messages from any number of upstream instances on this transport.

The fix transport defines the message transport on port 9004 to use the FIX message type. All messages sent
to this port will be parsed as FIX messages.

All replication destinations are defined inside the Replication block.

Each individual replication destination requires a Destination block.

The replicated topics and their respective message types are defined here. AMPS allows any number of Topic
definitions in a Destination.

The Name definition specifies the name of the topic or topics to be replicated. The Name option can be either
a specific topic name or a regular expression that matches a set of topic names.

200 ©

©

When a specific topic is specified, that topic must be recorded in a transaction log. When a regular expression
is specified, only topics of the same message type that are recorded in a transaction log are replicated.

© This Topic definition uses a filter that matches only when the FIX tag 55 matches the string ' IBM'. This
means that messages that match only messages in topic orders with ticker symbol (tag 55) of IBM will be
sent to the downstream replica amps-2.

The Topic/Filter option supports any valid AMPS filter expression. This filtering provides for greater
control over the flow of messages to replicated instances.

O The group name of the destination instance (or instances). The name specified here must match the Group
defined for the remote AMPS instance, or AMPS reports an error and refuses to connect to the remote instance.

© Replication SyncType can be either sync or async.

® The Transport definition defines the location to which this AMPS instance will replicate messages. The Tne-
tAddr points to the hostname and port of the downstream replication instance. The Type for a replication
instance should always be amps-replication.

® The address, or list of addresses, for the replication destination.

For the configuration amps-2, we will use the following in Example 24.2. While this example is similar, only the
differences between the amps—1 configuration will be called out.

<AMPSConfig>
<Name>amps-2</Name>

194

Replication and High Availability

<Group>DataCenter-NYC-1</Group>

O<Transports>

<Transport>
<Name>amps-replication</Name>
<Type>amps-replication</Type>

O<InetAddr>10005</InetAddr>

<ReuseAddr>true</ReuseAddr>

</Transport>

<Transport>
<Name>tcp-fix</Name>
<Type>fix</Type>
<InetAddr>localhost:9005</InetAddr>
<ReuseAddr>true</ReuseAddr>

</Transport>

</Transports>

<Replication>
<Destination>
<Topic>
<MessageType>fix</MessageType>
<Name>topic</Name>
</Topic>
<Name>amps-1</Name>
<Group>DataCenter-NYC-1</Group>
O<SyncType>async</SyncType>
<Transport>
O<InetAddr>amps-1l-server.example.com:10004</InetAddr>
<Type>amps-replication</Type>
</Transport>
</Destination>
</Replication>

</AMPSConfig>

Example 24.2. Configuration used for amps-2

©® The amps-replication transport is required. This is a proprietary message format used by AMPS to
replicate messages between instances. This AMPS instance will receive replication messages on this transport.
The instance can receive messages from any number of upstream instances on this transport.

® The port where amps-2 listens for replication messages matches the port where amps—1 is configured to send
its replication messages. This AMPS instance will receive replication messages on this transport. The instance
can receive messages from any number of upstream instances on this transport.

©® The amps-2 instance is configured to use a async for the replication destination's SyncType. A detailed
explanation of the difference between the sync and async options for the SyncType can be found here:
the section called “Sync vs Async”.

O The replication destination port for amps-2 is configured to send replication messages to the same port on
which amps-1 is configured to listen for them.

195

Replication and High Availability

Automatic Configuration Validation

Replication can involve coordinating configuration among a large number of AMPS instances. It can sometimes be
time consuming to ensure that all of the instances are configured correctly, and to ensure that a configuration change
for one instance is also made at the replication destinations. For example, if a high-availability pair replicates the
topics ORDERS, INVENTORY, and CUSTOMERS to a remote disaster recovery site, but the disaster recovery site
only replicates ORDERS and INVENTORY back to the high-availability pair, disaster recovery may not occur as
planned. Likewise, if only one member of the HA pair replicates ORDERS to the other member of the pair, the two
instances will contain different messages, which could cause problems for the system.

Starting in the 5.0 release, AMPS automatic replication configuration validation makes it easier to keep configuration
items consistent across a replication fabric.

Automatic configuration validation is enabled by default. You can turn off validation for specific elements of the
configuration, including turning off validation for the topic altogether by excluding all of the checks. When validation
is enabled, AMPS verifies the configuration of a remote instance when a replication connection is made. If the
configuration is not compatible with the source for one or more of the validation checks, AMPS logs the incompatible
configuration items and does not allow the connection.

Each Top-ic in areplication Destination can configure a unique set of validation checks. By default, all of the
checks apply to all topics in the Destination.

The table below lists the elements that AMPS validates:

Table 24.2. Replication Configuration Validation

Check Validates

txlog The topic is contained in the transaction log of the remote
instance.

replicate The topic is replicated from the remote instance back to

this instance.

sow If the topic is a SOW topic in this instance, it must also
be a SOW topic in the remote instance.

cascade The remote instance must enforce the same set of valida-
tion checks for this topic as this instance does.

queue If the topic is a queue in this instance, it must also be a
queue in the remote instance.

This option cannot be excluded.

keys If the topic is a SOW topic in this instance, it must also
be a SOW topic in the remote instance and the SOW in
the remote instance must use the same Key definitions.

replicate_filter If this topic uses a replication filter, the remote instance
must use the same replication filter for replication back
to this instance.

queue_passthrough If the topic is a queue in this instance, the remote instance
must support passthrough from this group.

This option cannot be excluded.

queue_underlying If the topic is a queue in this instance, it must use the
same underlying topic definition and filters in the remote
instance.

196

Replication and High Availability

Check Validates
This option cannot be excluded.

For example, the following Topic does not require the remote destination to replicate back to this instance, and does
not require that the remote destination enforce the same configuration checks for any downstream replication of
this topic.

<Destination>

<Topic>
<MessageType>json</MessageType>
<Name>MyStuff-VIEW</Name>
<ExcludeValidation>replicate,cascade</ExcludeValidation>
</Topic>

</Destination>

Benefits of Replication

Replication can serve two purposes in AMPS. First, it can increase the fault-tolerance of AMPS by creating a spare
instance to cut over to when the primary instance fails. Second, replication can be used in message delivery to a
remote site.

In order to provide fault tolerance and reliable remote site message delivery, for the best possible messaging expe-
rience, there are some guarantees and features that AMPS has implemented. Those features are discussed below.

Replication in AMPS supports filtering by both topic and by message content. This granularity in filtering allows
replication sources to have complete control over what messages are sent to their downstream replication instances.

Additionally, replication can improve availability of AMPS by creating a redundant instance of an AMPS server.
Using replication, all of the messages which flow into a primary instance of AMPS can be replicated to a secondary
spare instance. This way, if the primary instance should become unresponsive for any reason, then the secondary
AMPS instance can be swapped in to begin processing message streams and requests.

Sync vs Async

When publishing to a topic that is recorded in the transaction log, it is recommended that publishers request a per-
sisted acknowledgment message response. The persisted acknowledgement message is one of the ways in
which AMPS guarantees that a message received by AMPS is stored in accordance with the configuration. (The
HAClient classes in the AMPS client libraries automatically request this acknowledgement on each publish
command when a publish store is present.)

Depending on how AMPS is configured, that pers-isted acknowledgment message will be delivered to the pub-
lisher at different times in the replication process. There are two options: synchronous or asynchronous. These two
SyncType configurations control when publishers of messages are sent persisted acknowledgments.

In synchronous replication, AMPS will not return a persisted acknowledgment to the publisher for a message
until the message has been stored to the local transaction log, to the SOW, and to all downstream synchronous
replication destinations. Figure 24.1 shows the cycle of a message being published in a replicated instance, and the
persisted acknowledgment message being returned back to the publisher. Notice that, with this configuration, the

197

Replication and High Availability

publisher will not recieve an acknowledgement if the remote destination is unavailable. 60East recommends that
when you use sync replication, you also set a policy for downgrading the link when a destination is offline, as
described in the section called “Automatically Downgrading an AMPS instance”.

|PUBLISHER| | AMPS-A | | AMPS-B |
P%W’

Persist to
Transaction Log

W’
Persist to
Transaction Lo
persi st ed ack

Figure 24.1. Synchronous Persistence Acknowledgment

In asynchronous replication, the primary AMPS instance sends the pers-isted acknowledgment message back
to the publisher as soon as the message is stored in the local transaction log and SOW stores. The primary AMPS
instance then sends the message to downstream replica instances. Figure 24.2 shows the cycle of a message being

published with a SyncType configuration set to asynchronous.

| PUBLISHER | | AMPS-A | | AMPS-B |

Persist to
Transaction Log

K .

Persist to
Transaction Lo

Figure 24.2. Asynchronous Persistence Acknowledgment

Replication Compression

AMPS provides the ability to compress the replication connnection. In typical use, using replication compression
can greatly reduce the bandwidth required between AMPS instances.

The precise amount of compression that AMPS can achieve depends on the content of the replicated messages.
Compression is configured at the replication source, and does not need to be enabled in the transport configuration

at the instance receiving the replicated messages.

198

Replication and High Availability

For AMPS instances that are receiving replicated messages, no additional configuration is necessary. AMPS auto-
matically recognizes when an incoming replication connection uses compression.

Destination Server Failover

Your replication plan may include replication to a server that is part of a highly-available group. There are two
common approaches to destination server failover.

Wide IP AMPS replication works transparently with wide IP, and many installations use wide IP for destination
server failover. The advantage of this approach is that it requires no additional configuration in AMPS, and redundant
servers can be added or removed from the wide IP group without reconfiguring the instances that replicate to the
group. A disadvantage to this approach is that failover can require several seconds, and messages are not replicated
during the time that it takes for failover to occur.

AMPS failover AMPS allows you to specify multiple downstream servers in the TnetAddr element of a destina-
tion. In this case, AMPS treats the set list of servers as a list of equivalent servers, listed in order of priority.

When multiple addresses are specified for a destination, each time AMPS needs to make a connection to a destination,
AMPS starts at the beginning of the list and attempts to connect to each address in the list. If AMPS is unable to
connect to any address in the list, AMPS waits for a timeout period, then begins again with the first server on the list.
Each time AMPS reaches the end of the list without establishing a connection, AMPS increases the timeout period.

This capability allows you to easily set up replication to a highly-available group. If the server you are replicating
to fails over, AMPS uses the prioritized list of servers to re-establish a connection.

Back Replication

Back Replication is a term used to describe a replication scenario where there are two instances of AMPS—termed
AMPS-A and AMPS-B for this example—in a special replication configuration. AMPS—-A will be considered the
primary replication instance, while AMPS-B will be the backup instance.

In a back replication, messages that are published to AMPS—-A are replicated to AMPS-B. Likewise, all messages
which are published to AMPS-B are replicated to AMPS—A. This replication scheme is used when both instances
of AMPS need to be in sync with each other to handle a failover scenario with no loss of messages between them.
This way, if AMPS—A should fail at any point, the AMPS-B instance can be brought in as the primary instance. All
publishers and subscribers can quickly be migrated to the AMPS—B instance, allowing message flow to resume with
as little downtime as possible.

In back replication, you need to decide if replication is synchronous in both directions, or synchronous from the
primary, AMPS-A, to the secondary, AMPS—B, and asychronous from the secondary to the primary. If clients are
actively connecting to both instances, synchronous replication in both directions provides the most consistent view
of message state. If AMPS-B is only used for failover, then asynchronous replication from AMPS-B to AMPS-A is
recommended. For any synchronous replication, consider configuring automatic replication downgrade, described
below.

Starting with the 5.0 release, when AMPS detects back replication between a pair of instances, AMPS will prefer
using a single connection between the servers, replicating messages in both directions over the single connection.
This is particularly useful for situations where you need to have messages replicated, but only one server can initiate
a connection: for example, when one of the servers is in a DMZ, and cannot make a connection to a server within
the company. AMPS also allows you to specify a replication destination with no InetAddr provided: in this case,
the instance will replicate once the destination establishes a destination, but will not initiate a connection. When

199

Replication and High Availability

both instances specify an InetAddr, AMPS may temporarily create two connections between the instances while
replication is being established. In this case, after detecting that there are two connections active, AMPS will close

one of the connections and use a single connection for replication.

Passthrough Replication

Passthrough Replication is a term used to describe the ability of an AMPS instance to pass along replicated messages
to a another AMPS instance. This allows you to easily keep multiple failover or DR destinations in sync from a
single AMPS instance. Unless passthrough replication is configured, an AMPS instance only replicates messages

published to that instance.

Passthrough replication uses the name of the originating AMPS group to indicate that messages that arrive from that
group are to be replicated to the specified destination. Passthrough replication supports regex server groups, and
allows multiple server groups per destination. Notice that if the destination instance does not specify a group, the

name of the instance is the name of the group.

<Replication>

<Destination>

<Name>AMPS2-HKG< /Name>
<I-= No group specified:
this destination is for
a server at the same site,
and is responsible for
populating the specific
replication partner. —-->
<Transport>
<Name>amps-replication</Name>
<Type>amps-replication</Type>
<InetAddr>secondaryhost:10010</InetAddr>
<ReuseAddr>true</ReuseAddr>
</Transport>
<Topic>
<Name>/rep_topic</Name>
<MessageType>fix</MessageType>
</Topic>
<Topic>
<Name>/rep_topic2</Name>
<MessageType>fix</MessageType>
</Topic>
<SyncType>sync</SyncType>
O<PassThrough>"NYC</PassThrough>

</Destination>

</Replication>

When a message is eligible for passthrough replication, topic and content filters in the replication destination still
apply. The passthrough directive simply means that the message is eligible for replication from this instance if it

The server group from which messages will be passed through. This example passes along messages from
AMPS instances from any group name that begins with NYC. Messages that originated at an instance that is not
in a group that matches "NYC are not passed through to this destination. While the PassThrough element
supports regular expressions for group names, in many cases all instances for a passthrough rule will be in
the same group.

comes from an instance in the specified group.

200

Replication and High Availability

AMPS protects against loops in passthrough replication by tracking the instance names or group names that a message
has passed through. AMPS does not allow a message to travel through the same instance or group more than once.

When using passthrough, AMPS does not allow a message to pass through the same instance name or
A group name more than once, to protect against replication loops.

Guarantees on ordering

For each publisher, on a single topic, AMPS is guaranteed to deliver messages to subscribers in the same order that
the messages were published by the original publisher. This guarantee holds true regardless of how many publishers
or how many subscribers are connected to AMPS at any one time.

For each instance, AMPS is guaranteed to deliver messages in the order in which the messages were received by
the instance, regardless of whether a message is received directly from a publisher or indirectly via replication. The
message order for the instance is recorded in the transaction log, and is guaranteed to remain consistent across server
restarts.

These guarantees mean that subscribers will not spend unnecessary CPU cycles checking timestamps or other mes-
sage content to verify which message is the most recent, or reordering messages during playback. This frees up
subscriber resources to do more important work.

AMPS preserves an absolute order across topics for a single subscription for all topics except views, queues, and
conflated topics. Applications often rely on this behavior to correlate the times at which messages to different topics
were processed by AMPS. See Section 3.6 for more information.

Automatically Downgrading an AMPS instance

The AMPS administrative console provides the ability to downgrade a replication link from synchronous to asyn-
chronous. This feature is useful should a downstream AMPS instance prove unstable, unresponsive, or introduce
additional latency.

Downgrading a replication link to asynchronous means that any persisted acknowledgment message that a pub-
lisher may be waiting on will no longer wait for the downstream instance to confirm that it has committed the mes-
sage to its downstream Transaction Log or SOW store. AMPS immediately considers the downstream instance to
have acknowledged the message for existing messages, which means that if AMPS was waiting for acknowledge-
ment from that instance to deliver a persisted acknowledgement, AMPS immediately sends the persisted
acknowledgement when the instance is downgraded..

AMPS can be configured to automatically downgrade a replication link to asychronous if the remote side of the
link cannot keep up with persisting messages or becomes unresponsive. This option prevents unreliable links from
holding up publishers, but increases the chances of a single instance failure resulting in message loss, as described
above.

Automatic downgrade is implemented as an AMPS action. To configure automatic downgrade, add the appropriate
action to the configuration file as shown below:

<AMPSConfig>

<Actions>
<Action>
<On>
<Module>amps-action-on-schedule</Module>

201

Replication and High Availability

<Options>
O<Every>15s</Every>
</Options>
</0n>
<Do>
<Module>amps-action-do-downgrade-replication</Module>
<Options>
B<Age>30s</Age>
</Options>
</Do>
</Action>
</Actions>

</AMPSConfig>

© This option determines how often AMPS checks whether destinations have fallen behind. In this example,
AMPS checks destinations every 15 seconds. In most cases, 60East recommends setting this to half of the
Interval setting.

® The maximum amount of time for a destination to fall behind. If AMPS has been waiting for an acknowledge-
ment from the destination for longer than the Interval, AMPS downgrades the destination. In this example,
AMPS downgrades any destination for which an acknowledgment has taken longer than 30 seconds.

In this configuration file, AMPS checks every 15 seconds to see if a destination has fallen behind by 30 seconds.

This helps to guarantee that a destination will never exceed the Interva'l, even in situations where the destination

begins falling behind exactly at the time AMPS checks for the destination keeping up.

Replication Security

AMPS allows authorization and entitlement to be configured on replication destinations. For the instance that re-
ceives connections, you simply configure Authentication and Entitlement for the transport definition for the desti-
nation, as shown below:

<Transports>
<Transport>
<Name>amps-replication</Name>
<Type>amps-replication</Type>
<InetAddr>10005</InetAddr>
<ReuseAddr>true</ReuseAddr>
O<Entitlement>
<Module>amps-default-entitlement-module</Module>
</Entitlement>
B@<Authentication>
<Module>amps-default-authentication-module</Module>
</Authentication>
</Transport>

</Transports>

© Specifies the entitlement module to use to check permissions for incoming connections. The module specified
must be defined in the Modu les section of the config file, or be one of the default modules provided by AMPS.
This snippet uses the default module provided by AMPS for example purposes.

® Specifies the authorization module to use to verify identity for incoming connections. The module specified
must be defined in the Modu L es section of the config file, or be one of the default modules provided by AMPS.
This snippet uses the default module provided by AMPS for example purposes.

202

Replication and High Availability

For incoming connections, configuration is the same as for other types of transports.

For connections from AMPS to replication destinations, you can configure an Authenticator module for the destina-
tion transport. Authenticator modules provide credentials for outgoing connections from AMPS. For authentication
protocols that require a challenge and response, the Authenticator module handles the responses for the instance
requesting access.

<Replication>
<Destination>
<Topic>
<MessageType>fix</MessageType>
<Name>topic</Name>
</Topic>
<Name>amps-1</Name>
<SyncType>async</SyncType>
<Transport>
<InetAddr>amps-1-server.example.com:10004</InetAddr>
<Type>amps-replication</Type>
O<Authenticator>
<Module>amps-default-authenticator-module</Module>
</Authenticator>
</Transport>
</Destination>
</Replication>

© Specifies the authenticator module to use to provide credentials for the outgoing connection. The module spec-
ified must be defined in the Modu les section of the config file, or be one of the default modules provided by
AMPS. This snippet uses the default module provided by AMPS for example purposes.

Maximum downstream destinations

AMPS has support for up to 64 synchronous downstream replication instances and unlimited asynchronous desti-
nations.

24.4. High Availability

AMPS High Availability, which includes multi-site replication and the transaction log, is designed to provide long
uptimes and speedy recovery from disasters. Replication allows deployments to improve upon the already rock-solid
stability of AMPS. Additionally, AMPS journaling provides the persisted state necessary to make sure that client
recovery is fast, painless, and error free.

Guaranteed Publishing

An interruption in service while publishing messages could be disastrous if the publisher doesn't know which message
was last persisted to AMPS. To prevent this from happening, AMPS has support for guaranteed publishing.

The Llogon command supports a processed acknowledgment message, which will return the Sequence of the
last record that AMPS has persisted. When the processed acknowledgment message is returned to the publisher,
the Sequence corresponds to the last message persisted by AMPS. The publisher can then use that sequence to

203

Replication and High Availability

determine if it needs to 1) re-publish messages that were not persisted by AMPS, or 2) continue publishing messages
from where it left off. Acknowledging persisted messages across logon sessions allows AMPS to guarantee publish-
ing. The HAClient classes in the AMPS clients manage sequence numbers, including setting a meaningful initial
sequence number based on the response from the LTogon command, automatically.

sage with every Logon command. This ensures that the Sequence returned in the acknowledgement
message matches the publisher's last published message. The 60East AMPS clients do this automatically
when using the named logon methods. If you are building the command yourself or using a custom
client, you may need to add this request to the command yourself.

@ It is recommended as a best practice that all publishers request a processed acknowledgment mes-

In addition to the acknowledgment messages, AMPS also keeps track of the published messages from a client based
on the client's name. The client name is set during the Llogon command, so to set a consistent client name, it is
necessary for an application to log on to AMPS. A logon is required by default in AMPS versions 5.0 and later, and
optional by default in AMPS versions previous to 5.0.

correlate the sequence numbers of incoming publish messages to a specific client, which is required for
reliable publishing, replication, and duplicate detection in the server. In the event that multiple publishers
have the same client name, AMPS can no longer reliably correlate messages using the publish sequence
number and client name.

2 All publishers must set a unique client name field when logging on to AMPS. This allows AMPS to

When a transaction log is enabled for AMPS, it is an error for two clients to connect to an instance
with the same name.

Durable Publication and Subscriptions

The AMPS client libraries include features to enable durable subscription and durable publication. In this chapter
we've covered how publishing messages to a transaction log persists them. We've also covered how the transaction
log can be queried (subscribed) with a bookmark for replay. Now, putting these two features together yields durable
subscriptions.

A durable subscriber is one that receives all messages published to a topic (including a regular expression topic),
even when the subscriber is offline. In AMPS this is accomplished through the use of the bookmark subscription
on a client.

Implementation of a durable subscription in AMPS is accomplished on the client by persisting the last observed
bookmark field received from a subscription. This enables a client to recover and resubscribe from the exact point
in the transaction log where it left off.

A durable publisher maintains a persistent record of messages published until AMPS acknowledges that the mes-
sage has been persisted. Implementation of a durable publisher in AMPS is accomplished on the client by persisting
outgoing messages until AMPS sends a persisted acknowledgement that says that this message, or a later mes-
sage, has been persisted. At that point, the publishers can remove the message from the persistent store. Should the
publisher restart, or should AMPS fail over, the publisher can re-send messages from the persistent store. AMPS
uses the sequence number in the message to discard any duplicates. This helps ensure that no messages are lost, and
provides fault-tolerance for publishers.

The AMPS C++, Java, C# and Python clients each provide different implementation of persistent subscriptions and
persistent publication. Please refer to the High Availability chapter of the Client Development Guide for the language
of your choice to see how this feature is implemented.

204

Replication and High Availability

Heartbeat in High Availability

Use of the heartbeat feature allows your application to quickly recover from detected connection failures. By default,
connection failure detection occurs when AMPS receives an operating system error on the connection. This system
may result in unpredictable delays in detecting a connection failure on the client, particularly when failures in network
routing hardware occur, and the client primarily acts as a subscriber.

The heartbeat feature of the AMPS server and the AMPS clients allows connection failure to be detected quickly.
Heartbeats ensure that regular messages are sent between the AMPS client and server on a predictable schedule.
The AMPS server assumes disconnection has occurred if these regular heartbeats cease, ensuring disconnection is
detected in a timely manner.

Heartbeats are initialized by the AMPS client by sending a heartbeat message to the AMPS server. To enable
heartbeats in your application, refer to the High Availability chapter in the Developer Guide for your specific client
language.

Slow Client Management

Sometimes, AMPS can publish messages faster than an individual client can consume messages, particularly in ap-
plications where the pattern of messages includes "bursts" of messages. Clients that are unable to consume messages
faster or equal to the rate messages are being sent to them are ”slow clients”. By default, AMPS queues messages
for a slow client in memory to grant the slow client the opportunity to catch up. However, scenarios may arise where
a client can be “over-subscribed” to the point that the client cannot consume messages as fast as messages are being
sent to it. In particular, this can happen with the results of a large SOW query, where AMPS generates all of the
messages for the query much faster than the network can transmit the messages.

Slow client management is one of the ways that AMPS prevents slow clients from disrupting service to the instance.
60East recommends enabling slow client management for instances that serve high message volume or are mission
critical.

There are two methods that AMPS uses for managing slow clients to minimize the effect of slow clients on the
AMPS instance:

+ Client offlining. When client offlining occurs, AMPS buffers the messages for that client to disk. This relieves
pressure on memory, while allowing the client to continue processing messages.

« Disconnection. When disconnection occurs, AMPS closes the client connection, which immediately ends any
subscriptions, in-progress sow queries, or other commands from that client. AMPS also removes any offlined
messages for that client.

AMPS provides resource pool protection, to protect the capacity of the instance as a whole, and client-level protec-
tion, to identify unresponsive clients.

Resource Pool Policies

AMPS uses resource pools for memory and disk consumption for clients. When the memory limit is exceeded, AMPS
chooses a client to be offlined. When the disk limit is exceeded, AMPS chooses a client to be disconnected.

When choosing which client will be offlined or disconnected, AMPS identifies the client that uses the largest amount
of resources (memory and/or disk). That client will be offlined or disconnected.

205

Replication and High Availability

AMPS allows you to use a global resource pool for the entire instance, a resource pool for each transport, or any
combination of the two approaches. By default, AMPS configures a global resource pool that is shared across all
transports. When an individual transport specifies a different setting for a resource pool, that transport receives an
individual resource pool. For example, you might set high resource limits for a particular transport that serves a
mission-critical application, allowing connections from that application to consume more resources than connections
for less important applications.

The following table shows resource pool options for slow client management:

Table 24.3. Slow Client: Resource Pool Policies

Element Description

MessageMemoryLimit The total amount of memory to allocate to messages be-
fore offlining clients.

Default: 10% of total host memory or 10% of the amount
of host memory AMPS is allowed to consume (as report-
edby ulimit -m), whichever is lowest.

MessageDiskLimit The total amount of disk space to allocate to messages
before disconnecting clients.

Default: 1GB or the amount specified in the Message-
MemoryLimit, whichever is highest.

MessageDiskPath The path to use to write offline files.

Default: /tmp

Individual Client Policies

AMPS also allows you to set policies that apply to individual clients. These policies are applied to clients indepen-
dently of the instance level policies. For example, a client that exceeds the capacity limit for an individual client will
be disconnected, even if the instance overall has enough capacity to hold messages for the client.

As with the Resource Pool Policies, Transports can either use instance-level settings or create settings specific to
that transport.

The following table shows the client level options for slow client management:

Table 24.4. Slow Client: Individual Client Policies

Element Description

ClientMessageAgelimit The maximum amount of time for the client to lag behind.
If a message for the client has been held longer than this
time, the client will be disconnected. This parameter is an
AMPS time interval (for example, 30s for 30 seconds,
or 1h for 1 hour).

Default: No age limit

ClientMaxCapacity The amount of available capacity a single client can con-
sume. Before a client is offlined, this limit applies to the
MessageMemorylLimit. After a client is offlined, this
limit applies to the MessageDiskLimit. This para-
meter is a percentage of the total.

206

Replication and High Availability

Element Description
Default: 100% (no effective limit)

Client offlining can require careful configuration, particularly in situations where applications retrieve large result
sets from SOW queries when the application starts up. More information on tuning slow client offlining for AMPS
is available in the section called “Slow Client Offlining for Large Result Sets”.

Configuration Example

<AMPSConfig>

<MessageMemoryLimit>10GB</MessageMemorylLimit>
<MessageDiskPath>/mnt/fastio/AMPS/offline</MessageDiskPath>
<ClientMessageAgelLimit>30s</ClientMessageAgelimit>

<Transports>

<!-- This transport shares the 10GB MessageMemorylLimit
defined for the instance. -->
<Transport>
<Name>regular-json-tcp</Name>
<Type>tcp</Type>

<InetAddr>9007</InetAddr>
<ReuseAddr>true</ReuseAddr>
<MessageType>json</MessageType>

</Transport>
<!-- This transport shares the 10GB MessageMemorylLimit
defined for the instance. -->
<Transport>
<Name>regular-bson-tcp</Name>
<Type>tcp</Type>

<InetAddr>9010</InetAddr>

<ReuseAddr>true</ReuseAddr>

<MessageType>bson</MessageType>

<!-- However, this transport does not allow
clients to fall as far behind as the
instance-level setting -->

<ClientMessageAgelimit>15s</ClientMessageAgelimit>

</Transport>

<I-- This transport has a separate 35GB MessageMemorylLimit
and a 70GB MessageDiskLimit. It uses the instance-wide
30s parameter for the ClientMessageAgelimit -->
<Transport>
<Name>highpri-json-tcp</Name>
<Type>tcp</Type>

207

Replication and High Availability

<InetAddr>9995</InetAddr>

<ReuseAddr>true</ReuseAddr>

<MessageType>json</MessageType>

<MessageMemoryLimit>35GB</MessageMemoryLimit>

<MessageDiskLimit>70GB</MessageDiskLimit>
</Transport>

</Transports>

</AMPSConfig>

Example 24.3. Transports Example with Resource Management

Message Ordering and Replication

AMPS uses the name of the publisher and the sequence number assigned by the publisher to ensure that messages
from each publisher are published in order. However, AMPS does not enforce order across publishers. This means
that, in a failover situation, that messages from different publishers may be interleaved in a different order on different
servers, even though the message stream from each publisher is preserved in order. Each instance preserves the order
in which messages were processed by that instance, and enforces that order.

24.5. Replicated Queues

AMPS provides a unique approach to replicating queues. This approach is designed to offer high performance in
the most common cases, while continuing to provide delivery model guarantees, resilience and failover in the event
that one of the replicated instances goes offline.

When a queue is replicated, AMPS replicates the pub11ish commands to the underlying topic, the sow_delete
commands that contain the acknowledgement messages, and special queue management commands that are internal
to AMPS.

Queue Message Ownership

To guarantee that no message is delivered more than once, AMPS tracks ownership of the message within the network
of replicated instances. When a message is first published to AMPS, the instance that recieves the publish command
owns the message. Although all replicated instances downstream instances record the publish command in their
transaction logs, they do not provide the message to queue subscribers unless that instance owns the message.

Only one instance can own a message at any given time. To transfer ownership, an instance that does not currently
own the message makes a request to the current message owner. The owning instance makes an explicit decision to
transfer ownership, and replicates the transfer notification to all instances to which the queue topic is replicated.

The instance that owns a message will always deliver the message to a local subscriber if possible. This means
that performance for local subscribers is unaffected by the number of downstream instances. However, this also
means that if the local subscribers are keeping up with the message volume being published to the queue, the owning
instance will never need to grant a transfer of ownership.

Downstream instances can request that the owner transfer ownership of a message.

208

Replication and High Availability

A downstream instance will make this request if:
1. The downstream instance has subscriptions for that topic with available backlog, and

2. The amount of time since the message arrived at the instance is greater than the typical time between the replicated
message arriving and the replicated acknowledgement arriving.

Notice that this approach is intended to minimize ungranted transfer requests. In normal circumstances, the typical
processing time reflects the speed at which the local processors are consuming messages at a steady state. Down-
stream instances will only request messages that have been seen to exceed that time, indicating that the processors
are not keeping up with the incoming message rate.

The instance that owns the message will grant ownership to a requesting instance if:
1. The request is the first request received for this message, and
2. There are no subscribers on the owning instance that can accept the message

When the owning instance grants the request, it logs the transfer in its transaction log and sends the transfer of
ownership to all instances that are receiving replicated messages for the queue. When the owning instance does not
grant the transfer of ownership, it takes no action.

Notice that your replication topology must be able to replicate acknowledgements to all instances that receive mes-
sages for the queue. Otherwise, an instance that does not receive the acknowledgements will not consider the mes-
sages to be processed. Replication validation can help to identify topologies that do not meet this requirement.

Failover and Queue Message Ownership

When an instance that contains a queue fails or is shut down, that instance is no longer able to grant ownership
requests for the messages that it owns. By default, those messages become unavailable for delivery, since there is no
longer a central coordination point at which to ensure that the messages are only delivered once.

AMPS provides a way to make those messages available. Through the admin console, you can choose to
enable_proxied_transfer, which allows an instance to act as an ownership proxy for an instance that has
gone offline. In this mode, the local instance can assume ownership of messages that is owned by an offline instance.

Use this setting with care: when active, it is possible for messages to be delivered twice if the instance that had
previously owned the message comes back online, or if multiple instances have proxied transfer enabled for the
same queue.

In general, you enable_proxied_transfer asatemporary recovery step while one of the instances is offline,

and then disable proxied transfer when the instance comes back online, or when all of the messages owned by that
instance have been processed.

Configuration for Queue Replication

To provide replication for a distributed queue, AMPS requires that the replication configuration:

1. Provide bidirectional replication between the instances. In other words, if instance A replicates a queue to instance
B, instance B must also replicate that queue to instance A.

2. If the topic is a queue on one instance, it must be a queue on all replicated instances.

209

Replication and High Availability

3. On all replicated instances, the queue must use the same underlying topic definition and filters. For queues that
use a regular expression as the topic definition, this means that the regular expression must be the same.

4. Replicated instances must provide passthrough for instances that replicate queues. For example, consider the
following replication topology: Instance A in group One replicates a queue to instance B in group Two. Instance
B in group Two replicates the queue to instance C in group Three.

For this configuration, instance B must provide passthrough for group Three to instance A, and must also provide
passthrough for group One to instance C. The reason for this is to ensure that ownership transfer and acknowl-
edgement messages can reach all instances that maintain a copy of the queue.

Notice that the requirements above apply only to queue topics. If the underlying topic uses a different name than the
queue topic, it is possible to replicate the messages from the underlying topic without replicating the queue itself.
This approach can be convenient for simply recording and storing the messages provided to the queue on an archival
or auditing instance. When only the underlying topic (or topics) are replicated, the requirements above do not apply,
since AMPS does not provide queuing behavior for the underlying topics.

A queue defined with LocalQueue cannot be replicated. The data from the underlying topics for the queue can
be replicated without special restrictions. The queue topic itself, however, cannot be replicated. AMPS reports an
error if any LocalQueue topic is replicated.

210

Chapter 25. Operation and Deployment

This chapter contains guidelines and best-practices to help plan and prepare an environment to meet the demands
that AMPS is expected to manage.

25.1. Capacity Planning

Sizing an AMPS deployment can be a complicated process that includes many factors including configuration pa-
rameters used for AMPS, the data used within the deployment, and how the deployment will be used. This section
presents guidelines that you can use in sizing your host environment for an AMPS deployment given what needs to
be considered along every dimension: Memory, Storage, CPU, and Network.

Memory

Beyond storing its own binary images in system memory, AMPS also tries to store its SOW and indexing state in
memory to maximize the performance of record updates and SOW queries.

AMPS needs less than 1GB for its own binary image and initial start up state for most configurations. In the worst-
case, because of indexing for queries, AMPS may need up to twice the size of messages stored in the SOW. And,
finally AMPS needs some amount of memory reserved for the clients connected to it. While the per connection
overhead is a tunable parameter based on the Slow Client Disconnect settings (see the best practices later in this
chapter) it is advised to use 50MB per connected client.

This puts the worst-case memory consumption estimate at:

Equation 25.1. Memory estimation equation

1GB+(2S*M)+(C*50MB)

where:

S=Average SOW Message Size
M = Number of SOW Messages

C =Number of Clients

Equation 25.2. Example memory estimation equation

1GB+(2*1024%*20,000,000)+(200* 50MB) = 52GB
where:

S=1024

M=120,000,000

C=200

An AMPS deployment expected to hold 20 million messages with an average message size of 1KB and 200 connected
clients would consume 52GB. Therefore, this AMPS deployment would fit within a host containing 64GB with
enough headroom for the OS under most configurations.

211

Operation and Deployment

Storage

AMPS needs enough space to store its own binary images, configuration files, SOW persistence files, log files,
transaction log journals, and slow client offline storage, if any. Not every deployment configures a SOW or transac-
tion log, so the storage requirements are largely driven by the configuration.

AMPS log files. Log file sizes vary depending on the log level and how the engine is used. For example, in the
worst-case, trace logging, AMPS will need at least enough storage for every message published into AMPS and
every message sent out of AMPS plus 20%.

For info level logging, a good estimate of AMPS log file sizes would be 2MB per 10 million messages published.

Logging space overhead can be capped by implementing a log rotation strategy which uses the same file name for
each rotation. This strategy effectively truncates the file when it reaches the log rotation threshold to prevent it from
growing larger.

SOW . When calculating the SOW storage, there are a couple of factors to keep in mind. The first is the average
size of messages stored in the SOW, the number of messages stored in the SOW and the S1abSize defined in the
configuration file. Using these values, it is possible to estimate the minimum and maximum storage requirements
for the SOW:

Equation 25.3. Minimum SOW Size
Min = (MsgSize* MsgCount)+ (Cores* SlabSize)

where

Min = Minimum SOW Size
MsgSize = Average SOW Message Size
MsgCount = Number of SOW Messages
SlabSize = Slab size for the SOW

Cores= Number of processor cores in the system
Equation 25.4. Maximum SOW Size

Max = (MsgSize + SlabSize)* MsgCount

where

Max = Maximum SOW Size

MsgSize = Average SOW Message Size

SlabSize = Slab size for the SOW

MsgCount = Number of SOW Messages

The storage requirements should be between the two values above, however it is still possible for the SOW to
consume additional storage based on the unused capacity configured for each SOW topic. Further, notice that AMPS
reserves the configured S1abSize for each processor core in the system the first time a thread running on that
core writes to the SOW.

For example, in an AMPS configuration file with the S1abSize set to 1MB, the SOW for this topic will consume
1MB per processor core with no messages stored in the SOW. Pre-allocating SOW capacity in chunks, as a chunk

212

Operation and Deployment

is needed, is more efficient for the operating system, storage devices, and helps amortize the SOW extension costs
over more messages.

It is also important to be aware of the maximum message size that AMPS guarantees the SOW can hold. The max-
imum message size is calculated in the following manner:

Equation 25.5. Maximum Message Size allowed in SOW

Max = SlabSize - 64bytes

where

Max = Maximum SOW Size

SlabSize =T he configured SlabSize for the SOW

This calculation says that the maximum message size that can be stored in the SOW in a single message storage is
the S1abS1ze minus 64 bytes for the record header information. AMPS enforces a lower limit of approximately
1MB: if the maximum size works out to less than 1MB, AMPS will use 1MB as the maximum size for the topic.

Transaction logs. Transaction logs are used for message replay, replication, and to ensure consistency in environ-
ments where each message is critical. Transaction logs are optional in AMPS, and transaction logs can be configured
for individual topics or filters. When planning for transaction logs, there are three main considerations:

+ The total size needed for the transaction log
+ The size to allow for each file that makes up the transaction log
» How many files to preallocate

You can calculate the approximate total size of the transaction log as follows:

Equation 25.6. Transaction Log Sizing Approximation

Capacity =(S+ 512bytes)*N

where

Capacity = Estimated storage capacity required for transaction log
S=Average message size

N =Number of messages to retain

Size your files to match the aging policy for the transaction log data. To remove data from the transaction log, you
simply archive or delete files that are no longer needed. You can size your files to make this easier. For example,
if your application typically generates 100GB a day of transaction log, you could size your files in 10GB units to
make it easier to remove 100GB increments.

AMPS allows you to preallocate files for the transaction log. For applications that are very latency-sensitive, pre-
allocation can help provide consistent latency. We recommend that those applications preallocate files, if storage
capacity and retention policy permit. For example, an application that sees heavy throughput during a working day
might preallocate enough files so that there is no need for additional allocation within the working day.

Other Storage Considerations. The previous sections discuss the scope of sizing the storage, however scenarios
exist where the performance of the storage devices must also be taken into consideration.

One such scenario is the following use case in which the AMPS transaction log is expected to be heavily used. If
performance greater than 50MB/second is required out of the AMPS transaction log, experience has demonstrated
that flash storage (or better) would be recommended. Magnetic hard disks lack the performance to produce results
greater than this with a consistent latency profile.

213

Operation and Deployment

CPU

SOW queries with content filtering make heavy use of CPU-based operations and, as such, CPU performance directly
impacts the content filtering performance and rates at which AMPS processes messages. The number of cores within
a CPU largely determines how quickly SOW queries execute.

AMPS contains optimizations which are only enabled on recent 64-bit x86 CPUs. To achieve the highest level
performance, consider deploying on a CPU which includes support for the SSE 4.2 instruction set.

To give an idea of AMPS performance, repeated testing has demonstrated that a moderate query filter with 5 pred-
icates can be executed against 1KB messages at more than 1,000,000 messages per second, per core on an Intel i7
3GHz CPU. This applies to both subscription based content filtering and SOW queries. Actual messaging rates will
vary based on matching ratios and network utilization.

Network

When capacity planning a network for AMPS, the requirements are largely dependent on the following factors:
* average message size

+ the rate at which publishers will publish messages to AMPS

+ the number of publishers and the number of subscribers.

AMPS requires sufficient network capacity to service inbound publishing as well as outbound messaging require-
ments. In most deployments, outbound messaging to subscribers and query clients has the highest bandwidth re-
quirements due to the increased likeliness for a “one to many” relationship of a single published message matching
subscriptions/queries for many clients.

Estimating network capacity requires knowledge about several factors, including but not limited to: the average
message size published to the AMPS instance, the number of messages published per second, the average expected
match ratio per subscription, the number of subscriptions, and the background query load. Once these key metrics
are known, then the necessary network capacity can be calculated:

Equation 25.7. Network capacity formula

R*S(1+M*S)+Q

where

R =Rate

S=Average Message Size

M = Match Ratio

Q=Query Load

where “Query Load” is defined as:
Mg*S*Qq

where

Mq=Messages Per Query

214

Operation and Deployment

S=Average Message Size
Q¢ =Queries Per Second

In a deployment required to process published messages at a rate of 5000 messages per second, with each message
having an average message size of 600 bytes, the expected match rate per subscription is 2% (or 0.02) with 100
subscriptions. The deployment is also expected to process 5 queries per 1 minute (or 12 queries per second), with
each query expected to return 1000 messages.

5000*600B*(1+0.02* 100)+(1000*600B*1—12):= 9MB/s=72Mb/s

Based on these requirements, this deployment would need at least 72Mb/s of network capacity to achieve the desired
goals. This analysis demonstrates AMPS by it self would fall into a 100Mb/s class network. It is important to note,
this analysis does not examine any other network based activity which may exist on the host, and as such a larger
capacity networking infrastructure than 100Mb/s would likely be required.

NUMA Considerations

AMPS is designed to take advantage of non-uniform memory access (NUMA). For the lowest latency in networking,
we recommend that you install your NIC in the slot closest to NUMA node 0. AMPS runs critical threads on node
0, so positioning the NIC closest to that node provides the shortest path from processor to NIC.

25.2. Linux Operating System Configuration

This section covers some settings which are specific to running AMPS on a Linux Operating System.

The ulimit command is used by a Linux administrator to get and set user limits on various system resources.

ulimit -c. It is common for an AMPS instance to be configured to consume gigabytes of memory for large SOW
caches. If a failure were to occur in a large deployment it could take seconds (maybe even hours, depending on
storage performance and process size!) to dump the core file. AMPS has a minidump reporting mechanism built
in that collects information important to debugging an instance before exiting. This minidump is much faster than
dumping a core file to disk. For this reason, it is recommended that the per user core file size limit is set to 0 to
prevent a large process image from being dumped to storage.

ulimit -n. The number of file descriptors allowed for a user running AMPS needs to be at least double the
sum of counts for the following: connected clients, SOW topics and pre-allocated journal files. Minimum: 4096.
Recommended: 32768, or the value recommended by AMPS in any diagnostic messages, whichever is greater

/proc/sys/fs/aio-max-nr

Each AMPS instance requires AIO in the kernel to support at least 16384 plus 8192 for each SOW topic in simulta-
neous I/O operations. The setting aio-max—nr is global to the host and impacts all applications. As such this value
needs to be set high enough to service all applications using AIO on the host. Minimum: 65536. Recommended:
1048576

215

Operation and Deployment

To view the value of this setting, as root you can enter the following command:
cat /proc/sys/fs/aio-max-nr

To edit this value, as root you can enter the following command:
sysctl -w fs.aio-max-nr = 1048576

This command will update the value for /proc/sys/fs/aio-max-nr and allow 1,048,576 simultaneous I/O
operations, but will only do so until the next time the machine is rebooted. To make a permanent change to this
setting, as a root user, edit the /etc/sysctl.conf file and either edit or append the following setting:

fs.aio-max-nr = 1048576

/proc/sys/fs/file-max

Each AMPS instance needs file descriptors to service connections and maintain file handles for open files. This
number needs to be at least double the sum of counts for the following: connected clients, SOW topics and pre-
allocated journal files. This file-max setting is global to the host and impacts all applications, so this needs to be set
high enough to service all applications on the host. Minimum: 262144 Recommended: 6815744

To view the value of this setting, as root you can enter the following command:
cat /proc/sys/fs/file-max
To edit this value, as root you can enter the following command:

sysctl -w fs.file-max = 6815744

This command will update the value for /proc/sys/fs/file-max and allow 6,815,744 concurrent files to be
opened, but will only do so until the next time the machine is rebooted. To make a permanent change to this setting,
as a root user, edit the /etc/sysctl.conf file and either edit or append the following setting:

fs.file-max = 6815744

25.3. Upgrading an AMPS Installation

This chapter describes how to upgrade an existing installation of AMPS. The steps presented here focus on upgrading
the installation itself, and should be the only steps you need for upgrades that change the HOTFIX version number
or the MAINTENANCE version number (as described in Table 1.2).

216

Operation and Deployment

For changes that update the MAJOR or MINOR version number, AMPS may add features, change file or network
formats, or change behavior. For these upgrades, you may need to make changes to the AMPS configuration file or
update applications to adapt to new features or changes in behavior.

60East recommends maintaining a test environment that you can use to test upgrades, particularly when an upgrade
changes MAJOR or MINOR versions and you are taking advantage of new features or changed behavior.

When the AMPS instance participates in replication, you must coordinate the instance upgrades when upgrading
across AMPS versions. AMPS replication works between instances with the same major and minor version number
(for example, all AMPS 3.9 releases use the same version of replication, but the 4.0 releases use a different version
of replication.) When the AMPS instance participates in replication, you must coordinate the instance upgrades
when upgrading across AMPS versions. AMPS replication works between instances with the same major and minor
version number (for example, all AMPS 3.9 releases use the same version of replication, but the 4.0 releases use
a different version of replication.)

Upgrade Steps

Upgrading an AMPS installation involves the following steps:

1. Stop the running instance

N

. If necessary, upgrade any data files or configuration files that you want to retain

w

. If necessary, update any applications that will use new features
4. Install the new AMPS binaries
5. Restart the service

As mentioned above, if you are using replication, and the upgrade increments the MAJOR or MINOR version num-
ber, you must upgrade all of the instances that replicate at the same time for replication to suceed. This is typically
accomplished with a rolling upgrade, where instances are upgraded on a specific schedule to minimize downtime.

Upgrading AMPS Data Files

AMPS may change the format and content of data files when upgrading across versions, as specified by the major
and minor version number. This most commonly occurs when new features are added to AMPS that require different
or additional information in the persisted files. The HISTORY file for the AMPS release lists when changes have
been made that require data file changes.

In general, 60East recommends upgrading the data files whenever moving to a new major/minor version and when-
ever a data file change is mentioned in the HISTORY file.

The AMPS distribution includes the amps_upgrade utility to process and upgrade data files. The version included
with each release of AMPS upgrades previous versions of the data files to the version of AMPS that includes the
utility. For example, the version of amps_upgrade included in version 4.1 of AMPS upgrades files to the 4.1
version the data files.

AMPS versions may upgrade any of the following types of files:
+ journals- these files contain the transaction logs for the instance

« clients.ack - this file contains a cache of the last sequence number processed for a publisher

217

Operation and Deployment

+ sow files - these files contain the persisted state of the durable SOW topics for the instance

The amps_upgrade utility handles upgrades for each of these types of files. Full details on amps_upgrade are
available in the AMPS Utilities Guide.

25.4. Best Practices

This section covers a selection of best practices for deploying AMPS.

Monitoring

AMPS exposes the statistics available for monitoring via a RESTful interface, known as the Monitoring Interface,
which is configured as the administration port. This interface allows developers and administrators to easily inspect
various aspects of AMPS performance and resource consumption using standard monitoring tools.

At times AMPS will emit log messages notifying that a thread has encountered a deadlock or stressful operation.
These messages will repeat with the word “stuck” in them. AMPS will attempt to resolve these issues, however after
60 seconds of a single thread being stuck, AMPS will automatically emit a minidump to the previously configured
minidump directory. This minidump can be used by 60East support to assist in troubleshooting the location of the
stuck thread or the stressful process.

Another area to examine when monitoring AMPS is the last_active monitor for the processors. This can be
found in the /amps/instance/processors/all/last_active url in the monitoring interface. If the
last_active value continually increases for more than one minute and there is a noticeable decline in the quality
of service, then it may be best to fail-over and restart the AMPS instance.

Stopping AMPS

To stop AMPS, ensure that AMPS runs the amps-action-do-shutdown action. By default, this action is run
when AMPS receives STGHUP, STGINT, or STGTERM. However, you can also configure an Action to shut down
AMPS in response to other conditions. For example, if your company policy is to reboot servers every Saturday
night, and AMPS is not running as a system service (or daemon), you could schedule an AMPS shutdown every
Saturday before the system reboot.

When AMPS is installed to run as a system service (or daemon), AMPS installs shutdown scripts that will cleanly
stop AMPS during a system shutdown or reboot.

SOW Parameters

Choosing the ideal SlabS-ize for your SOW topic is a balance between the frequency of SOW expansion and
storage space efficiency. A large S1abS7ze will preallocate space for records when AMPS begins writing to the
SOW.

If detailed tuning is not necessary, 60East recommends leaving the S1abS1 ze at the default size if your messages
are smaller than the default S1abS-ze. If your messages are larger than the default SlabSize, a good starting point
for the SlabS1ze is to set it to several times the maximum message size you expect to store in the SOW.

218

Operation and Deployment

There are three considerations when setting the optimium S1abSize:
+ Frequency of allocations

* Overall size of the SOW

+ Efficient use of space

A SlabSze that is small results in frequent extensions of your SOW topic to occur. These frequent extensions
can reduce throughput in a heavily loaded system, and in extreme cases can exhaust the kernel limit on the number
of regions that a process can map. Increasing the S1abSi ze will reduce the number of allocations.

When the S1abS-i ze is large, then the risk of the SOW resize affecting performance is reduced. Since each slab is
larger, however, there will be more space consumed if you are only storing a small number of messages: this cost
will amortize as the number of messages in the SOW exceeds the number of cores in the system * the number of
messages that fit into a dlab.

To most efficiently use space, set a S1abSize that minimizes the amount of unused space in a slab. For example,
if your message sizes are average 512 bytes but can reach a maximum of 1.2 MB, one approach would be to set
a SlabSize of 2.5MB to hold approximately 5 average-sized messages and two of the larger-sized messages.
Looking at the actual distribution of message sizes in the SOW (which can be done with the amps_sow_dump
utility) can help you determine how best to size slabs for maximum space efficiency.

For optimizing the S1abS ze, determine how important each aspect of SOW tuning is for your application, and
adjust the configuration to balance allocation frequency, overall SOW size, and space to meet the needs of your
application.

Slow Clients

As described in the section called “Slow Client Management ”, AMPS provides capacity limits for slow clients
to reduce the memory resources consumed by slow clients. This section discusses tuning slow client handling to
achieve your availability goals.

Slow Client Offlining for Large Result Sets

The default settings for AMPS work well in a wide variety of applications with minimal tuning.

If you have particularly large SOW topics, and your application is disconnecting clients due to exceeding the offlining
threshold when the clients retrieving large SOW query result sets, 60East recommends the following settings as a
baseline for further tuning:

Table 25.1. Client Offline Settings for Large Result Sets

Parameter Recommendation

MessageMemoryLimit This controls the maximum memory consumed by AM-
PS for client messages. You can increase this parameter
to allow AMPS to use more memory to records. Notice,
however, that memory devoted to client messages is un-
available for other purposes.

Recommended starting point for tuning large re-
sult sets: 10%. 60East recommends tuning the Mes-

219

Operation and Deployment

Parameter Recommendation

sageDiskLimit first. If necessary, increase this para-
meter by 1-2% at a time. Use caution with settings over
20%: devoting large amounts of memory to client mes-
sages may cause swapping and reduce, rather than in-
crease, overall performance.

MessageDiskLimit The maximum amount of space to consume for offline
messages.

Recommended starting point for tuning large result sets:
Average record size * number of expected records * num-
ber of simultaneous clients, or MessageMemorylLim-
it, whichever is greater.

MessageDiskPath The path in which to store offline message files.

60East recommends that the message disk path be host-
ed on fast, high-capacity storage such as a PCle-at-
tached flash drive. The available storage capacity of
the disk must be greater than the configured Mes-
sageDiskLimit. Pay attention to the performance
characteristics of the device: for example, some devices
suffer reduced performance when they run low on free
space, so for those devices you would want to make sure
that there is space available on the device even when AM-
PS is close to the MessageDiskLimit.

60East recommends that you use these settings as a baseline for further tuning, bearing in mind the needs and expected
messaging patterns of your application.

Minidump

AMPS includes the ability to generate a minidump file which can be used in support scenarios to attempt to trou-
bleshoot a problematic instance. The minidump captures information prior to AMPS exiting and can be obtained
much faster than a standard core dump (see the section called “ulimit” for more configuration options). By default
the minidump is configured to write to /tmp, but this can be changed in the AMPS configuration by modifying
the MiniDumpDirectory.

Minidumps contain thread state information that provides the location of each running thread and register information
for the thread. The minidump also contains basic information about the system that AMPS was running on, such
as the processor type and number of sockets. Minidumps do not contain the full internal state of AMPS or the full
contents of application memory. Instead, minidumps identify the point of failure to help 60East quickly narrow down
the issue without generating large files or potentially compromising sensitive data.

Generation of a minidump file occurs in the following ways:
1. When AMPS detects a crash internally, a minidump file will automatically be generated.

2. When a user clicks on the minidump link in the amps/instance/administrator link from the admin-
istrator console (see the AMPS Monitoring Reference for more information).

3. By sending the running AMPS process the STGQUIT signal.

220

Operation and Deployment

4. If AMPS observes a single stuck thread for 60 seconds, a minidump will automatically be generated. This should
be sent to AMPS support for evaluation along with a description of the operations taking place at the time.

221

Chapter 26. Securing AMPS

One of the most important considerations when using AMPS in production is keeping your data safe. This means
both ensuring that subscribers only have access to the data that they are allowed to have and that only authorized
publishers are allowed to publish messages into the system. This chapter describes the mechanisms within AMPS to
protect access to AMPS resources through client, administrative, and replication connections.

In this chapter, we describe the AMPS security infrastructure and present general information about securing an
AMPS installation. AMPS uses a plugin model for providing authentication and entitlement, and allows a great deal
of freedom in how the a given module implements security checks. This chapter discusses the concepts, principles,
and guarantees that AMPS provides. The specific steps and configuration you use to secure an installation of AMPS
depend on the plugin you use to secure AMPS.

There are three aspects to securing connections to AMPS:
+ Authentication assigns an identity to a connection and verifies that identity

+ Entitlement enforces permission to access AMPS and read or write AMPS resources based on the identity assigned
to a connection

» The AMPS process may also need to provide credentials to another AMPS instance (for example, to secure out-
going replication)

AMPS installations typically create custom plugins for securing AMPS. These plugins integrate with the enterprise
authentication and entitlement system, and are designed to enforce the policies for the specific site. For more infor-
mation on developing modules for use with AMPS, contact 60East support for the AMPS Server SDK.

The AMPS distribution includes an auxilliary module that contacts a web service for authentication and entitlement.
This module is described at Section D.3.

26.1. Authentication

The first part of securing AMPS is developing a strategy to verify the identity of connected clients. AMPS maintains
an identity for each client connection, and uses that identity for entitlement requests. Once an identity is assigned to
a connection, that identity stays the same for the lifetime of the connection. If an application needs to use different
identities to work with AMPS, that application needs to make a separate connection for each identity.

There are two ways that AMPS assigns an identity to a client:

1. When an application explicitly sends a Llogon command, AMPS uses the credentials in the message for the
authentication process. If authentication is successful, AMPS associates the user name provided in the initial
logon with the connection. If authentication fails, AMPS closes the connection.

2. When an application issues any other command after connecting but before sending a Llogon command, AMPS
treats this as an implicit logon and begins the authentication process with an empty user name and password. If
authentication is successful, AMPS associates an empty user name with the connection. If authentication fails,
AMPS closes the connection. AMPS does not allow implicit logon by default in 5.0 and later versions. However,
you can enable implicit logon as described below.

In both cases, authentication occurs through the AMPS security infrastructure.

222

Securing AMPS

When authenticating a client, AMPS locates the authentication module in use for client's transport (or, for the admin
interface, the special amps—admn transport). If there is an authentication module specified for that Transport,
AMPS uses that module. Otherwise, the transport uses an instance of the authentication module specified for the
instance. When the configuration for the instance doesn't include an instance level authentication module, the default
module for the transport is amps-default-authentication-module, which requires a logon, but accepts
any user name and password provided and sets the authenticated user name to an empty string.

Once AMPS has located the module instance, AMPS provides the user name and the password to that instance of
the module. The module can accept the credentials, reject the credentials, or return a challenge that the application
must respond to. When the module returns a challenge, the connection remains unauthenticated until the application
requesting authentication responds to the challenge and the module accepts the response.

For most production systems, AMPS security is integrated with the overall security fabric of the organization. 60East
provides the AMPS Server SDK to help developers create authentication modules that implement the unique policies
and procedures required by a particular organization.

Simple Authentication Modules

AMPS includes three simple authentication modules in the AMPS distribution. These modules provide very simple
policies for authentication, and are most useful in testing and development environments.

Table 26.1. Simple Authentication Modules

Module Description

amps-default-authentication-module Allows any user name and password. Does not allow im-
plict logon by default. Does not provide the user name to
AMPS by default.

amps—-implicit-authentication-module Allows any user name and password. Allows implicit lo-
gon by default. Does not provide the user name to AMPS
by default.

amps-default-no-authentication-module Does notallow authentication regardless of the username
and password provided. This can be useful for testing ap-
plication behavior when logon is denied, or for setting
a policy for the instance that individual transports must
override.

Enabling Implicit Logon

60East recommends using explicit logon commands in your applications wherever possible, and the default authen-
tication module disallows implicit logons. For backward compatibility with older versions of AMPS, AMPS includes
the amps-implicit-authentication-module which allows implicit logon to restore the behavior of the
previous AMPS versions. To use the amps—implicit-authentication-module for all of the transports in
the instance, set the instance-level Authentication to use this module, as shown below:

<AMPSConfig>

<Authentication>
<Module>amps-implicit-authentication-module</Module>
</Authentication>

223

Securing AMPS

</AMPSConfig>

26.2. Entitlement

The AMPS entitlement system controls access to individual resources in AMPS. Each entitlement request con-
sists of a user, a specific action, and, where applicable, the type of resource and the resource name. For example,
an entitlement request might arrive for the user Janice to write (that is, publish) to the topic named /or-
ders/northamer-ica. Another entitlement request might be for the user Phil to Logon to the instance. A
third request might be for the user Ji11 to read (that is, subscribe or run a SOW query) from the topic named
/orders/pacific/palau.

When checking entitlements, AMPS locates the entitlement module in use for the Transport that the client is connect-
ing on (or, for the Admin interface, the special amps—admn transport). If there is an entitlement module specified
for the Transport, AMPS uses that module. Otherwise, AMPS uses an instance of the entitlement module specified
for the instance. When the configuration file for the instance doesn't specify an instance-level entitlement module,
the default module for the transport is amps-default-entitlement-module, which allows all permissions
for any user.

AMPS caches the results of the entitlement check. You can clear the entitlement cache for all users using the AMPS
Administrative Actions. You can clear the entitlement cache for a single user using the AMPS external API. When
the entitlement cache is cleared, AMPS disconnects the user. This ensures that, when the user reconnects, the user
only has access to resources that match the current set of entitlements.

AMPS checks entitlements for a command when processing the command, and does not recheck permissions after
the command is processed. For example, when J1 11 subscribes to /orders/pacific/palau, AMPS checks
entitlements when creating the subscription. If the entitlement check returns an entitlement content filter, AMPS
includes that entitlement filter on the subscription. Once the subscription has been created, AMPS applies the filter
as a part of the standard filtering process, but AMPS does not check entitlements for the subscription as further
messages arrive.

The following table lists the resource types that AMPS provides:

Table 26.2. AMPS Entitlement Resource Types

Resource Type Description

logon Permission to log on to the AMPS instance

replication_logon Permission to log on to the AMPS instance as a replication
source

topic Permission to receive from or publish to a specific topic

admin Permission to read admin statistics or peform admin functions
from the web interface

For the topic and admin resource types, AMPS also provides the name of the resource and whether the request
is to read the resource or wr i te to the resource.

The table below shows how AMPS commands translate to entitlement types:

Table 26.3. Entitlement Types for Commands

AMPS Command Entitlement Type

delta_subscribe, read

224

Securing AMPS

AMPS Command Entitlement Type

sow, sow_and_subscribe,

subscribe, sow_and_delta_subscribe

delta_publish, publish, write

sow_delete

commands received over replication replication allowed

Entitlement Caching

AMPS does not present a request to the entitlement module each time that an entitlement check is needed. Instead,
AMPS presents the request the first time the entitlement is needed, and then caches the results from the module for
subsequent entitlement checks. This improves performance, although it also means that when a module that reads
entitlements from an external source (such as a central directory of permissions) that may change without requiring
a restart of the AMPS instance, that module will need to establish a policy for resetting the entitlement cache.

Regular Expression Subscriptions

Each request from AMPS is for a specific resource name. When a client requests a regular expression subscription,
AMPS makes a request for each topic that matches the subscription at the point that AMPS has a message to deliver
for that topic. For example, if the user Nina enters a subscription for /parts/ (mechanical|electrical),
AMPS will make a request to the entitlement module for /parts/mechanical when there is a message to deliver
for that topic, and will make a separate request for /parts/electrical when there is a message to deliver for
that topic.

Content Filtered Entitlements

The entitlement system offers the ability to enforce content restrictions on subscriptions. When AMPS requests read
access to a topic, the module that performs entitlement can also return a filter to AMPS. This filter is evaluated
independently of any filter on the subscription, and messages must match both the subscription filter and the filter
provided by the entitlement to be returned to the application. If a message does not match the entitlement filter, the
message is not delivered, regardless of whether the message matches the filters provided by the application.

AMPS also offers the ability to enforce content restrictions on pub 1 i sh commands. When AMPS requests wr i te
access to a topic, the module that performs entitlement can return a filter to AMPS. This filter is then evaluated
against messages published to that topic by that user. If the message being published matches the filter, AMPS allows
the message. Otherwise, AMPS rejects the message.

Message Queues

Message queues, since they are implemented as views over topics in the transaction log, present a special situation
for the AMPS entitlement system in two ways. First, receiving a message from a queue implies that the subscriber
has the ability to modify the contents of the queue. Second, a queue can specify a DefaultPublishTopic to
receive publishes.

225

Securing AMPS

The AMPS entitlement system treats queues differently than other topics as follows:

* read entitlement on a queue also grants a user the ability to delete messages from the queue that are leased to
that user. No other write permissions are implied.

* wriite entitlement on a queue grants the ability to publish to the queue, even in cases where AMPS translates
that publish to the DefaultPublishTopic configured for the queue. No other permissions are implied. In
particular, granting the write entitlement on a queue does not grant any entitlements on the DefaultPub-
1ishTop1c directly: even though the message is delivered to the DefaultPublishTopic, the publish
command must publish to the queue topic.

In all other respects, entitlements for message queues behave in the same way as entitlements for any other topic.

26.3. Providing an Identity for Outbound Connec-
tions (Authenticator)

For outgoing replication connections, AMPS may need to provide an identity and credentials to the replication desti-
nation. AMPS uses a module type called an authenticator to provide those credentials and handle any challenge/re-
sponse protocol required by the authentication module in the remote system.

AMPS provides a default authenticator module, amps-default-authenticator-module, that is automat-
ically configured as the Authenticator for the instance if no other instance Authenticator is provided. This module
provides a user name with no password. To determine the user provided to AMPS, the module uses the value of the
User option to the module if one is provided. Otherwise, the module uses the current user of the AMPS process: if
the current user cannot be determined by the system, the module falls back to the value of the USER environment
variable..

The Authenticator used for a replication Destination must provide credentials that are accepted by the Transport of
the remote instance that the Destination is connecting to. See the AMPS Configuration Reference for information
on configuring the Authenticator for a Destination.

26.4. Protecting Data in Transit Using SSL

AMPS provides the ability to use Secure Sockets Layer (SSL) connections for communication with AMPS clients.
See SSL Connections, the AMPS Configuration Reference, and the documentation for the AMPS clients for details.

AMPS uses SSL to encrypt network traffic between clients and servers. No information about the transport is passed
to the AMPS authentication and entitlement system. Encryption at the network level is completely independent of
the AMPS authentication and entitlement system, and these features can be used independently.

226

Chapter 27. Troubleshooting AMPS

This chapter presents common techniques for troubleshooting AMPS. Additional troubleshooting information and
answers to common questions about AMPS are included on our support site at http://support.crankuptheamps.com/
hc.

27.1. Planning for Troubleshooting

There are several steps that you can take before you need to troubleshoot a problem that will make troubleshooting
easier. 60East recommends that you consider taking the following steps for a production instance of AMPS:

1.

Configure the instance to log messages of at least warning or higher level. Some problems require more in-
formation, so increasing the amount of logging may make troubleshooting easier, if your instance has storage
available.

Ensure that client applications use unique names. Wherever possible, ensure that those names can easily be traced
back to the instance of the application. For example, you might use the name of application combined with the
name of the logged on user as a unique name. This will help you to more quickly find log messages related to
a problem.

Enable the administrative server. The administrative console is a good way to get a snapshot of the current state
of a running instance.

If you are using replication, ensure that your AMPS instances have unique names. Where possible, use names
that make it easy to relate replication messages to the servers that process the message. For example, you might
relate the AMPS instance name to the purpose that the instance serves, the physical server that the instance runs
on, or both.

Learn what normal operation looks like for your application. If possible, take the time to inspect the AMPS logs
and the output of the administrator console when everything is working as expected. Applications vary in how
they use AMPS, and what is normal for your application might indicate a problem in a different application. For
example, if your application normally has a few publishers and many subscribers, seeing dozens of publishers
come online may indicate that an application has unexpectedly started more publishers. Likewise, if no publishers
are online, that may indicate an issue with connectivity to the AMPS server. Understanding normal behavior will
help you to more easily and accurately spot problems.

27.2. Finding Information in the Log

The AMPS log is one of the most useful places to find information when there's a problem with your application.
Here are some techniques to use for finding relevant information in the log.

Ensure the log is capturing information that will be useful for diagnosing the problem. To detect a problem, 60East
recommends logging at warning level and above. To fully troubleshoot an error, it may be necessary to log at
trace level to see the exact behavior in AMPS.

To find log messages that may indicate a problem, use the Linux grep tool to find log messages at warning, error,
critical, or emergency levels. For example, you might use the following command line:

227

http://support.crankuptheamps.com/hc
http://support.crankuptheamps.com/hc

Troubleshooting AMPS

grep -E 'warning|error|critical|emergency' log_file

This will show lines from the log that contain messages logged at those levels. The text that AMPS uses for log
messages is guaranteed not to include strings that duplicate one of the log levels, although information that you
configure (such as client names, topic names, and so on) may contain those strings.

+ If you know the name of the client that experienced the problem, you can use that name to get information about
the client. It's often helpful to get log messages that include the client name and several lines of output after the
client name to help you understand the context in which AMPS produced the message for the client name. To do
this, you might you use the following command line:

grep -B2 -A10 client_nanme log_ file

This command line looks for all occurances of the client_name in the log file, and prints two lines of context
before the line that contains the client name, and ten lines of context after the line that contains the client name.

Once you've found the information you're looking for, the ampserr utility can help you look up more information
on messages, as described in Section 19.9.

27.3. Reading Replication Log Messages

For replication connections, the replication source creates a client name that it uses to connect to the downstream
instance. This client name contains the source, destination, sync setting, and protocol for the connection. The client
name uses the following format:

sourceldestination!sync_setting!protocol

Notice, however, that this is a client name. The client name is the name used for the connection, but it does not
indicate the direction of any particular message. As an example, consider a client name of:

OrderServer !HotBackup!sync!amps-replication

This client name is used for a connection that the AMPS instance named Order Server has made to AMPS instance
named HotBackup. The connection uses the amps-replication protocol, and was configured for synchronous repli-
cation at the time the client connected. In this case, a message like the following:

12-1002 client[OrderServer!HotBackup!sync!lamps-replication] replication ack
received: publish ack
[tx71d=35922]

Means that a publish acknowledgement was received on the connection that Order Server made to HotBackup.

27.4. Troubleshooting Disconnected Clients

One common symptom of problems in an AMPS application is that AMPS disconnects clients unexpectedly. AMPS
disconnects clients in the following situations:

» When transaction logging is configured for the instance and a client with a duplicate name logs on

» When heartbeating is enabled, and the client misses a heartbeat

228

Troubleshooting AMPS

» When a slow client falls behind by more than the configured threshold
* When the entitlement cache for an instance is reset

* When the administration console disconnects a client

» When the transport is disabled

This section presents techniques to help you identify why clients are disconnected and correct any problems that
may exist.

Locating the Reason for Disconnection

To discover the reason that a client was disconnected, use the following command to find the client name in the logs:
grep -B2 -A5 client_nanme log_file

The results of this can provide information as to why the client was disconnected. AMPS logs a reason for the
disconnection if the disconnection was the result of an internal action by AMPS. If the disconnection was the result
of an action from the Admin console, or the client chose to disconnect, the disconnection is logged, but no further
information is given.

Duplicate Client Name Disconnection

When a client is disconnected due to another client with the same name logging on, the messages produced might
look like:

2014-11-20T16:26:59.6408410-08:00 [5] warning: 02-0025 A client logon with
an '"in use' client name for the same user id forced a disconnect of client:
client[my-name] with user 1id:

To resolve this issue, ensure that clients use unique names when connecting to instances that configure a transaction
log.

Missed Heartbeat Disconnection

When AMPS disconnects a client due to the client failing to heartbeat, the log messages produced look like the
following:

2014-11-20T16:35:23.9185690-08:00 [6] error: 07-0042 AMPS heartbeat manager
is disconnecting an unresponsive client: no-heartbeat-client

This error most often arises from severe network congestion, a deadlock or similar problem in the application that
is preventing the AMPS client library from producing heartbeats, or a problem in AMPS that prevents AMPS from
servicing heartbeat requests.

Slow Client Disconnection

The following shows sample log entries for slow client disconnection. If a client named sleepy-client was
disconnected for being a slow client, the relevant entries in the transaction log might look like:

229

Troubleshooting AMPS

2014-11-20T15:33:06.8496430-08:00 [7] warning: 70-0011 client[sleepy-client]
slow consumption detected, offline messages.
2014-11-20T15:33:06.8498130-08:00 [7] error: 70-0004 client[sleepy-client]
is not consuming messages, disconnecting slow client

Notice that there may be a considerable period of time between the client being offlined and the client being dis-
connected.

There are several approaches to solving the problem:

* Reduce the number of messages returned. Clients most often fall behind when a SOW query or a replay from
the transaction log returns a large number of messages. If possible, use content filtering to return a more precise
set of messages.

 Improve the rate at which the client handles messages. If the client message handler takes a relatively long time
to process the message, moving message processing onto a different thread or streamlining the processing may
improve the speed of the client and allow the client to keep up.

 Adjust the client offlining threshold. You can also increase the number of messages that AMPS will buffer for a
specific client, as described in the section called “Slow Client Management .

Admin Console Client Disconnection

Disconnection from the admin console provides no additional information, and produces a log message like the
following:

2014-11-20T15:33:06.8502350-08:00 [4] info: 07-0013 client[sleepy-client]
disconnected.

Admin Console Transport Disabled

A transport being disabled through the admin console produces messages like the following:

2014-11-20T16:04:00.9548130-08:00 [10] info: 07-0047 Transport[json-tcp]
being disabled.

2014-11-20T16:04:00.9550150-08:00 [4] info: 07-0013 client[amps-json-tcp-18]
disconnected.

230

Part IV. Building Applications with AMPS

Chapter 28. Sample Use Cases

To further your understanding of AMPS, we provide some sample use cases that highlight how multiple AMPS
features can be leveraged in larger messaging solutions. For example, AMPS is often used as a back-end persistent
data store for client desktop applications.

The provided use case shows how a client application can use the AMPS command sow_and_suscribe to
populate an order table that is continually kept up-to-date. To limit redundant data from being sent to the GUI, we

show how you can use a delta subscription command. You will also see how to improve performance and protect
the GUI from over-subscription by using the TopN query limiter along with a stats acknowledgement.

28.1. View Server Use Case

Many AMPS deployments are used as the back-end persistent store for desktop GUI applications. Many of the
features covered in previous chapters are unique to AMPS and make it well suited for this task. In this example
AMPS will be act as a data store for an application with the following requirements:

+ allow users to query current order-state (SOW query)

+ continually keep the returned data up to date by applying incremental changes (subscribe)

For purposes of highlighting the functionality unique to AMPS, we’ll skip most of the details and challenges of
GUI development.

Setup

For this example, let’s configure AMPS to persist FIX messages to the topic ORDERS. We use a separate application
to acquire the FIX messages from the market (or other data source) and publish them into AMPS. AMPS accumulates
all of the orders in its SOW persistence, making the data available for the GUI clients to consume.

&)
— &)
— &)

AMPS | SISlS:

f—»
>
SOwW] >

GUI Interface

Figure 28.1. AMPS View Server Deployment Configuration

232

Sample Use Cases

SOW Query and Subscription

The GUI will enable a user to enter a query and submit it to AMPS. If the query filter is valid, then the GUI displays
the results in a table or “grid” and continually applies changes as they are published from AMPS to the GUI. For
example, if the user wants to display active orders for C1ient—A, then they may use a query similar to this:

/11 = 'Client-A' AND /39 IN (0, 'A")

This filter matches all orders for Client-A that have FIX tag 39 (the FIX order status field) as 0 ("New’) or
’A’ (CPending New”).

From a GUI client, we want to first issue a query to pull back all current orders and, at the same time, place a
subscription to get future updates and new orders. AMPS provides the sow_and_subscribe command for this
purpose.

A more realistic scenario may involve a GUI Client with multiple tables, each subscribing with a differ-

@ ent AMPS filter, and all of these subscriptions being managed in a single GUI Client. A single connec-
tion to AMPS can be used to service many active subscriptions if the subscription identifiers are chosen
such that they can be demultiplexed during consumption.

The GUI issues the sow_and_subscribe command, specifying a topic of ORDERS and possibly other filter
criteria to further narrow down the query results. Once the sow_and_subscribe command has been received
by AMPS, the query returns to the GUI all messages in the SOW that, at the moment, match the topic and content
filter. Simultaneously, a subscription is placed to guarantee that any messages not included in the initial query result
will be sent after the query result.

The GUI client then receives a group_begin message from AMPS, signaling the beginning of a set of records
returned as a result of the query. Upon receiving the initial SOW query result, this GUI inserts the returned records
into the table, as shown in Figure 28.2. Every record in the query will have assigned to it a unique SowKey that
can be used for future updates.

The receipt of the group_end message serves as a notification to the GUI that AMPS has reached the end of the
initial query results and going forward all messages from the subscription will be live updates.

233

Sample Use Cases

sow_and_subscri be

Topi ¢c: ORDERS
Filter: 11 = 'client-A° AND/39 IN (O 'A) @

55 39 38

A M PS MSFT 100

0
IBM 0 200
D orc A | 100

®

A: 11=cl i ent - A, 39=0, 55=MSFT, 38=100
B: 11=cli ent - A, 39=0, 55=I BM 38=200
C: 11=cl i ent- A, 39=A, 55=0RCL, 38=100

Figure 28.2. AMPS GUI Instance With sow_and_subscribe

Once the initial SOW query has completed, each pub 11 sh message received by the GUI will be either a new record
or an update to an existing record. The SowKey sent as part of each publish message is used to determine if the
newly published record is an update or a new record. If the SowKey matches an existing record in the GUI’s order
table, then it is considered an update and should replace the existing value. Otherwise, the record is considered to
be a new record and can be inserted directly into the order table.

For example, assume there is an update to order C that changes the order status (tag 39) of the client’s ORCL order
from ’A’ to 0. This is shown below in Figure 28.3

publ i sh_update
C: 11=cl i ent - A, 39=0, 55=0RCL, 38=100

000

55 39 38
AMPS 3 B BT
IBM 0 200

Figure 28.3. AMPS Mesage Publish Update

234

Sample Use Cases

Out-of-Focus (OOF) Processing

Let’s take another look at the original filter used to subscribe to the ORDERS SOW topic. A unique case exists if an
update occurs in which an ORDER record status gets changed to a value other than 0 or ’A’. One of the key features
of AMPS is OOF processing, which ensures that client data is continually kept up-to-date. OOF processing is the
AMPS method of notifying a client that a new message has caused a SOW record’s state to change, thus informing
the client that a message which previously matched their filter criteria no longer matches or was deleted. For more
information about OOF processing, see Chapter 8.

When such a scenario occurs, AMPS won’t send the update over a normal subscription. If OOF processing is enabled
within AMPS by specifying the oo f option for this subscription, then updates will occur when previously matching
records no longer match due to an update, expiration, or deletion.

For example, let’s say the order for MSF T has been filled in the market and the update comes into AMPS. AMPS won’t
send the published message to the GUI because the order no longer matches the subscription filter; AMPS instead
sends it as part of an OOF message. This happens because AMPS knows that the previous matching record was sent
to the GUI client prior to the update. Once an OOF message is received, the GUI can remove the corresponding
order from the orders table to ensure that users see only the up-to-date state of the orders which match their filter.

A:11=client- A 39=2, 55=M5FT, 38=100

!

AMPS

\ 4

oof (mat chi ng)
A: 11=cl i ent - A 39=2, 55=MSFT, 38=100

Q00O

55 39 38
—MSFE | —2— | —166—
IBM 0 200
ORCL 0 100

Figure 28.4. AMPS OOF Processing

235

Sample Use Cases

Conclusion and Next Steps

In summary, we have shown how a GUI application can use the sow_and_subscribe command to populate
an order table, which is then continually kept up-to-date. AMPS can create further enhancements, such as those
described below, that improve performance and add greater value to a GUI client implementation.

sow_and_delta subscribe

The first improvement that we can make is to limit redundant data being sent to the GUI, by plac-
ing a sow_and_delta_subscribe command instead of a sow_and_subscribe command. The
sow_and_delta_subscribe command, which works with the FIX and NVFIX message types, can greatly
reduce network congestion as well as decrease parsing time on the GUI client, yielding a more responsive end-user
experience.

With a delta subscription, AMPS Figure 28.3 sends to the subscriber only the values that have changed: C:39=0
instead of all of the fields that were already sent to the client during the initial SOW query result. This may seem to
make little difference in a single GUI deployment; but it can make a significant difference in an AMPS deployment
with hundreds of connected GUI clients that may be running on a congested network or WAN.

TopN and Stats

We can also improve client-side data utilization and performance by using a TopN query limiter with a stats ac-
knowledgment, which protects the GUI from over-subscription.

For example, we may want to put a 10,000 record limit on the initial query response, given that users rarely want to
view the real-time order state for such a large set. If a TopN value of 10000 and an AckType of stats is used when
placing the initial sow_and_subscribe command, then the GUI client would expect to receive up to 10,000
records in the query result, followed by a stats acknowledgment.

The stats acknowledgement is useful for tracking how many records matched and how many were sent. The GUI
client can leverage the stats acknowledgment metrics to provide a helpful error to the user. For example, in a
scenario where a query matched 130,000 messages, the GUI client can notify the user that they may want to refine
their content filter to be more selective.

In the AMPS clients, a stats acknowledgement is returned to the client after the group_end for the query with
an acknowledgement command type. The message contains statistics about the query. See the AMPS Command
Reference for details on the stats acknowledgment message. See the API documentation for your development
language of choice for information on processing messages.

236

Part V. Appendices

Appendix A. AMPS Distribution Layout

This appendix lists layout of the AMPS distribution, with special focus on the binaries present in the layout. Use

this appendix to plan your AMPS deployment.

60East recommends that all AMPS deployments contain the full contents of the /bin and /17ib directories. For
development installations that are extending the AMPS server, your installation should contain the /api and /sdk
directories (as well as the AMPS Server DK, available as a separate download from the 60East web site).

The AMPS distribution contains the following items at the top level:

Table A.1. AMPS Distribution Contents

Item Description

/bin AMPS binaries: the AMPS server, daemon deployment
scripts, AMPS utilities, and spark.

/docs AMPS base documentation. Current versions of the doc-
umentation and additional guides are available from the
60East website.

HISTORY Revision history for AMPS releases, containing informa-
tion on changes for each version of AMPS.

/lib Libraries used by the AMPS binary.

LICENSE The AMPS license.

README The README file for AMPS.

/sdk Headers used for modules that extend AMPS.

A.1. /bin directory

Table A.2. AMPS /bin directory Contents

Item

Description

amps_bio_perf_test

Diagnostic tool for testing the performance of I/O sys-
tems.

amps_client_ack_dump

Utility for showing the contents of the AMPS client.ack
file, containing persistent per-client information.

ampserr

Utility for looking up details on AMPS log file items.

ampServer

The AMPS server binary.

ampServer-compat

The downward compatible version of the AMPS server
binary. This version avoids using some of the hardware
capabilities present in newer CPU architectures.

amps_file

A utility for identifying the type of AMPS files and the
file format that the file uses.

amps-init-script

Part of the AMPS service installation. This script is in-
stalled into the init.d directory when the AMPS service
is installed.

238

AMPS Distribution Layout

Item Description

amps_journal_dump Utility for extracting the contents of AMPS transaction
log journal files.

amps_mt_perf_test Diagnostic tool for performance testing of the AMPS en-
gine parsing infrastructure.

amps_sow_dump Utility for extracting the contents of AMPS SOW files.

amps-sqglite3 Convenience wrapper for querying an AMPS statistics
database.

amps_upgrade Utility for upgrading data files from previous versions of
AMPS to the current version.

install-amps-daemon.sh Installation script for installing AMPS as a Linux service.

/lib Directory containing the libraries used by the spark
utility.

spark Utility that provides a command-line interface to AMPS.

uninstall-amps-daemon.sh Installation script for removing the AMPS Linux service

from the system.

239

Appendix B. Configuration File Shortcuts

This appendix describes features that AMPS provides for simplifying configuration files.

B.1. AMPS Configuration File Special Characters

In AMPS there are a few special characters that you should be aware of when creating your configuration file. These
characters can provide some handy short cuts and make configuration creation easier, but you should also be aware
of them so as not to introduce errors.

State of the World File Name

When specifying the file for a State of the World database, using the %n string in the file name specifies that the
AMPS server will use the message type and topic name in that position to create a unique filename. Example B.1
shows how to use this in the AMPS configuration file.

<SOW>
<Topic>
<Topic>Customers</Topic>
<FileName>./sow/%n.sow</FileName>
<MessageType>json</MessageType>
<Key>/customerId</Key>
</Topic>
</SOw>

Example B.1. SOW file name tokens used in configuration file

Log Rotation Name

When specifying an AMPS log file which has RotationThreshold specified, using the %n string in the log file
name is a useful mechanism for ensuring the name of the log file is unique and sequential. Example B.2 shows a
file name token replacement in the AMPS configuration file.

<Logging>
<Target>
<Protocol>file</Protocol>
<Level>info</Level>
<FileName>log/log-%n.log</FileName>
<RotationThreshold>2G</RotationThreshold>
</Target>
</Logging>

Example B.2. Log file name tokens used in configuration file

In the above example, a log file will be created in the AMPSDIR/ log/ directory. The first time this file is created,
it will be named log-1. log. Once the log file reaches the RotationThreshold limit of 2G, the previous log

240

Configuration File Shortcuts

file will be saved, and the new log file name will be incremented by one. Thus, the next log file will be named
AMPSDIR/log/log-2. log.

Dates

AMPS allows administrators to use date-based file names when specifying the file name in the configuration, as
demonstrated in Example B.3.

<Logging>
<Target>
<Protocol>file</Protocol>
<Level>info</Level>
<FileName>
log/ log—%Y-%m-9%dT%H%M%S . Log
</FileName>
<RotationThreshold>2G</RotationThreshold>
</Target>
</Logging>

Example B.3. Date tokens used in configuration file

In the above example, a log file will be created in the SAMPSDIR/log named 2011-01-01-120000. log if
the log was created at noon on January 1, 2011.

AMPS provides full support for the date tokens provided by the standard strftime function, with the exception of
9%n, as described above. The following table shows some of the most commonly used tokens:

Table B.1. Commonly Used Date and Time Tokens

Token Provides Example
%a Short weekday name Fri

%A Full weekday name Friday

%Db Short month name Feb

%B Full month name February
%cC Simple date and time Fri Feb 14 17:25:00 2014
%C Century 20

%d Day of the month (leading zero if necessary) 05

%D Short date format (MM/DD/YY) 02/20/14
%e Day of the month (leading space if necessary) 5

%F Short date format (YYYY-MM-DD) 2014-02-20
%H Hour (00-23) 17

%I Hour (00-12) 05

%)j Day of the year (001-366) 051

%m Month (01-12) 02

%p AM or PM PM

Yor Current time, 12 hour format 05:25:00 pm

241

Configuration File Shortcuts

Token Provides Example
%R Current time, 24 hour format 17:25
%T ISO 8601 Time format 17:25:00
%u ISO 8601 day of the week (1-7, Monday = 1) 5

%V ISO 8601 week number (00-53) 07

%y Year, last two digits 14

%Y Year, four digits 2014
%Z Timezone name or abbreviation (blank if undetermined) PST

B.2. Using Units in the Configuration

To make configuration easy, AMPS permits the use of units to expand values. For example, if a time interval is
measured in seconds, then the letter s can be appended to the value. For example, the following SOW topic definition
used the Expiration tag to set the record expiration to 86400 seconds (one day).

<SOow>
<Topic>

;é%piration>86400s </Expiration>
</Topic>
</SOw>
Example B.4. Expiration Using Seconds
An even easier way to specify an expiration of one day is to use the following Expiration:

<SOW>
<Topic>

<Expiration>1d</Expiration>
</Topic>
</SOw>
Example B.5. Expiration Using Days

Table B.2 shows a listing of the time units AMPS supports in the configuration file.

Table B.2. AMPS Configuration - Time Units

Units Description
ns nanoseconds
us microseconds
ms milliseconds
S seconds
m minutes

hours

242

Configuration File Shortcuts

Units Description
d days
w weeks

AMPS configuration supports a similar mechanism for byte-based units when specifying sizes in the configuration
file. Table B.3 shows a listing of the byte units AMPS supports in the configuration file.

Table B.3. AMPS Configuration - Byte Units

Units Description
kb kilobytes

mb megabytes
gb gigabytes
tb terabytes

Dealing with large numbers in AMPS configuration can also be simplified by using common exponent values to
handle raw values. This means that instead of having to input 10000000 to represent ten million, a user can input
10M. Table B.4 contains a list of the exponents supported.

Table B.4. AMPS Configuration - Numeric Units

Units Description
k 10® - thousand
M 10° - million

To make it easier for users to remember the units, AMPS interval and byte units are not case sensitive.

B.3. Environment Variables in AMPS Configura-
tion

AMPS configuration also allows for environment variables to be used as part of the data when specifying a config-
uration file. These variables can be set in the environment when AMPS starts, or passed to AMPS using the -D
option on the command line.

If a global system variable is commonly used in an organization, then it may be useful to define this in one location
and re-use it across multiple AMPS installations or applications. AMPS will replace any token wrapped in ${}
with the environment variable defined in the current user operating system environment. Example B.6 demonstrates
how the environment variable ENV_LOG is used to define a global environment variable for the location of the host

logging.

<Logging>
<Target>
<Protocol>file</Protocol>
<FileName>S{ENV_LOG}</FileName>
<Level>info</Level>
<RotationThreshold>2G</RotationThreshold>
</Target>

243

Configuration File Shortcuts

</Logging>

Example B.6. Environment Variable Used in Configuration

Internal Environment Variables

In addition to supporting custom environment variables, AMPS includes a configuration variable,
AMPS_CONFIG_DIRECTORY, which can be used to reference the directory in which the configuration file used to
start AMPS is located. For example, assume that AMPS was started with the following command at the command
prompt:

%>./ampServer ../amps/config/config.xml

Given this command, the log file configuration option shown in Example B.7 can be used to instruct AMPS to
create the log files in the same parent directory as the configuration file — in this case . . /amps/config/logs/
infolLog. log.

<Logging>
<Target>
<Protocol>file</Protocol>
<FileName>
${AMPS_CONFIG_DIRECTORY}/logs/infolLog. log
</FileName>
<Level>info</Level>
<RotationThreshold>2G</RotationThreshold>
</Target>
</Logging>

Example B.7. AMPS_CONFIG_DIRECTORY Environment Variable Example

In addition to the AMPS_CONFIG_DIRECTORY environment variable, AMPS also supports the
AMPS_CONFIG_PATH, which is an absolute path to the configuration file used to start AMPS.

244

Appendix C. Spark

AMPS contains a command-line client, spark, which can be used to run queries, place subscriptions, and publish
data. While it can be used for each of these purposes, spark is provided as a useful tool for informal testing and
troubleshooting of AMPS instances. For example, you can use spar k to test whether an AMPS instance is reachable
from a particular system, or use spark to perform ad hoc queries to inspect the data in AMPS.

This chapter describes the commands available in the spark. For more information on the features available in
AMPS, see the relevant chapters in the AMPS User Guide.

The spark utility is included in the bin directory of the AMPS install location. The spark client is written in
Java, so running spark requires a Java Virtual Machine for Java 1.6 or later.

To run this client, simply type . /bin/spark at the command line from the AMPS installation directory. AMPS
will output the help screen as shown below, with a brief description of the spark client features.

spark help [command]
Supported Commands:

help

ping

publish

sow
sow_and_subscribe
sow_delete
subscribe

Example:
%> ./spark help sow

Returns the help and usage information for the 'sow' command.

Example C.1. Spark Usage Screen

C.1. Getting help with spark

Spark requires that a supported command is passed as an argument. Within each supported command, there are
additional unique requirements and options available to change the behavior of Spark and how it interacts with the
AMPS engine.

For example, if more information was needed to run a pub1ish command in Spark, the following would display
the help screen for the Spark client's pub 11 sh feature.

245

Spark

%>./spark help publish

spark publish [options]

Required Parameters:

server -— AMPS server to connect to
topic —-- topic to publish to
Options:
authenticator -- Custom AMPS authenticator factory to use
delimiter -- decimal value of message separator character
(default 10)
delta -- use delta publish
file -- file to publish records from, standard in when omitted
proto protocol to use (amps, fix, nvfix, xml)

(type, prot are synonyms for backward compatibility)
(default: amps)

rate -- decimal value used to send messages

at a fixed rate. '.25' implies 1 message every
4 seconds. '1000' implies 1000 messages per second.

Example:
% ./spark publish -server localhost:9003 -topic Trades -file data.fix
Connects to the AMPS dinstance listening on port 9003 and publishes

records
found in the 'data.fix' file to topic 'Trades'.

Example C.2. Usage of spark publish Command

C.2. Spark Commands

Below, the commands supported by spark will be shown, along with some examples of how to use the various
commands and descriptions of the most commonly-used options. For the full range of options provided by spark,

including options provided for compatibility with previous spark releases, use the spark help command as
described above.

publish

The publish command is used to publish data to a topic on an AMPS server.

246

Spark

Common Options - spark publish

Table C.1. Spark publish options

Option Definition

server AMPS server to connect to.

topic Topic to publish to.

delimiter Decimal value of message separator character (default 10).

delta Use delta publish (sends a delta_publish command to AMPS).

file File to publish messages from, stdin when omitted. spark interprets each line in the input as a
message. The file provided to this argument can be either uncompressed or compressed in ZIP
format.

proto Protocol to use. In this release, spark supports amps, f7ix, nvfixand xml. Defaults to amps.

spark also supports json as a synonym for amps in this release.

rate Messages to publish per second. This is a decimal value, so values less than 1 can be provided to
create a delay of more than a second between messages. '.25' implies 1 message every 4 seconds.
'1000" implies 1000 messages per second.

type For protocols and transports that accept multiple message types on a given transport, specifies
the message type to use.

Examples

The examples in this guide will demonstrate how to publish records to AMPS using the spark client in one of the
three following ways: a single record, a python script or by file.

%> echo '{ "id" : 1, "data": "hello, world!" }' | \
./spark publish -server localhost:9007 -type json -topic order

total messages published: 1 (50.00/s)

Example C.3. Publishing a single XML message.

In Example C.3 a single record is published to AMPS using the echo command. If you are comfortable with creating
records by hand this is a simple and effective way to test publishing in AMPS.

In the example, the JSON message is published to the topic order on the AMPS instance. This publish can be followed
with a sow command in spark to test if the record was indeed published to the ordertopic.

%> python -c "for n in xrange(100): print '{\"id\":%d}' % n" | \
./spark publish -topic disorder -type json -rate 50 \
-server localhost:9007

total messages published: 100 (50.00/s)

Example C.4. Publishing multiple messages using python.

247

Spark

In Example C.4 the —c flag is used to pass in a simple loop and print command to the python interpreter and have
it print the results to stdout.

The python script generates 100 JSON messages of the form {"id": 0%}, {"id":1} ... {"1d" :99}. The output
of this command is then piped to spark using the | character, which will publish the messages to the disorder topic
inside the AMPS instance.

%> ./spark publish -server localhost:9007 -type json -topic chaos \
-file data.json

total messages published: 50 (12000.00/s)

Example C.5. Spark publish from a file

Generating a file of test data is a common way to test AMPS functionality. Example C.5 demonstrates how to publish
a file of data to the topic chaos in an AMPS server. As mentioned above, spark interprets each line of the file as
a distinct message.

SOW

The sow command allows a spark client to query the latest messages which have been persisted to a topic. The
SOW in AMPS acts as a database last update cache, and the sow command in spark is one of the ways to query
the database. This sow command supports regular expression topic matching and content filtering, which allow a
query to be very specific when looking for data.

For the sow command to succeed, the topic queried must provide a SOW. This includes SOW topics and views,
queues, and conflated topics. These features of AMPS are discussed in more detail in the User Guide.

Common Options - spark sow

Table C.2. Spark sow options

Option Definition

server AMPS server to connect to.

topic Topic to query.

batchsize Batch Size to use during query. A batch size > 1 can help improve performance, as described in
the chapter of the User Guide discussing the SOW.

filter The content filter to use.

proto Protocol to use. In this release, spark supports amps, fix, nvfixand xml. Defaults to amps.

spark also supports json as a synonym for amps in this release.

orderby An expression that AMPS will use to order the results.
topn Request AMPS to limit the query response to the first N records returned.
type For protocols and transports that accept multiple message types on a given transport, specifies

the message type to use.

248

Spark

Examples

%> ./spark sow -server localhost:9007 -type json -topic order \
_-F-llter— ll/—id = YlYll

L owgy g i,

"data" : "hello, world" }

Total messages received: 1 (Infinity/s)

Example C.6. spark SOW query

This sow command will query the order topic and filter results which match the xpath expression /id = '1'.
This query will return the result published in Example C.3.

If the topic does not provide a SOW, the command returns an error indicating that the command is not valid for

that topic.

subscribe

The subscribe command allows a spark client to query all incoming messages to a topic in real time. Similar
to the sow command, the subscribe command supports regular expression topic matching and content filtering,
which allow a query to be very specific when looking for data as it is published to AMPS. Unlike the sow command,
a subscription can be placed on a topic which does not have a persistent SOW cache configured. This allows a
subscribe command to be very flexible in the messages it can be configured to receive.

Common Options - spark subscribe

Table C.3. Spark subscribe options

Option Definition

server AMPS server to connect to.

topic Topic to subscribe to.

delta Use delta subscription (sends a delta_subscribe command to AMPS).

filter Content filter to use.

proto Protocol to use. In this release, spark supports amps, fix, nvfixand xmL. Defaults to amps.
spark also supports json as a synonym for amps in this release.

ack Enable acknowledgements when receiving from a queue. Notice that, when this option is provid-
ed, spark acknowledges messages from the queue, signalling to AMPS that the message has
been fully processed. (See the User Guide chapter on AMPS message queues for more informa-
tion.)

backlog Request a max_backlog of greater than 1 when receiving from a queue. (See the User Guide
chapter on AMPS message queues for more information.)

type For protocols and transports that accept multiple message types on a given transport, specifies

the message type to use.

249

Spark

Examples

%> ./spark subscribe -server localhost:9007 -topic chaos \
-type json -filter "/name = 'cup'"

{ "name" : "cup", "place" : "cupboard" }

Example C.7. Spark subscribe example

Example C.7 places a subscription on the chaos topic with a filter that will only return results for messages where
/name = 'cup'.If we place this subscription before the publish command in Example C.5 is executed, then
we will get the results listed above.

sow_and_subscribe

The sow_and_subscribe command is a combination of the sow command and the subscribe command.
When a sow_and_subscribe is requested, AMPS will first return all messages which match the query and are
stored in the SOW. Once this has completed, all messages which match the subscription query will then be sent to
the client.

The sow_and_subscribe is a powerful tool to use when it is necessary to examine both the contents of the
SOW, and the live subscription stream.

Common Options - spark sow_and_subscribe

Table C.4. Spark sow_and_subscribe options

Option Definition

server AMPS server to connect to.

topic Topic to query and subscribe to.

batchsize Batch Size to use during query.

delta Request delta for subscriptions (sends a sow_and_delta_subscribe command to AMPS)
filter Content filter to use.

proto Protocol to use. In this release, spark supports amps, fix, nvfixand xmL. Defaults to amps.

spark also supports json as a synonym for amps in this release.

orderby An expression that AMPS will use to order the SOW query results.
topn Request AMPS to limit the SOW query results to the first N records returned.
type For protocols and transports that accept multiple message types on a given transport, specifies

the message type to use.

Examples

250

Spark

%> ./spark sow_and_subscribe -server localhost:9007 -type json \
-topic chaos -filter "/name = 'cup'"

{ "name" : "cup", "place" : "cupboard" }

Example C.8. spark SOW and subscribe example

In Example C.8 the same topic and filter are being used as in the subscribe example in Example C.7. The results
of this query initially are similar also, since only the messages which are stored in the SOW are returned. If a publisher
were started that published data to the topic that matched the content filter, then those messages would then be printed
out to the screen in the same manner as a subscription.

sow_delete

The sow_delete command is used to remove records from the SOW topic in AMPS. If a filter is specified, only
messages which match the filter will be removed. If a file is provided, the command reads messages from the file
and sends those messages to AMPS. AMPS will delete the matching messages from the SOW. If no filter or file
is specified, the command reads messages from standard input (one per line) and sends those messages to AMPS
for deletion.

It can be useful to test a filter by first using the desired filter in a sow command and make sure the recored returned
match what is expected. If that is successful, then it is safe to use the filter for a sow_delete. Once records are
deleted from the SOW, they are not recoverable.

Common Options - sow_delete

Table C.5. Spark sow_delete options

Option Definition

server AMPS server to connect to.

topic Topic to delete records from.

filter Content filter to use. Notice that a filter of 1=1 is true for every message, and will delete the
entire set of records in the SOW.

file File from which to read messages to be deleted.

proto Protocol to use. In this release, spark supports amps, f7ix, nvfixand xml. Defaults to amps.

spark also supports json as a synonym for amps in this release.

type For protocols and transports that accept multiple message types on a given transport, specifies
the message type to use.

Examples

%> ./spark sow_delete -server localhost:9007 \
-topic order -type json -filter "/name = 'cup'"

251

Spark

Deleted 1 records in 10ms.

Example C.9. spark SOW delete example

With the spark command in Example C.9, we are asking for AMPS to delete records in the topic order which
match the filter /name = 'cup'. In this example, we delete the record we published and queried previously
in the pub lish and sow spark examples, respectively. spark reports that one matching message was removed
from the SOW topic.

ping

The spark ping command is used to connect to the amps instance and attempt to logon. This tool is useful to
determine if an AMPS instance is running and responsive.

Common Options - spark ping

Table C.6. Spark ping options

Option Definition
server AMPS server to connect to.
proto Protocol to use. In this release, spark supports amps, fix, nvfixand xml. Defaults to amps.

spark also supports json as a synonym for amps in this release.

Examples

%> ./spark ping -server localhost:9007 -type json
Successfully connected to tcp://user@localhost:9007/amps/json

Example C.10. Successful ping using spark

In Example C.10, spark was able to successfully log onto the AMPS instance that was located on port 9007.

%> ./spark ping -server localhost:9119

Unable to connect to AMPS
(com.crankuptheamps.client.exception.ConnectionRefusedException: Unable to
connect to AMPS at localhost:9119).

Example C.11. Unsuccessful ping using spark

In Example C.11, spark was not able to successfully log onto the AMPS instance that was located on port 9119.
The error shows the exception thrown by spark, which in this case was a ConnectionRefusedException
from Java.

252

Spark

C.3. Spark Authentication

Spark includes a way to provide credentials to AMPS for use with instances that are configured to require authenti-
cation. For example, to use a specific user ID and password to authenticate to AMPS, simply provide them in the
URI in the format user : password@host:port

The command below shows how to use spark to subscribe to a server, providing the specified username and password
to AMPS.

SAMPS_HOME /bin/spark subscribe -type json \
-server username:password@localhost:9007

AMPS also provides the ability to implement custom authentication, and many production deployments use cus-
tomized authentication methods. To support this, the spark authentication scheme is customizable. By default, the
authentication scheme spark uses simply provides the user name and password from the -server parameter, as
described above.

Authentication schemes for spark are implemented in Java as classes that implement Authenticator -- the
same method used by the AMPS Java client. To use a different authentication scheme with spark, you implement
the AuthenticatorFactory interface in spark to return your custom authenticator, adjust the CLASSPATH
to include the . j ar file that contains the authenticator, and then provide the name of your AuthenticatorFac-
tory on the command line. See the AMPS Java Client API documentation for details on implementing a custom
Authenticator.

The command below explicitly loads the default factory, found in the spar k package, without adjusting the CLASS-
PATH.

SAMPS_HOME /bin/spark subscribe -server username:password@localhost:9007 \
-type json -topic foo \
—authenticator com.crankuptheamps.spark.DefaultAuthenticatorFactory

253

Appendix D. Auxiliary Modules

The AMPS distribution provides several modules that extend AMPS with optional behavior. These modules are not
loaded by default.

In this release, AMPS includes auxilliary modules that provide the following functionality:
+ User-defined functions

AMPS includes the 1ibamps_udf_legacy_compatibility module that provides date and time handling
functions similar to those provided by legacy messaging systems.

* SOW Key generation

AMPS includes the 1ibamps_id_chaining_generator module that provides chained SOW key genera-
tion.

» Authentication and Entitlement

AMPS includes libamps_http_entitlement module that makes requests to an external web service for
authentication and entitlement. AMPS also includes libamps_simple_access_entitlement forrestrict-
ing access to specific resources.

These modules are described in the following sections.

D.1. Legacy Messaging Compatibility Functions

The AMPS distribution includes a library of legacy messaging compatibility functions. These functions are intended
to ease migration to AMPS from legacy messaging systems that provide similar functions.

In this release, the legacy messaging functions provide functions to make it easy to work with date and time.

These functions are not loaded into AMPS by default. To enable them, you must load the legacy messaging com-
patibility module by adding a directive to the AMPS configuration file to load these functions. Once the module is
loaded, the functions become available. No further configuration is required.

For example, adding the indicated block to an AMPS configuration file loads the legacy messaging compatibility
functions:

<AMPSConfig>

<Modules>

<Module>
<Library>libamps_udf_legacy_compatibility.so</Library>
<Name>compatibility-functions-module</Name>

</Module>

</Modules>

254

Auxiliary Modules

Description

Returns a long that contains the
current timezone offset from UTC.

Produces a string that contains a rep-
resentation of the provided ti ne-
st anp, formatted as specified in the
provided format string. The
format string uses the same format
specifiers as the standard strf-
time (3) function.

Returns the year for the provided
timestamp. The year is calculated
in the UTC timezone. For example,
calling YEAR on a timestamp that
represents January 25, 2010 at 10:04
AM in the UTC timezone returns
2010.

Returns the month for the provided
timestamp. The month is calculated
in the UTC timezone. For example,
calling MONTH on a timestamp that
represents January 25, 2010 at 10:04
AM in UTC returns 1.

Returns the day for the provided
timestamp. The day is calculated in
the UTC timezone. For example,
calling DAY on a timestamp that rep-
resents January 25, 2010 at 10:04
AM in UTC returns 25.

Returns a timestamp for the begin-
ning of the provided day (00:00:00)
in UTC.

Returns a timestamp for the begin-
ning of the provided day (00:00:00)
in the local timezone.

Returns a timestamp for the begin-
ning of the current day (00:00:00) in
UTC.

</AMPSConfig>

Table D.1. AMPS Legacy Messaging Compatibility Functions
Function Parameters
TIMEZONEOFFSET

STRFTIME format string, timestamp
YEAR timestamp
MONTH timestamp
DAY timestamp
DATE_UTC timestamp
DATE timestamp
TODAY_UTC

TODAY

Returns a timestamp for the begin-
ning of the current day (00:00:00) in
the local timezone.

D.2. Key Generation for Chained Messages

The AMPS distribution includes a module that can generate a SOW key for a set of chained messages.

255

Auxiliary Modules

Message chains are most frequently used in FIX order processing systems to track a set of updates to an original
order from a set of systems that use unique local identifiers for the order. As messages arrive, AMPS must update
the record for the original order, regardless of whether the identifier on the current message is the original order, or
is an order chained to the original order.

A message chain allows an application to treat any update to an identifier in the chain as an update to the original
message in the chain. The Tibamps_id_chaining_key_generator module supports this by generating the
same SOW key for any message in the chain. To use this module, messages must have a field that identifies the
current message and a field that identifies the previous message in the message chain, if one exists.

Chained Message Example

For example, consider a message processing scheme that uses two fields to identify related messages. Each message
a DocumentNumber field that indicates the current document. If the message updates or extends an existing doc-
ument, the message contains a ParentDocument that, when present, refers to the DocumentNumber of the
document that the message updates or extends.

With the default SOW key generator, each of the following messages would be a distinct message in the SOW topic:

delta_publish: {"DocumentNumber":
delta_publish: {"DocumentNumber":
delta_publish: {"DocumentNumber":
delta_publish: {"DocumentNumber":

, "Status":"Started"}

, "ParentDocument":1, "Order":"Antivenom"}
, "ParentDocument":2, "Order":"Sandwich"}
, "ParentDocument":1, "Status":"Pending"}

w N =

~

With the default SOW key generator, at the end of the publishing process, the SOW contains four distinct records:

{"DocumentNumber":1, "Status":"Started"}

{"DocumentNumber":2, "ParentDocument":1, "Order":"Antivenom"}
{"DocumentNumber":3, "ParentDocument":2, "Order":"Sandwich"}
{"DocumentNumber":4, "ParentDocument":1, "Status":"Pending"}

However, with the chaining key generator, AMPS is able to combine these messages into a single chain and produces
the following single record:

{"DocumentNumber":4, "ParentDocument":1 , "Order":"Sandwich",
"Status":"Pending"}

The sequence of events for producing this message is as follows:

* When the first message arrives with a /DocumentNumber of 1, the module begins a new chain (since there
isno /ParentDocument present).

» When the second message arrives, the module knows that it is an update to the same message since the message
contains a /ParentDocument value. In this case, because the value is 1, the update is to the first message
received. The module also adds a /DocumentNumber of 2 to the chain, so that subsequent messages that refer
toa /ParentDocument of 2 are a part of the chain and update the same message.

» The same process occurs for the third message: the module looks up the message that should be updated when
the /ParentDocument is 2, and traces the chain back to the original underlying message. The module adds a
/DocumentNumber of 3 to the chain, so that updates with a /ParentDocument of 3will update the same
message.

* When the last message arrives, the module knows that a /ParentDocument of 1 is still an update to the same
message, since this is the original value. The module adds the value 4 to the chain.

256

Auxiliary Modules

In each case, rather than simply using the fields in the message directly, the module creates a chain of linked iden-
tifiers: each identifier in the chain produces the same SOW key as the first identifier in the chain, so each update
in the chain updates the same message.

It is an error for a publisher to publish a message that resolves to two different message chains. If the module receives
such a message, the module will not generate a SOW key, and the message is not processed by AMPS.

Configuring the Chaining Key Generator

To load the module in AMPS, add the highlighted Modu le directive in the Modu les section of the AMPS con-

figuration file.

<AMPSConfig>
<Modules>

<Module>

<Library>libamps_id_chaining_key_generator.so</Library>
<Name>key-chaining</Name>

</Module>
</Modules>

</AMPSConfig>

You then use the module as the KeyGenerator for each topic in the SOW that will use chaining key generation.

The module accepts the following options:

Table D.2. Parameters for Chaining Key Generator

Parameter

Description

Primary

The primary field to use in chaining. When this field is present on a message, and
the value of the field is not in an existing chain of values, the module creates a new
chain.

When the message contains the Primary field and there is no previous entry for
the value of that field, this message is the head of the chain and is used to generate
the SOW key.

There is no default for this parameter. The parameter requires an AMPS field iden-
tifier, such as /11 or /Order/ClOrdID.

Secondary

The secondary field to use in chaining: this field is expected to refer to the value of
a Primary field in a previous message.

When this field is present on the message, the module generates a SOW key for
this message as though the message contained a Primary field with this value.
In addition, the module stores the value of the Primary field in the current mes-
sage as equivalent to this value, enabling subsequent messages to be chained to this
message.

There is no default for this parameter. The parameter requires an AMPS field iden-
tifier, such as /41 or /Order /OrigClOrdID.

FileName

Sets the name of the file that the module uses to store chaining data. This module
persists existing chains between restarts of the AMPS server. If a file with the given

257

Auxiliary Modules

Parameter Description

name exists when AMPS starts, the module reads chaining data from the file. Oth-
erwise, the module creates a new file.

Validation Specifies whether the module validates that incoming messages are properly
chained. When set to true or 1, the module records extra data to attempt to detect
errors in the sequencing of the chain. The module will consider it an error when it
detects that two or more distinct chains share identifiers and would been combined
into a single chain had messages arrived in a different order: in some systems, this
indicates an error in message processing.

Default: This option accepts to false.

Example

The example configuration file below shows one way to use the chaining key generator module.
<Modules>

<Module>
<Library>libamps_id_chaining_key_generator.so</Library>
<Name>key-chaining</Name>
</Module>

</Modules>

<SOwW>
<Topic>
<Name>Orders</Name>
<MessageType>json</MessageType>
<KeyGenerator>
<Module>key-chaining</Module>
<Options>
<Primary>/DocumentNumber</Primary>
<Secondary>/ParentDocument</Secondary>
<FileName>./sow/Orders.chain</FileName>
</Options>
</KeyGenerator>
<FileName>./sow/%n.sow</FileName>
</Topic>

<Topic>
<Name>ExternalOrders</Name>
<MessageType>fix</MessageType>
<KeyGenerator>
<Module>key-chaining</Module>
<Options>
<Primary>/11</Primary>

258

Auxiliary Modules

<Secondary>/41</Secondary>
<FileName>./sow/ExternalOrders.chain</FileName>
</Options>
</KeyGenerator>
</Topic>
</SOwW>

Notice that once the module is loaded, it can be used for any message type, and can accept different configuration
values for each topic in the SOW that uses the generator.

D.3. Authentication and Entitlement using a Web
Service

The AMPS distribution includes a module that provides authentication and entitlement via an external Web Service.
For some installations, this module provides a convenient way to integrate with an existing authentication and enti-
tlement infrastructure without creating an entitlement plugin.

In this release, the HTTP authentication module is provided with AMPS, but is not loaded by default. This module
is an optional extension to the AMPS product, and while it is included with the AMPS distribution, the module must
be explicitly loaded, enabled, and configured.

When using this module, AMPS requests permissions documents from an external service using http or https.
The request to retrieve the permissions document includes the credentials provided with the client logon. If the
request succeeds, the module considers the user to have successfully authenticated to AMPS. If the request to retrieve
the permissions document fails, the module considers the user to have failed authentication. When authentication
succeeds, the contents of the document returned specify the permissions that the module grants to the user.

When to Use the Web Service Module

The AMPS Web Service Authentication and Entitlement module can be a good option when:
+ The site does not have an exisiting authentication and entitlements infrastructure for AMPS
+ It is more feasible to develop and test a standalone web service than to develop a server plugin for AMPS

» Applications need to integrate with an existing authentication and entitlement system that offers limited Linux
or C/C++ support, or

» An application that will use another authentication scheme in production needs an easy way to test changes to
entitlements and entitlement scenarios that are difficult to replicate in the production system

Permissions Document Format

This section describes the format of the permissions documents used by the Web Service Authentication and Enti-
tlement module.

All documents are in JSON format, and consist of a set of permissions. The document does not contain the user
name: this is intentional, and allows systems to easily provide identical permissions for all users in a group without
having to create unique documents.

259

Auxiliary Modules

The entitlement document expresses each permission as a field of a JSON document. The following is an example
of a permissions document:

{
"logon": true,
"replication-logon" : false,
"topic": [
{ "topic": "test",
"read": "/priority = 1",
"write": false },
{ ”tOp'iC”: n . *ll s
"read": true,
"write": true }
15
"admin": [
{ "topic": "A/amps/instance/.x",
"read": true,
"write": false },
{ ”tOp'iC”: n . *ll s
"read": false,
"write": false }
]
}

The Web Authentication Module processes the entitlements in document order. Going through the document in order,
this set of entitlements specifies the following permissions:

* This user has permission to log on to AMPS, as set by the logon field.

+ This user does not have permission to make a replication connection to AMPS. A replication connection that uses
these credentials will be refused.

* This user has read permissions to the topic test for messages that match the filter /priority = 1. This user
does not have write permissions to the topic.

+ The user has read and write permissions to every other topic in the instance without content restrictions.
* The user has read permissions to the administrative interface for information under the /amps/instance path.
* The user has no other permissions to the administrative interface.

The Web Service Authentication and Entitlement Module also allows fine-grained control of the topics that a given
user is allowed to publish to via replication with the replicated-topics configuration element. The following
permissions document shows sample permissions for a replication connection:

{
"replication-logon": true,
"logon": false,
"replicated-topics":[""/orders/NYC/.*",
"/events/P1"]
}

This document specifies that the user can only log in to AMPS via replication connections. The user has permission
to replicate messages to the topic /events/P1 (using an exact match) and topics that begin with /orders/NYC,
as specified by the regular expression * /orders/NYC/ . *. The user has no other permissions. In particular, the
user cannot log in from an AMPS client, and could not publish to or subscribe to any topics even if Llogon was
changed to true without an explicit topic permission.

260

Auxiliary Modules

The structure of the permissions document is as follows:

Table D.3. Web Authentication Module Top-Level Permissions

Field Value

logon Specifies permission for an application to log on to AMPS. When
this field is present, the value of the field must be a boolean true
or false.

replication-logon Controls permission for a replication connection to log on to AM-

PS. When this field is present, the value of this field must be a
boolean true or false.

topic Controls access to topics within AMPS. When this field is present,
the value of the field must be a permission list, as described below.

admin Controls access to the administrative interface. When this field
is present, the value of the field must be a permission list, as de-
scribed below.

replicated-topics An array containing the topics that this user can replicate to. When
this field is present, the value of the field must be an array of
strings that specify topic names or regular expressions. For exam-
ple, the following entry allows this user to replicate ONLY to top-
ics that begin with /orders/NYC

"replicated-topics":[""/orders/NYC/.*"]

Permissions lists within this document are arrays of entries. Each entry in the array is a JSON object with the fol-
lowing format:

Table D.4. Permissions list entries

Field Value

topic The name of the topic this permission definition applies to. This
name can be either a literal value, or a regular expression to use
to match topic names.

A name is interpreted as a regular expression if it contains any
characters used in regular expression matching (for example, *,
$, *, ., and so on). Regular expression matching provides full
support for PCRE regular expressions.

read Defines the read permission for this topic. The value of this field
can be either true, false, or an AMPS filter.

When the value is true, the module grants read permission to
the topic with no restrictions. When the value is false, the mod-
ule denies read permission. When the value is a filter, the module
grants read permission to this topic only for those messages that
match the filter.

write Defines the write permission for this topic. The value of this field
can be either true, false, or an AMPS filter.

When the value is true, the module grants write permission to
the topic with no restrictions. When the value is false, the mod-
ule denies write permission. When the value is a filter, the module

261

Auxiliary Modules

Field Value

grants write permission for this topic only for those messages that
match the filter.

Configuring AMPS to use Web Service Authentication and
Entitlements

The web service authentication and entitlement module is included in the AMPS distribution, but is not loaded in
AMPS by default. To load the module, add the following configuration item to the Modules block in your AMPS
configuration:

<Modules>
<Module>
<Name>web-entitlements</Name>
<Library>libamps_http_entitlement.so</Library>

<l==
You may specify options here,
or where the module s used.
-—>
</Module>
</Modules>

Options for the module may be set when the module is loaded, when the module is used for Authentication
or Entitlement, orin both places. Options set when the module is loaded are inherited as the default values for
all uses of the module in the instance. Options specified in an authentication or entitlement block override options
set when the module is loaded.

For Authentication, the module supports the following options:

Table D.5. Authentication block options for Web Service Authentication Module

Option Description

ResourceURI The URI to request when a user logs into AMPS using
this module. This option is required.

For this option, AMPS substitutes the placeholder
{{USER_NAME}} with the name of the user being au-
thenticated. For example, here are two possible values for
the ResourceURI:

http://cred-server:8080/
{{USER_NAME}}.json

http://cred-server:8080/admin/
group_policy.json

In the first case, AMPS requests a document with the cur-
rent user name of the user logging on substituted for the
{{USER_NAME}} component of the URI. In the second
case, the document is requested with the credentials of

262

Auxiliary Modules

Option

Description

the user connecting, but AMPS requests the same docu-
ment for each user.

There is no default for this parameter.

CredentialStore

Identifier for the entitlement store where the retrieved
permission sets will be stored. When used for authenti-
cation, this is the name of the entitlement cache that the
module stores parsed information into until AMPS re-
quests the information.

In most cases, there is no need to set this parameter. When
multiple transports use different ResourceURT values,
but those transports are expected to maintain the same
information, specifying a CredentialStore value
can speed the logon process and reduce the number of
copies of the parsed permissions document in memory.
Likewise, if a module must ensure that permission sets
are kept separate (so that, for example, an internal user
named ' johndoe ' and a web user named ' johndoe'
have separate credentials), explicitly setting a Creden—
tialStore value can make it easier to verify that the
permission sets are completely separate.

Default: The literal value of the ResourceURI parame-
ter.

ConnectionTimeout

The maximum amount of time to wait for a connection to
the web server for each request, in milliseconds. If a con-
nection is not made within the specified time, the module
stops the connection attempt and the request fails.

Default: 2000

RequestTimeout

The maximum amount of time to wait for the web serv-
er to return a permissions document on each request, in
milliseconds. If the server does not return a permissions
document within the specified time, the module closes
the connection and the request fails.

Default: 5000

RetryCount Sets the number of times to retry the request if retrieving
the authentication document fails for any reason.
Default: 0 (only try once)

HTTPHeader Sets a header to add to the HTTP request. The configura-

tion can specify any number of HTTPHeader elements,
and the module will provide each of the specified headers
with the authentication request.

There is no default for this option. If no HTTPHeader
option is included, the module provides a standard set of
headers.

263

Auxiliary Modules

Option Description

This option supports variable replacement during an au-
thentication request, as follows:

* AMPS substitutes the placeholder { {USER_NAME} }
with the name of the user being authenticated.

« AMPS substitutes the placeholder
{{CORRELATION_ID}} with the Correla-
tionId provided on the logon command. If no Cor -
relationId is provided on the logon command,
then {{CORRELATION_ID}} is simply removed
from the header before sending it.

For Entitlement blocks, the module requires one of the following two options. These options are used to specify
the entitlements to use for the context.

Table D.6. Entitlement block options for Web Service Authentication Module

Option Description

ResourceURI Identifier for the credential store to use for this enti-
tlement context. This is a synonym for the Creden-
tialStore parameter. The module accepts this syn-
onym to make it easier to verify that the Entitle-
ment context and the Authentication context use
the same values.

There is no default for this parameter. Either the Re—
sourceURT or CredentialStore must be provid-
ed. If both are provided, the module uses the value of the
CredentialStore.

CredentialStore Identifier for the entitlement cache. When used for en-
titlement, this is the name of the entitlement cache that
AMPS uses to look up the information.

There is no default for this parameter. Either the Re—
sourceURT or CredentialStore must be provid-
ed. If both are provided, the module uses the value of the
CredentialStore. When both ResourceURTI and
CredentialStore are specified for an Entitle-
ment, the module uses the value set in the Creden-
tialStore.

For example, the following configuration loads the module and sets default values that are used for client transports.
The module is also used for the admin interface, but that interface uses a separate credential store. Notice that, since
the HTTPHeader options are set when the module is loaded, the custom headers are provided everywhere the
module is used, regardless of the ResourceURI or CredentialStore values.

<AMPSConfig>
<Modules>

<Module>
<Name>web-entitlements</Name>

264

Auxiliary Modules

<Library>libamps_http_entitlement.so</Library>

<!-- Sets defaults for all uses of the module -->

<Options>
<ResourceURI>http://permissions-server:8080/{{USER_NAME}}.json</

ResourceURI>

<HTTPHeader>x-tracking-id: {{CORRELATION_ID}}</HTTPHeader>
<HTTPHeader>x-origin: AMPS</HTTPHeader>

</Options>

</Module>

</Modules>

<!-- Use the web-entitlements module with the default
values for all authentication and entitlement
unless a transport or the admin interface
explicitly sets different values. -->

<Authentication>
<Module>web-entitlements</Module>

</Authentication>

<Entitlement>
<Module>web-entitlements</Module>

</Entitlement>

<Admin>
<InetAddr>localhost:8085</InetAddr>
<I-- Use the web-entitlements module, but set a
different URI and credential store for the admin
interface. -->

<Authentication>
<Module>web-entitlements</Module>
<Options>
<ResourceURI>http://permissions-server:8080/admin/
{{AMPS_USER}}.json</ResourceURI>
<CredentialStore>AdminCreds</CredentialStore>
</Options>
</Authentication>
<Entitlement>
<Module>web-entitlements</Module>
<Options>
<ResourceURI>http://permissions-server:8080/admin/
{{AMPS_USER}}.json</ResourceURI>
<CredentialStore>AdminCreds</CredentialStore>
</Options>
</Entitlement>
</Admin>

<I-= AlLl of these transports use the Authentication and
Entitlement set at the instance level. -->
<Transports>
<Transport>
<Name>json-tcp</Name>
<Type>tcp</Type>
<InetAddr>9007</InetAddr>

265

Auxiliary Modules

<MessageType>json</MessageType>
<Protocol>amps</Protocol>
</Transport>
<Transport>
<Name>any-tcp</Name>
<Type>tcp</Type>
<InetAddr>9090</InetAddr>
<Protocol>amps</Protocol>

</Transport>
</Transports>

</AMPSConfig>

Using HTTPS for Entitlement Requests

The Web Service Authentication and Entitlement Module optionally supports https entitlement requests. When
the ResourceURI uses https as the scheme, the module will attempt to use https to connect to the web service.

By default, the module attempts to verify the identity of the remote web service, which requires a key file containing
the key for the certificate authority that signed the certificate for the remote web service.

AMPS does not require that the certificate and key provided for outgoing https requests be the same certificates
used for incoming SSL connections to AMPS. However, if you have configured AMPS to accept SSL connections
from AMPS clients, the certificates you use for those connections are often suitable for outgoing web authentication
module connections, and the same certificates can be provided in both sections of the configuration file.

Table D.7. HTTPS options for Authentication

Option

Description

Certificate

The certificate to use for the AMPS connection to the
web service. When configured, this certificate can be
provided to the web service if the web service requests
client authentication for the connection.

There is no default for this parameter.

Key

The key file to use for the AMPS connection to the web
service. When configured, this key can be used for client
authentication if the web service requests client authen-
tication for the connection.

There is no default for this parameter.

CAKey

The certificate authority key. When configured, this key
can be used for the AMPS server to verify the identity
of the web service.

There is no default for this parameter. The CAKey must
be provided when AllowUnverfiedPeer is set to
false, the default.

AllowUnverifiedPeer

Specifies whether AMPS requires the web service to
identify itself. When this is set to false, the default, AM-
PS requires that the web service provide a certificate that
can be verified with the configured CAKey.

266

Auxiliary Modules

Option Description
Default: false
AllowSelfSigned Specifies whether AMPS will accept self-signed certifi-

cates for https connections.

Default: false

The following configuration file shows a common way to configure the module for testing purposes when working
with a server that accepts https connections. While the outgoing connection will use SSL, the module will not
provide certificates to the server, or request that the server verify its identity.

<Module>
<Name>web-entitlements</Name>
<Library>libamps_http_entitlement.so</Library>
<Options>
<ResourceURI>
https://permissions-server:443/{{AMPS_USER}}.json
</ResourceURI>
<AllowUnverifiedPeer>true</AllowUnverifiedPeer>
<AllowSelfSigned>true</AllowSelfSigned>
</Options>
</Module>

The following configuration file demonstrates how to configure the module to verify the identity of the remote
server, provide verification of the AMPS server identity to that server, and require that all certificates be signed by
a certificate authority.

<Module>
<Name>web-entitlements</Name>
<Library>libamps_http_entitlement.so</Library>
<Options>
<ResourceURI>
https://permissions-server:443/{{AMPS_USER}}.json
</ResourceURI>
<Certificate>/etc/security/amps-cert.pem</Certificate>
<Key>/etc/security/amps-key.pem</Key>
<CAKey>/etc/security/ca.pem</CAKey>
</Options>
</Module>

Permissions Management and Request Flow

This section describes the request flow for the Web Service Authentication and Entitlement Module.

Notice that authentication and entitlement are two separate steps. The module obtains the set of permissions during
the authentication step, and then provides responses to AMPS entitlement requests during the entitlement step. What
this means is that a user must have authenticated using the module for an entitlement request to be allowed.

Authentication Step

1. Logon request received from client.

267

Auxiliary Modules

2. Module requests an entitlement document (via GET) from a specified Web Service. The credentials in the logon
request are provided as the credentials for the GET.

3. If AMPS cannot retrieve the entitlement document using the provided credentials, AMPS returns a failure for
the logon request.

4. If the Web Service Authentication and Entitlement module already has a parsed entitlement document for this user
in the CredentialStore for this request, the module simply returns success for the authentication request.

5. Otherwise, the module parses the entitlement document and stores the entitlements in the CredentialStore.
If the module can't successfully parse the document, it returns failure for the authentication request.

Entitlement Step

1. The module looks up the user name in the CredentialStore for the request. If the module has no stored
entitlements for the user, the module denies the request.

2. The module looks for a matching entitlement. Entitlements for a user are searched in exactly the same order
in which they appear in the document. The module uses the first entitlement that matches the request. If no
entitlements match, the module denies the request.

3. The module checks the entitlement to see if the entitlement grants access to the user or disallows access to the
user. If the entitlement disallows access, the module denies the request.

4. The module allows the request and applies any filter specified in the matching entitlement.

Entitlement Reset

The module caches the set of entitlements for a user while that user is connected. As described in the previous
section, the module only parses the returned permissions document if the module does not have an existing set of
entitlements for that user.

The module resets both the AMPS entitlement cache and the information on the parsed permissions document for
a given user when all of the connections for that user are closed. In practical terms, this means that changing the
entitlement document returned by the web service has no immediate effect on the permission set that AMPS enforces.
AMPS will continue to use the permissions in the document returned from the first logon request for that user until
all connections for that user have been closed.

To change the entitlements enforced for a user, that user must completely log out of AMPS (by closing all connections
for that user) and then reconnect to AMPS.

D.4. Entitlement with the Simple Access Module

The AMPS distribution includes a module that provides access to a resources that meet specific patterns. In this
release, the simple access entitlement module is provided with AMPS, but is not loaded by default. This module is
an optional extension to the AMPS product, and while it is included with the AMPS distribution, the module must
be explicitly loaded, enabled, and configured.

When using this module, AMPS grants and denies permissions to resources based on the name of the resource.
The name of the user is not considered by this module, so when this module is used every user has the same set
of permissions for the transport.

268

Auxiliary Modules

When to Use the Simple Access Module

The AMPS Simple Access module can be a good option when:
+ There are specific topics for a transport that are allowed or denied, but no other restrictions on the transport.
* There is no other entitlement system in use for the installation.

Most often, the simple access module is used to allow access to the parts of the Admin console that do not modify
the state of an AMPS instance, while refusing access to the parts of the Admin console that affect the instance state.

Configuring AMPS to use the Simple Access Module

The simple access entitlement module is included in the AMPS distribution, but is not loaded in AMPS by default.
To load the module, add the following configuration item to the Modules block in your AMPS configuration:

<Modules>
<Module>
<Name>simple-access</Name>
<Library>libamps_simple_access_entitlement.so</Library>
<l==
This module does not require options
when loaded.
-—>
</Module>

</Modules>

Options for the module are set when module is used for Entitlement. When used in an Entitlement blocks,
the module requires one or both of the following two options.

Table D.8. Entitlement block options for Simple Access Entitlement Module

Option Description

AllowedTopics A regular expression that matches the topics that the mod-
ule will allow access to. The module will grant access
only to topics that match this regular expression that do
not also match the DeniedTopics regular expression.

Defaults to . x, matching all topics in the instance.

DeniedTopics A regular expression that matches the topics that the mod-
ule will deny access to. The module will grant access on-
ly to topics that do not match this regular expression.

There is no default for this parameter. If not provided,
the module does not consider any topics to be explicitly
denied, and will grant access to any topic that matches
the AllowedTopics parameter.

For example, the following configuration loads the module, uses the module for entitlements on the administrative
console, and explicitly refuses access to paths beneath /amps/administrator -- the paths that might modify
the state of the instance. Since Al LowedTopics defaults to . *, all other topics are allowed.

269

Auxiliary Modules

<AMPSConfig>
<Modules>
<Module>
<Name>simple-access</Name>

<Library>libamps_simple_access_entitlement.so</Library>
</Module>

</Modules>

<Admin>
<InetAddr>localhost:8085</InetAddr>
<l-- Use the simple-access module to
deny access to topics under
/amps/administrator. -->
<Entitlement>
<Module>simple-access</Module>

<Options>
<!-- Deny all topics under /amps/administrator -->
<DeniedTopics>"/amps/administrator</DeniedTopics>
<I-- Allowed topics defaults to .* , so no need

to set that explicitly. -->
</Options>
</Entitlement>
</Admin>
</AMPSConfig>

270

Appendix E. The AMPS Statistics
Database

AMPS provides the ability to record the statistics gathered from the AMPS instance and the host machine. This
appendix describes working with the AMPS statistics database.

The AMPS statistics database is stored in sqlite3 format, and can be used with any of the standard sqlite3 tools.
This appendix assumes that you are using the standard sq11te3 package installed on your local computer. While
you may be able to run the SQL examples in this guide using other packages, this guide will assume that all SQL
commands will be executed with sglite3.

Notice that the statistics subsystem is independent of the other subsystems in AMPS, and is the only part of AMPS
that uses the sqlite3 format. You cannot use sqlite3 tools with SOW files, journal files, or .ack files: these files use
formats specifically designed for high performance messaging.

E.1. Configuring AMPS to Persist Statistics

By default, AMPS maintains statistics in memory. To configure AMPS to record the statistics to a file, the follow-
ing configuration options are available in the AMPS configuration file to update the location and frequency of the
statistics database file.

<AMPSConfig>

<Name>AMPS-Sqglite</Name>

<Admin>
<InetAddr>localhost:9090</InetAddr>
<FileName>./stats.db</FileName>
<Interval>5s</Interval>

</Admin>

<I=-= [snip] -->

</AMPSConfig>

In the example listed above, the AMPS administration interface is set to collect statistics every 5 seconds as indicated
by the <Interval> tag. In the example, the AMPS administration interface is additionally configured to save the
statistics in the stats. db file, which will be created in the directory where AMPS was started.

E.2. Introduction to SQLite3

This section is a quick reference to sqlite3. It is intended to help get started in examining the statistics provided by
AMPS. While this guide will be sufficient to execute the examples listed, a more comprehensive guide of the sqlite3
command line tool is available at http://www.sqlite.org/sqlite.html.

The sqlite3 tools

Starting sqlite3

To start sqlite3 with the stats.db file simply type:

271

The AMPS Statistics Database

$> sqglite3 ./stats.db
This will create a command prompt that looks like the following:

$> sqglite3 ./stats.db

SQLite version 3.7.3

Enter ".help" for dinstructions

Enter SQL statements terminated with a ";"
sglite>

To exit the sqlite3 prompt at any time, use the Ctrl+d sequence.
Simple SQLite3 commands

Tables

To get a listing of all available tables in the sqlite database type the . table command.

sglite> .table

HCPUS_DYNAMIC IMEMORY_CACHES_STATIC
HCPUS_STATIC IMEMORY_DYNAMIC
HDISKS_DYNAMIC IMEMORY_STATIC
HDISKS_STATIC IPROCESSORS_DYNAMIC

HMEMORY_DYNAMIC IPROCESSORS_STATIC
HMEMORY _STATIC IREPLICAS_DYNAMIC
HNET_DYNAMIC IREPLICAS_STATIC
HNET_STATIC IREPLICATIONS_DYNAMIC
ICLIENTS_DYNAMIC IREPLICATIONS_STATIC
ICLIENTS_STATIC ISOW_DYNAMIC

ICONSOLE_LOGGERS_DYNAMIC ISOW_STATIC
ICONSOLE_LOGGERS_STATIC ISTATISTICS_DYNAMIC
ICPUS_DYNAMIC ISTATISTICS_STATIC

ICPUS_STATIC ISUBSCRIPTIONS_DYNAMIC
IFILE_LOGGERS_DYNAMIC ISUBSCRIPTIONS_STATIC
IFILE_LOGGERS_STATIC ISYSLOG_LOGGERS_DYNAMIC

IGLOBALS_DYNAMIC ISYSLOG_LOGGERS_STATIC
IGLOBALS_STATIC ITRANSPORTS_DYNAMIC

IMAPS_DYNAMIC ITRANSPORTS_STATIC

IMAPS_STATIC IVIEWS_DYNAMIC

IMEMORY_CACHES_DYNAMIC IVIEWS_STATIC
Schema

To view the schema for any table type: . schema <table name>, where <table name> is the name of the
table to inspect.

sqlite> .schema IFILE_LOGGERS_DYNAMIC

CREATE TABLE IFILE_LOGGERS_DYNAMIC(timestamp integer,
static_id integer, bytes_written integer, PRIMARY

272

The AMPS Statistics Database

KEY(timestamp, static_id));

E.3. Statistics Table Design

This section describes the philosophy of how the AMPS tables are designed within the statistics database. This
chapter also includes some examples of some useful queries which can give an administrator more information
than just the raw data would normally give them. Such information can be a powerful tool in diagnosing perceived
problems in AMPS.

Table Naming Scheme

Tables in the database use the following naming scheme:

<I|H><STAT>_<STATIC|DYNAMIC>

Where:

I = AMPS fnstance statistics

H = Host statistics

STAT = The statistics that are collected (MEMORY, CPUS,
SUBSCRIPTIONS, etc)

STATIC = attributes that rarely change for an object
(such as client name, CPU #)

DYNAMIC = stats that are expected to change on every
sample (rates, counters, and so on)

Example Queries

To view which clients have fallen behind at one time, run:

sqglite> SELECT s.client_name, MAX(d.queue_max_latency),
MAX (queued_bytes_out) FROM TCLIENTS_DYNAMIC d

JOIN ICLIENTS_STATIC s ON (s.static_id=d.static_id)
GROUP BY s.client_name;

To view clients that are behind in the latest sample:

sqglite> SELECT s.client_name, d.queue_max_latency,
queued_bytes_out FROM TCLIENTS_DYNAMIC d

JOIN ICLIENTS_STATIC s ON (s.static_id=d.static_id)
WHERE d.timestamp = (SELECT MAX(d.timestamp)

FROM TCLIENTS_DYNAMIC d) AND d.queue_max_latency > 0;

E.4. Using the amps-sqlite3 Script

The AMPS distribution includes a convenience script, amps-sqlite3, for easily running queries against a sta-
tistics database. This script requires a Python 2.6 or 2.7 interpreter that includes the sqlite3 module. Most Linux
distributions meet this requirement in the default installation.

273

The AMPS Statistics Database

The script takes two parameters, as shown below:

Table E.1. Parameters for amps-sqlite3

Parameter Description
database The sqlite3 database file to query.
query The query to run. Notice that the query must be enclosed in quotes.

The amps-sqlite3 script joins the STATIC and DYNAMIC tables together, making a single table that is easier to

query on. For example, the script joins the ICLTENTS_DYNAMIC and ICLIENTS_STATIC tables together into
asingle TCLTENTS table.

The amps—-sqlite3 wrapper also provides a set of convienience functions that can be included in the query. These
functions are evaluated before the query is presentd to the sqlite3 database engine.

Table E.2. Convenience functions in amps-sqlite3

Option Description

1508601 (ti mestanp) Convert t i mest anp to an ISO8601 format string.

1508601_local(ti mest anp) Convertti mest anp to an ISO8601 format string in the local timezone.

timestamp(string) Convert the provided ISO8601 format St ri ng to a timestamp.

To use the amps—sqlite3 script, simply provide the file name of the database to query and the query to run. For
example, the following query returns the set of samples AMPS has recorded for the system_percent consumed
on each CPU while the instance has been running:

$ amps-sqlite3 stats.db "select i1s08601(timestamp),system_percent from hcpus
order by timestamp"

Example E.1. returning a histogram of CPU load for the host

E.5. SQLite Tips and Troubleshooting

This section includes information on SQLite tasks that may not be immediately obvious, and troubleshooting infor-
mation on SQLite.

Converting AMPS statistics time to an ISO8601 Datetime

This Python function shows how to converts an AMPS timestamp to an ISO8601 datetime. You can use the equiv-

alent in your language of choice to convert between the timestamps recorded in the statistics database and ISO8601
timestamps.

def 1s08601_time(amps_time):

mmn

Converts AMPS Stats time into an IS08601 datetime.

mmn

pt = float(amps_time) /1000 - 210866803200 # subtract the unix epoch
it = int(pt)

274

The AMPS Statistics Database

ft = pt-it
return time.strftime("%Y%m%dT%H¥M%S" , time. localtime(it)) + ("%.6f" % ft)[1:]

Troubleshooting "Database Disk Image is Malformed"”

To repair this error, you need to extract the data from the SQLite datastore and create a new datastore. To do this:

1. Open the sqlite datastore. For example, if the database store is named stats . db, the command would be:
sglite3 stats.db

2. Dump the data into a SQL script.

.mode insert

.output stats_data.sql
.dump

.exit

This creates a series of SQL commands that recreate the data in the database.
3. Now create a new database file using the SQL commands.
sqlite3 good.db < stats_data.sqgl

Finally, adjust the configuration of the Admin server to use the new database (in this example, good . db) or copy
the new database over the old database.

275

Glossary of AMPS Terminology

acknowledgement

authentication

conflated topic

conflation

delta

entitlement

expression

filter

message expiration

message type

oof (out of focus)

replication

replication source

a networking technique in which the receiver of a message is responsible for in-
forming the sender that the message was received. In AMPS:

+ Commands to the AMPS server from an application are asynchronous: AMPS
responds with acknowledgement messages to indicate the results of the com-
mand.

* An application acknowledges messages from an AMPS queue to indicate that
the message has been fully processed, and AMPS can remove the message from
the queue.

the process of establishing a proven identity for a connection to AMPS.

a copy of a SOW topic that conflates updates on a specified interval. This helps
to conserve bandwidth and processing resources for subscribers to the conflated
topic.

the process of merging a group of messages into a single message. For example,
when a particular record in the SOW is updated hundreds or thousands of times
a second, conflation can enable an application to receive the most recent update
every 300ms, reducing the network traffic to the application while still guarantee-
ing that the application has recent data.

a message that contains only the differences between the previous state of a stored
message and the new state of the stored message. AMPS supports delta messaging
for both publish (changing a subset of fields in a message) and subscribe (receiving
only the fields of a message that have changed).

the process of assigning permissions to a connection based on the identity estab-
lished for that connection.

a text string that produces a specific value. AMPS uses expressions in filters and
when constructing fields for enrichment or projecting views.

a text string that is used to match a subset of messages from a larger set of mes-
sages. In AMPS, every filter is an AMPS expression that returns TRUE or FALSE.

the process where the life span of records stored are allowed limited.

the data format used to encapsulate messages. Each message within AMPS has
a single, defined message type. Each connection to AMPS uses a single, defined
message type.

notification to a subscriber that a message which was previously a result of a SOW
or a SOW subscribe filter result has either expired, been deleted from the SOW or
has been updated such that it no longer matches the filter criteria.

the process of duplicating the messages stored into an AMPS instance to one or
more additional AMPS instances

an instance of AMPS which is the receives a published message from an applica-
tion, and then sends the message directly to one or more other AMPS instances
(the replication destinations).

276

Glossary of AMPS Terminology

replication destination

slow client

SOW (State of the World)

SOW Key

topic

transport

transaction log

view

an instance of AMPS that is receiving messages directly from another AMPS in-
stance (the replication source).

a client that is being sent messages at a rate which is faster than it can consume,
to the point where AMPS detects that the network buffer to the client has filled

the last value cache used to store the current state of messages belonging to a topic.

a value used to identify a unique message in AMPS. For a given topic, you can
configure AMPS to generate the SOW key based on content in the message, pro-
vide the SOW key on each message published, or use a SOW key generator mod-
ule to programmatically create the SOW key.

a label which is affixed to every message by a publisher which used to aggregate
and group messages.

the network protocol used to to transfer messages between AMPS subscribers,
publishers and replicas.

a history of all messages published which can be used to recreate an up to date
state of all messages processed. Applications can query and replay messages from
the transaction log.

a topic constructed by AMPS from the contents of one or more SOW topics. A
view can aggregate or transform the underlying topics, and can be of a different
message format than the underlying topics.

277

Index
Symbols

60East Technologies, 7
=30

A
ABS, 37
absolute value, 37
ack, 130
Actions, 159
admin permission, 224
Admin view, 9
Aggregate functions
null values, 41
aggregated subscriptions, 94
aggregation, 84
AMPS
basics, 8
capacity, 211
Conflated Topic, 82
events, 149
installation, 8
internal topics, 149
logging, 139
message ordering, 19
operation and deployment, 211
organization, 3
queries, 60
starting, 8
state, 45
topics, 12, 149
upgrade, 216
utilities, 153
Views, 84
AMPS binaries, 238
AMPS ClientStatus, 149
AMPS messages, 18
AMPS SOWStats, 150
ampserr, 148
ampServer, 238
ampServer-compat, 9
AMPS_PLATFORM_COMPAT, 9
amps_upgrade, 153
authenticating users, 132
authentication, 222
authenticator, 226
Availability, 187

AVG, 41
B
Basics, 8

BEGINS WITH, 29, 30

bflat, 121

Bookmark Subscription
bookmark, 101
content filter, 102
datetime, 102
EPOCH, 101
NOW, 101

bookmark subscription
rate control, 103

bookmark subscriptions, 100

Bookmarks, 100

C
Caching, 45
Capacity planning, 211
capacity planning

cpy, 214

memory, 211

network, 214

storage, 212
Client

status, 149
Client events, 149
client offlining

tuning, 219
ClientStatus, 149
COALESCE, 26
Command

delta publish, 76

oof, 67
command line options, 9
compatibility

with previous versions, 6
CONCAT, 34
conditional expressions, 32
Configuration

admin, 154

monitoring interface, 154
Conflated Topic, 82
conflated topics, 82
conflation, 82
Content filtering, 22

IS NULL, 26

NaN, 26

NULL, 26
Correlationld, 19
COUNT, 41
COUNT_DISTINCT, 41
current time, 36

D

daemon, 135

278

Index

data types, 24

date and time functions, 36
date formatting, 255
DATE function, 255
DATE_UTC function, 255
DAY function, 255

default actions, 161
defining in configuration file, 115
delta, 76

Deployment, 211

distance from a point, 36
distribution layout, 238

E

ENDS WITH, 29, 30
Engine

statistics, 150
entitlement, 224
Error categories, 146
Errors

ampserr, 148

error categories, 146
Event topics, 149
event topics

persisting to SOW, 151
Events, 149
expressions, 22
Extracting records, 60

F

FileName
SOW/Topic, 54
filter
case-insensitive, 42
Filters, 22
floating point values
conversion from string, 25

representing in AMPS expressions, 24

Functions
aggregate null values, 41

G

GEO_DISTANCE, 36

H

header fields
custom, 19

heartbeat, 205

High availability, 187
heartbeat, 205
replication, 192
transaction log, 98

High Availability

durable subscriptions, 204
guaranteed publishing, 203

high availability

message queues, 208

Highlights, 2
historical queries, 100
historical SOW

|
ide

enabling, 55

ntifiers, 23

IF operator, 32

IN

operator, 32

incremental message update, 76
indexing SOW topics, 49
installation, 8

INSTR, 29, 31

INSTR 1, 29, 31

integers

conversion from string, 25
representing in AMPS expressions, 24

Internal event topics, 149

J

joins, 84

L

Last value cache, 45
LIKE, 31
LocalQueue

configuration element, 116

Logging, 139
logon permission, 224
LOWER, 34
lowercasing strings, 34

M

MAX, 41
Memory, 211

me

ssage enrichment, 73

Message expiration, 50

me
me
me

ssage expiration, 55
ssage parsing, 121
ssage queues, 107

Message Replay, 98
Message types, 120

BSON, 120
composite, 120
FIX, 120
JSON, 120
NVFIX, 120
protobuf, 120
XML, 120

279

Index

message validation topic, 224

not enforced by AMPS, 121 Platforms, 3
MessageDiskLimit Playback, 98

tuning, 220 Pub/sub, 12
MessageDiskPath Publish, 12

tuning, 220 Publish and subscribe, 12
MessageMemoryLimit

tuning, 219 Q
MIN, 41 Query
Minidump, 220 filters, 22

Monitoring interface, 154, 154
configuration, 154
host, 154
instance, 154
output formatting, 155

Queue

configuration element, 115
queueing, 107

replication, 208

CSV 156 queues, 115

JSON, 157 R

RNC, 158 '

XML. 156 raw strings, 44

time range selection, 155 Reason, 19 .
MONTH function, 255 REGEXP_REPLACE function, 35
MOST_RECENT bookmark value, 102 regular expression
case insensitive, 42

N regular expression comparison, 31

Regular expressions, 13
raw strings, 44
topics, 13

regular expressions, 42

NaN
in aggregates, 32
in AMPS expressions, 26

NULL REPLACE function, 35

m aggregates, 32] replacing filter, 17

in AMPS expre551on§, 26 Replay, 98

using IF to replace with value, 32 replay messages, 100
Null values, 41 Replication, 187

replication, 192

o benefits, 197
OOQOF, 67 compression, 198

use case, 235 configuration, 193
Operating systems, 3 single connection between two servers, 199
Operation, 211 replication_logon permission, 224
Operation and deployment reserved signals

minidump, 220 SIGQUIT, 161

slow clients, 219 ROUND, 37
operations rounding numbers, 37

client offlining, 219
order of messages, 20 S

Out of focus, 67

securing AMPS
use case, 235

enforcing permissions, 224

overview, 2 overview, 222
verifying identity, 222
P SIGHUP, 161
permissions SIGINT, 161
admin, 224 SIGQUIT, 161
logon, 224 SIGTERM, 161
replication, 224 SIGUSR]1, 161

280

Index

SIGUSR2, 161
Slow clients, 205, 219
SOW, 45
configuration, 53
ConflatedTopic, 82
content filters, 22
deleting records, 50
file management, 53
hash index, 49
message enrichment, 73
queries, 47
queryfilters, 22
rebuilding from transaction log, 46, 105
statistics, 150
storage requirements, 212
topic definition, 53
use case, 233
SOW events, 149
SOW keys
generating, 47
user generated, 47
SOW queries, 60
SowKey, 19
spark, 245
ping, 252
publish, 246
sow, 248
sow_and_subscribe, 250
sow_delete, 251
subscribe, 249
spark utility, 10
SSL, 132
starting, 8
State of the World (SOW), 45
events, 149
example of query and subscription, 233
Statistics
SOW, 150
Status, 19
STDDEV_POP, 41
STDDEV_SAMP, 41
storage, 45
STREQ_]I, 29, 31
STRFTIME function, 255
string comparison functions
=, 30
BEGINS WITH, 30
ENDS WITH, 30
INSTR, 31
INSTR_I, 31
STREQ_I, 31
string manipulation functions
LOWER, 34
REGEXP_REPLACE, 35

REPLACE, 35

UPPER, 34
Subscribe, 12
subscription

pausing, 103

resuming, 103
subscriptions

bookmark, 100
SUBSTR function, 35
SUM, 41
Support, 5

channels, 7

technical, 5
Supported platforms, 3

T

tcp, 132
tcps, 132
Technical support, 5
Timestamp, 19
TIMEZONEOFFSET function, 255
TODAY function, 255
TODAY_UTC function, 255
topic permission, 224
Topic Replicas, 82
topic replicas, 82
TopicDefinition
synonym for Topic, 53
Topics
ClientStatus, 149, 149
intro, 12
regular expressions, 13
SOWStats, 150
Transaction log, 98
Transaction Log
administration, 105
Bookmarks, 100
configuration, 99
pruning, 105
Transactions, 98, 187
transport, 132
troubleshooting
disconnected clients, 228
error categories, 146
examining logs, 227
planning, 227
replication log messages, 228
understanding error messages, 148

U
UNIX_TIMESTAMP, 36

unparsed payload, 123
upgrade, 216

281

Index

UPPER, 34
uppercasing strings, 34
Utilities, 153

ampserr, 153

spark, 245

\'

version numbers, 6
Views, 84
views

ad hoc, 94

W

Web console, 154

X

XPath syntax, 23

Y

YEAR function, 255

282

	Advanced Message Processing System (AMPS) User Guide
	Table of Contents
	Part I. Introduction and Overview
	Chapter 1. Introduction to 60East Technologies AMPS
	1.1. Product Overview
	1.2. Software Requirements
	1.3. Organization of this Manual
	1.4. Document Conventions
	1.5. Obtaining Support
	Support Steps
	AMPS Versioning and Certification
	Contacting 60East Technologies Support

	Chapter 2. Getting Started
	2.1. Installing AMPS
	2.2. Starting AMPS
	Command Line Options

	2.3. Admin View of the AMPS Server
	2.4. Interacting with AMPS Using Spark
	2.5. Next Steps

	Part II. Understanding AMPS
	Chapter 3. Publish and Subscribe
	3.1. Topics
	Regular Expressions

	3.2. Filtering Subscriptions By Content
	3.3. Conflated Subscriptions
	When to Use Conflated Subscriptions
	Requesting Conflation on a Subscription

	3.4. Replacing Subscriptions
	Replacing the Content Filter on a Subscription
	Replacing the Topic on a Subscription
	Replacing the Options on a Subscription

	3.5. Messages in AMPS
	Introduction to AMPS Headers

	3.6. Message Ordering

	Chapter 4. AMPS Expressions
	4.1. Expressions Overview
	4.2. Expression Syntax
	Identifiers
	AMPS Data Types
	Numeric Types and Literals in AMPS Expressions
	String Literals in AMPS Expressions
	NULL, NaN and IS NULL

	Grouping and Order of Evaluation
	Logical Operators
	Arithmetic Operators
	Comparison Operators
	String Comparison Functions
	Regular Expression Matching
	Conditional Operators
	Working With Arrays
	Concatenating Strings
	Managing String Case
	Replacing Text in Strings
	Working With Substrings
	Timestamp Function
	Geospatial Functions
	Numeric Functions

	4.3. Constructing Fields
	Constructing Preprocessing Fields
	Constructing Enrichment Fields
	Constructing View Fields
	Aggregate Functions

	Chapter 5. Regular Expressions
	5.1. Examples
	Raw Strings
	Topic Regular Expressions

	Chapter 6. State of the World (SOW)
	6.1. How Does the State of the World Work?
	6.2. Queries
	6.3. SOW Keys
	AMPS-Generated SOW Keys
	User-Generated SOW Keys

	6.4. SOW Indexing
	6.5. Removing SOW Records
	6.6. SOW Message Expiration
	Usage
	Enabling Expiration for a Topic
	Setting Expiration for a Message

	Example Message Lifecycle
	Recovery and Expiration

	6.7. SOW Maintenance
	6.8. Configuration

	Chapter 7. SOW Queries
	7.1. SOW Queries
	7.2. Historical SOW Queries
	Window and Granularity
	Message Sequence Flow

	7.3. SOW Query-and-Subscribe
	Historical SOW Query and Subscribe
	Conflated Subscriptions with SOW and Subscribe
	Replacing Subscriptions with SOW and Subscribe

	7.4. SOW Query Response Batching
	7.5. Configuring SOW Query Result Sets

	Chapter 8. Out-of-Focus Messages (OOF)
	8.1. Usage
	8.2. Example
	Client-Side Filtering in a sow_and_subscribe Command
	AMPS Filtering in a sow_and_subscribe command
	OOF Processing in a sow_and_subscribe command

	Chapter 9. State of the World Message Enrichment
	9.1. Preprocessing Messages
	9.2. Enriching Messages
	9.3. SOW Update and Enrichment Processing

	Chapter 10. Delta Messaging
	10.1. Delta Subscribe
	Using Delta Subscribe
	Options for Delta Subscribe
	Identifying Changed Records
	Conflated Subscriptions and Delta Subscribe
	Delta Subscribe Support
	Multiple Subscriptions and Delta Subscribe

	10.2. Delta Publish
	Using Delta Publish
	Delta Publish Support

	Chapter 11. Conflated Topics
	11.1. SOW/ConflatedTopic

	Chapter 12. Aggregating and Analyzing Data in AMPS
	12.1. Understanding Views
	12.2. Defining Views and Aggregations
	Single Topic Aggregation: UnderlyingTopic
	Multiple Topic Aggregation: Join
	Setting the Message Type
	Defining Projections
	Data Types and Projections
	Grouping
	Inline Conflation
	Filtering Single Topic Aggregations

	12.3. Constructing Fields
	12.4. Examples
	Simple Aggregate View Example
	Multiple Topic Aggregate Example
	View Projected Into Different Message Type

	12.5. Aggregated Subscriptions
	When to Use Aggregated Subscriptions
	Requesting an Aggregated Subscription
	Considerations for Aggregated Subscriptions

	Chapter 13. Transactional Messaging and Bookmark Subscriptions
	13.1. Recording and Replaying Messages With Transaction Logs
	Understanding Message Persistence
	Configuring a Transaction Log
	Replaying Messages with Bookmark Subscription
	Recovery With an Epoch Bookmark
	Bookmark Replay From NOW
	Bookmark Replay With a Bookmark
	Bookmark Replay From a Moment in Time
	Content and Topic Filtering
	Delivery Rate Control for Bookmark Subscriptions
	Pausing and Resuming Bookmark Subscriptions
	Conflation and Bookmark Subscriptions

	Selecting Message Durability Options
	Using the 'fully_durable' Option for Bookmark Subscriptions
	Using the 'live' Option for Bookmark Subscriptions

	Managing Journal Files

	Chapter 14. Message Queues
	14.1. Getting Started with AMPS Queues
	14.2. Understanding AMPS Queuing
	Delivery Semantics
	Subscription Backlog
	Delivery Fairness
	Acknowledging Messages
	Message Flow for Queues
	Advanced Messaging and Queues
	Querying Queues as a View
	Topics with a SOW as Underlying Topics for Queues
	Delta Messaging with Queues
	Views and Aggregated Subscriptions over Queues
	Bookmark Subscriptions and Queues

	14.3. Replacing Queue Subscriptions
	14.4. SOW/Queue and SOW/LocalQueue

	Chapter 15. Message Types
	15.1. Default Message Types
	15.2. BFlat Messages
	BFlat Data Types

	15.3. Composite Messages
	Configuring Composite Message Types
	Content Filtering with Composite Message Types
	composite-global

	composite-local
	Choosing A Composite Type

	15.4. Protobuf Message Types
	Configuring Protobuf Message Types
	Filtering with Protobuf Messages
	Union Types

	Limitations of the protobuf message type
	Working with Optional Default Values

	15.5. Loading Additional Message Types

	Chapter 16. Command Acknowledgement
	Chapter 17. Transports
	17.1. Client connections
	TCP Connections
	SSL Connections
	Unix domain sockets

	17.2. Replication Connections

	Part III. Deployment, Monitoring, and Administration
	Chapter 18. Running AMPS as a Linux Service
	18.1. Installing the Service
	18.2. Configuring the Service
	AMPS Logging
	File Paths
	Configuration File Location

	18.3. Managing the Service
	18.4. Uninstalling the Service
	18.5. Upgrading the Service

	Chapter 19. Logging
	19.1. Configuration
	19.2. Log Messages
	19.3. Log Levels
	19.4. Logging to a File
	Selecting a Filename
	Log File Rotation
	Examples

	19.5. Logging to a Compressed File
	Example

	19.6. Logging to the Console
	Example

	19.7. Logging to Syslog
	Example

	19.8. Error Categories
	19.9. Looking Up Errors with ampserr

	Chapter 20. Event Topics
	20.1. Client Status
	20.2. SOW Statistics
	20.3. Persisting Event Topic Data

	Chapter 21. Utilities
	Chapter 22. Monitoring Interface
	22.1. Configuration
	22.2. Time Range Selection
	22.3. Output Formatting
	XML Document Output
	CSV Document Output
	JSON Document Output
	RNC Document Output

	Chapter 23. Automating AMPS With Actions
	23.1. Setting when an Action Runs
	Running an Action on a Schedule
	Running an Action in Response to a Signal
	Default Signal Actions

	Running an Action on Startup or Shutdown
	Runnning an Action on Client Logon
	Running an Action on Client Connection
	Running an Action on Message Delivery
	Running an Action on Message Publish
	Running an Action on OOF Message
	Running an Action on Minidump
	Running an Action on Offline Start or Stop
	Running on Action on SOW Message Deletion
	Running an Action on SOW Message Expiration
	Running an Action on Message Condition Timeout

	23.2. Defining the Action to Take
	Rotate Log Files
	Manage the Statistics Database
	Manage Journal Files
	Removing Files
	Deleting Messages from SOW
	Compacting a SOW File
	Querying a SOW Topic
	Manage Security
	Enable and Disable a Transport
	Publishing Messages
	Manage Replication
	Extract Values
	Translate Data
	Increment Counter
	Executing System Commands
	Debugging Actions
	Creating a Minidump
	Shut Down AMPS

	23.3. Conditionally Run Actions
	File System Usage

	23.4. Action Configuration Examples
	Archive Files Older Than One Week, Every Saturday
	Disable and Re-enable Security on Signal
	Extract Values on Publish of a Message
	Increment a Counter and Echo a Message on Signal
	Copy a Message to a Different Topic When a Timeout is Exceeded
	Recording Expired Queue Messages in a Dead Letter Topic
	Shutting Down AMPS When Filesystem Fills

	Chapter 24. Replication and High Availability
	24.1. Overview of AMPS High Availability
	24.2. High Availability Scenarios
	Failover Scenario
	Geographic Replication
	Geographic Replication with High Availability

	24.3. AMPS Replication
	Configuration
	Automatic Configuration Validation

	Benefits of Replication
	Sync vs Async
	Replication Compression
	Destination Server Failover
	Back Replication
	Passthrough Replication
	Guarantees on ordering
	Automatically Downgrading an AMPS instance
	Replication Security
	Maximum downstream destinations

	24.4. High Availability
	Guaranteed Publishing
	Durable Publication and Subscriptions
	Heartbeat in High Availability
	Slow Client Management
	Message Ordering and Replication

	24.5. Replicated Queues
	Queue Message Ownership
	Failover and Queue Message Ownership

	Configuration for Queue Replication

	Chapter 25. Operation and Deployment
	25.1. Capacity Planning
	Memory
	Storage
	CPU
	Network
	NUMA Considerations

	25.2. Linux Operating System Configuration
	ulimit
	/proc/sys/fs/aio-max-nr
	/proc/sys/fs/file-max

	25.3. Upgrading an AMPS Installation
	Upgrade Steps
	Upgrading AMPS Data Files

	25.4. Best Practices
	Monitoring
	Stopping AMPS
	SOW Parameters
	Slow Clients
	Slow Client Offlining for Large Result Sets

	Minidump

	Chapter 26. Securing AMPS
	26.1. Authentication
	Simple Authentication Modules
	Enabling Implicit Logon

	26.2. Entitlement
	26.3. Providing an Identity for Outbound Connections (Authenticator)
	26.4. Protecting Data in Transit Using SSL

	Chapter 27. Troubleshooting AMPS
	27.1. Planning for Troubleshooting
	27.2. Finding Information in the Log
	27.3. Reading Replication Log Messages
	27.4. Troubleshooting Disconnected Clients
	Locating the Reason for Disconnection

	Part IV. Building Applications with AMPS
	Chapter 28. Sample Use Cases
	28.1. View Server Use Case
	Setup
	SOW Query and Subscription
	Out-of-Focus (OOF) Processing
	Conclusion and Next Steps
	sow_and_delta subscribe
	TopN and Stats

	Part V. Appendices
	Appendix A. AMPS Distribution Layout
	A.1. /bin directory

	Appendix B. Configuration File Shortcuts
	B.1. AMPS Configuration File Special Characters
	State of the World File Name
	Log Rotation Name
	Dates

	B.2. Using Units in the Configuration
	B.3. Environment Variables in AMPS Configuration
	Internal Environment Variables

	Appendix C. Spark
	C.1. Getting help with spark
	C.2. Spark Commands
	publish
	Common Options - spark publish
	Examples

	sow
	Common Options - spark sow
	Examples

	subscribe
	Common Options - spark subscribe
	Examples

	sow_and_subscribe
	Common Options - spark sow_and_subscribe
	Examples

	sow_delete
	Common Options - sow_delete
	Examples

	ping
	Common Options - spark ping
	Examples

	C.3. Spark Authentication

	Appendix D. Auxiliary Modules
	D.1. Legacy Messaging Compatibility Functions
	D.2. Key Generation for Chained Messages
	D.3. Authentication and Entitlement using a Web Service
	When to Use the Web Service Module
	Permissions Document Format
	Configuring AMPS to use Web Service Authentication and Entitlements
	Using HTTPS for Entitlement Requests

	Permissions Management and Request Flow
	Entitlement Reset

	D.4. Entitlement with the Simple Access Module
	When to Use the Simple Access Module
	Configuring AMPS to use the Simple Access Module

	Appendix E. The AMPS Statistics Database
	E.1. Configuring AMPS to Persist Statistics
	E.2. Introduction to SQLite3
	Starting sqlite3
	Simple SQLite3 commands
	Tables
	Schema

	E.3. Statistics Table Design
	Table Naming Scheme
	Example Queries

	E.4. Using the amps-sqlite3 Script
	E.5. SQLite Tips and Troubleshooting
	Converting AMPS statistics time to an ISO8601 Datetime
	Troubleshooting "Database Disk Image is Malformed"

	Glossary of AMPS Terminology

	Index

